首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The activity of E. coli DNA polymerase I decreases on treatment with γ-rays, methylnitrosourea or dimethyl sulphate. In the case of the first two agents the decrease in activity is accompanied by a decrease in the accuracy of the enzyme in an in vitro assay. There is no detectable change in the ratio of DNA polymerase activity to 3′→5′ exonuclease activity on treatment.  相似文献   

2.
Excision of thymine dimers from specifically incised ultraviolet irradiated DNA by E. coli DNA polymerase I is stimulated by concurrent DNA synthesis. The 36,000 molecular-weight “small fragment” obtained by limited proteolysis of DNA polymerase I, which retains only the 5′ → 3′ exonuclease activity, also excises thymine dimers, but at one-tenth the rate of the intact enzyme. However, the rate of excision is increased by addition of the “large” 76,000-molecular weight fragment. With the further addition of the 4 deoxynucleoside triphosphates, permitting DNA synthesis to occur, excision approaches rates observed with the intact enzyme. The same result was obtained with a fragment of DNA polymerase I with 5′ → 3′ exonuclease activity that is present uniquely in polymerase I amber mutants.  相似文献   

3.
Excision repair of DNA base damage   总被引:4,自引:0,他引:4  
P A Cerutti 《Life sciences》1974,15(9):1567-1575
Exposure of cells to exogenous physical and chemical agents can result in damage to the DNA bases. DNA damage can lead to mutation, malignant transformation and cell death and may possibly be involved in cellular aging. Structurally related base modifications are expected to have similar biological effects regardless of the agent responsible for their formation. The biological effects may be a consequence of the local distortion of the DNA conformation by the lesion rather than of the chemical properties of the modified base per se. It may be useful, therefore, to classify DNA base damage according to their effect on DNA conformation. The elucidation of the structures of the DNA lesions produced in situ in the living cell represents a prerequisite for the correlation of specific lesions with the biological effects and for the study of the cellular repair processes.Excision repair represents an ubiquitous mechanism in cells for the removal of damaged residues from the DNA. The most specific first step in excision repair is the recognition of the damage by an endonuclease followed by incision of the damaged DNA strand in the proximity of the damage. Several “repair endonucleases” have been characterized from bacteria while the search for the corresponding mammalian enzymes is only beginning. The second, probably less specific step, is the exonucleolytic degradation of the damaged portion of the DNA leading to the removal of the damaged residue. In E. coli the removal of both cyclobutane-type photodimers and γ-ray products of the 5,6-dihydroxy-dihydrothymine type is accomplished by the 5′→3′ exonuclease associated with polymerase I. All three E. coli polymerases appear to participate in the rebuilding of the degraded portion of the DNA. Studies on the corresponding enzymes in mammalian cells have been initiated. The last step of exicison repair involves the sealing of a phosphodiester bond of the DNA backbone and is accomplished by the enzyme polynucleotide ligase in bacterial and mammalian cells.  相似文献   

4.
Assay of RNA-linked nascent DNA pieces with polynucleotide kinase.   总被引:6,自引:0,他引:6  
The 5′-OH end of DNA created upon alkaline hydrolysis of the RNA-linked nascent DNA pieces can be labeled with [γ-32P]ATP using T4 polynucleotide kinase. However, it is difficult to use this method for the assay of these molecules in the presence of RNA-free DNA pieces because of the exchange reaction between the γ-phosphate of ATP and the 5′-phosphate of DNA catalyzed by the kinase. This difficulty can be circumvented by performing the polynucleotide kinase reaction at 0°C, where little exchange reaction occurs. Using these conditions, E. coli polAexl, a mutant defective in the 5′ → 3′ exonuclease activity of DNA polymerase I, is shown to contain several times as many RNA-linked DNA pieces as the wild type.  相似文献   

5.
When the kinetics of Escherichia coli exonuclease III digestion of adenovirus 2 DNA were studied by DNA polymerase I-catalyzed repair synthesis at 5°C, there was an indication of the formation of hairpin structure in the single-stranded template, exposed by exonuclease III. The hairpin structure results from a sequence with an inverted repetition of the type, a b c d···d′ c′ b′ a′. The location of these sequences was determined to be about 180 nucleotides from each terminus of adenovirus 2 DNA with the use of specific restriction endonucleases. The possible role of this region in the replication of the adenovirus 2 genome is discussed.  相似文献   

6.
The conversion of both parental- and progeny-nascent open circular M13 RF DNA into covalently closed RF I is drastically reduced in an E. coli mutant deficient in the 5′ → 3′ exonuclease associated with DNA polymerase I. The nascent progeny RF DNA also contains a significant proportion of fragments of smaller than unit length.  相似文献   

7.
The 3′→5′ exonuclease activity of highly purified large form of human DNA polymerase epsilon was studied. The activity removes mononucleotides from the 3′ end of an oligonucleotide with a non-processive mechanism and leaves 5′-terminal trinucleotide non-hydrolyzed. This is the case both with single-stranded oligonucleotides and with oligonucleotides annealed to complementary regions of M13DNA. However, the reaction rates with single-stranded oligonucleotides are at least ten-fold when compared to those with completely base-paired oligonucleotides. Conceivably, mismatched 3′ end of an oligonucleotide annealed to M13DNA is rapidly removed and the hydrolysis is slown down when double-stranded region is reached. The preferential removal of a non-complementary 3′ end and the non-processive mechanism are consistent with anticipated proofreading function. In addition to the 3′→5′ exonuclease activity, an 5′→3′ exonuclease activity is often present even in relatively highly purified DNA polymerase epsilon preparates suggesting that such an activity may be an essential com-ponent for the action of this enzymein vivo. Contrary to the 3′→5′ exonuclease activity, the 5′→3′ exonuclease is separable from the polymerase activity.  相似文献   

8.
Superior antitumor activity of 1-β-D-arabinofuranosylcytosine (ara-C) conjugates of prednisolone and prednisone against L1210 leukemic mice, based on ara-C content, has encouraged us to synthesize 5′-(cortisone-21-phosphoryl)-1-β-D-arabinofuranosylcytosine (I) and 5′-(cortisone-21-phosphoryl)-1-β-d-arabinofuranosylcytosine (II) by condensation of N4,2′,3′-triacetyl-1-β-d-arabinofuranosylcytosine 5′-monophosphate with cortisol and cortisone in the presence of N,N′-dicyclohexylcarbodiimide at room temperature followed by removing the acetyl groups in 2 N methanolic ammonia in 20% yield. The conjugates I and II inhibited the invitro growth of L1210 by 50% (ED50) at 0.25 μM and 0.07 μM, respectively, while ara-C showed ED50 0.1 μM. However, the conjugates I and II exhibited 287% and 238% of TC at 50 mg/kg/day × 5 doses against L1210 leukemic mice, respectively, while ara-C at 25 mg and 50 mg/kg/day × 5 gave the respective 127% and 110% of TC.  相似文献   

9.
DNA polymerase I (DNApolI) catalyzes DNA synthesis during Okazaki fragment maturation, base excision repair, and nucleotide excision repair. Some bacterial DNApolIs are deficient in 3′–5′ exonuclease, which is required for removing an incorrectly incorporated 3′-terminal nucleotide during DNA elongation by DNA polymerase activity. The key amino acid residues in the exonuclease center of Chlamydophila pneumoniae DNApolI (CpDNApolI) are naturally mutated, resulting in the loss of 3′–5′ exonuclease. Hence, the manner by which CpDNApolI proofreads the incorrectly incorporated nucleotide during DNA synthesis warrants clarification. C. pneumoniae encodes three 3′–5′ exonuclease activities: one endonuclease IV and two homologs of the epsilon subunit of replicative DNA polymerase III. The three proteins were biochemically characterized using single- and double-stranded DNA substrate. Among them, C. pneumoniae endonuclease IV (CpendoIV) possesses 3′–5′ exonuclease activity that prefers to remove mismatched 3′-terminal nucleotides in the nick, gap, and 3′ recess of a double-stranded DNA (dsDNA). Finally, we reconstituted the proofreading reaction of the mismatched 3′-terminal nucleotide using the dsDNA with a nick or 3′ recess as substrate. Upon proofreading of the mismatched 3′-terminal nucleotide by CpendoIV, CpDNApolI can correctly reincorporate the matched nucleotide and the nick is further sealed by DNA ligase. Based on our biochemical results, we proposed that CpendoIV was responsible for proofreading the replication errors of CpDNApolI.  相似文献   

10.
When different strains of Escherichia coli are exposed to Cd2+, the cells accommodate after a long lag and proliferate. The time required for this response depends on the nature of the strain and the supplements in the growth medium. Immediately after exposure to Cd2+, considerable single strand breaks in the DNA are observed but the DNA is repaired prior to the initiation of cell proliferation. The finding that accommodation occurs in DNA polymerase I-deficient mutant cells suggests that DNA polymerase I may not be required for repair of damaged DNA in Cd2+-exposed cells. The recovery of Cd2+-exposed cells in a temperature-sensitive DNA ligase mutant cells at the permissive temperature (30° C) and failure to recover at the non-permissive temperature (42° C) indicates, however, that DNA ligase is involved in the repair of the single strand breaks associated with Cd2+-induced damage.  相似文献   

11.
Nucleic acids analogues, i.e., oligonucleotide N3′→P5′ phosphoramidates and N3′→P5′ thio‐phosphoramidates, containing 3′‐amino‐3′‐deoxy nucleosides with various 2′‐substituents were synthesized and extensively studied. These compounds resist nuclease hydrolysis and form stable duplexes with complementary native phosphodiester DNA and, particularly, RNA strands. An increase in duplexes' melting temperature, ΔTm, relative to their phosphodiester counterparts, reaches 2.2–4.0° per modified nucleoside. 2′‐OH‐ (RNA‐like), 2′‐O‐Me‐, and 2′‐ribo‐F‐nucleoside substitutions result in the highest degree of duplex stabilization. Moreover, under close to physiological salt and pH conditions, the 2′‐deoxy‐ and 2′‐fluoro‐phosphoramidate compounds form extremely stable triple‐stranded complexes with either single‐ or double‐stranded phosphodiester DNA oligonucleotides. Melting temperature, Tm, of these triplexes exceeds Tm values for the isosequential phosphodiester counterparts by up to 35°. 2′‐Deoxy‐N3′→P5′ phosphoramidates adopt RNA‐like C3′‐endo or N‐type nucleoside sugar‐ring conformations and hence can be used as stable RNA mimetics. Duplexes formed by 2′‐deoxy phosphoramidates with complementary RNA strands are not substrates for RNase H‐mediated cleavage in vitro. Oligonucleotide phosphoramidates and especially thio‐phosphoramidates conjugated with lipid groups are cell‐permeable and demonstrate high biological target specific activity in vitro. In vivo, these compounds show good bioavailability and efficient biodistribution to all major organs, while exerting acceptable toxicity at therapeutically relevant doses. Short oligonucleotide N3′→P5′ thio‐phosphoramidate conjugated to 5′‐palmitoyl group, designated as GRN163L (Imetelstat), was recently introduced as a potent human telomerase inhibitor. GRN163L is not an antisense agent; it is a direct competitive inhibitor of human telomerase, which directly binds to the active site of the enzyme and thus inhibits its activity. This compound is currently in multiple Phase‐I and Phase‐I/II clinical trials as potential broad‐spectrum anticancer agent.  相似文献   

12.
Neutron diffraction experiments on selectively deuterated lipids provide a new method of determining to a segmental resolution the mean conformation of a lipid molecule as projected along the bilayer normal, despite the high amount of disorder that exists in these bilayers. In addition, a time-averaged picture of the extent of the positional fluctuations of the individual segments in this direction can be given. This is demonstrated for a multilamellar system of bilayers of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine. In this paper the head group region of the molecule is examined and this carries the zwitterionic phosphocholine group that determines the electrostatic interaction in the bilayer. Samples deuterated at four different positions in the head group region were measured as oriented samples at 6% (ww) water content at 20 °C (Lβ′ phase) and at 10% (ww) at 70 °C (Lα phase) and as unsonicated dispersions with 25% (ww) water at 28 °C (Lβ′ phase) and 50 °C (Lα phase). From the oriented samples, reflections up to ten orders, and from the powder type samples only four orders, were collected. The derived structure factors for the deuterated segments were fitted assuming a Gaussian distribution of the segments along the bilayer normal. The mean label position was determined for each label under different conditions of water content and temperature with a precision of better than ± 1 ångström in most cases. The data clearly show that the average orientation of the zwitterionic phosphocholine group is almost parallel to the membrane surface in the gel state (Lβ′) as well as in the liquid crystalline state (Lα). It is interesting to note that in a recent dielectric investigation on this multilamellar system at 25% (ww) water content the same mean orientation of the dipole was found (Shepherd &; Büldt, 1978).  相似文献   

13.
Two closely related crystal forms of dimeric cytochrome c5 from Azotobacter rinelandii have been grown. The crystals belong to space groups (C2 with a = 45·0, b = 38·4, c = 41·3 A? and β = 101 ° 0′; and C1 (a centered triclinic cell) with a = 46·0, b = 37·6, c = 49·4 A?, α = 87 ° 20′, β = 96 ° 40′ and γ = 90 ° 0′. In C2 the 24,000 molecular weight dimer lies on a Crystallographic 2-fold axis; in C1 the entire dimer occupies the asymmetric unit.  相似文献   

14.
Bacteriorhodopsin has been reconstituted into lipid vesicles with dipalmitoyl and dimyristoyls phosphatidylcholine. Circular dichroism (CD) measurements show that the proteins are in a monomeric state above the main lipid phase transition temperature (Tc), 41 and 23°C for dipalmitoyl and dimyristoyl phosphatidylcholine, respectively. Below Tc, the CD spectrum is the same as that found for the purple membrane. The latter result implies that the orientation of the chromophore at these temperatures is most likely the same as in the purple membrane (70° ± 5° from the normal to the membrane plane).Transient dichroism measurements show that below Tc the proteins are immobile, while above this temperature protein rotation around an axis normal to the plane of the membrane is occurring. In addition, from the data the angle of the chromophore for the rotating proteins with respect to the rotational diffusion axis can be calculated. This angle is found to be 30° ± 3° and 29° ± 4° in dimyristoyl phosphatidylcholine and dipalmitoyl phosphatidylcholine, respectively. This is considerably smaller than the value of 70° ± 5° for the natural biomembrane. A reversible reorientation of the chromophore above and below the respective main Tc transition temperature could explain the change of angle observed provided that all the molecules rotate above Tc.  相似文献   

15.
The structural changes accompanying the recently described sub-transition of hydrated dipalmitoylphosphatidylcholine (Chen, S.C., Sturtevant, J.M. and Gaffney, B.J. (1980) Proc. Natl. Acad. Sci. USA 77, 5060–5063) have been defined using X-ray diffraction methods. Following prolonged storage at ?4°C the usual Lβ′ gel form of hydrated dipalmitoylphosphatidylcholine (DPPC) is converted into a more ordered stable ‘crystal’ form. The bilayer periodicity is 59.1 Å and the most striking feature is the presence of a number of X-ray reflections in the wide angle region. The most prominent of these are a sharp reflection at 14.4A??1 and a broader reflection at 13.9A??1. This diffraction pattern is indicative of more ordered molecular and hydrocarbon chain packing modes in this low temperature ‘crystal’ bilayer form. At the sub-transition (Trmsub = 15–20°C) an increase in the bilayer periodicity occurs (d=63.6 A?) and a strong reflection at approx. 14.2A??1 with a shoulder at approx. 14.1A??1 is observed. This diffraction pattern is identical to that of the bilayer gel (Lβ′) form of hydrated DPPC. Thus, the sub-transition corresponds to a bilayer ‘crystal’ → bilayer Lβ′ gel structural rearrangement accompanied by a decrease in the lateral hydrocarbon chain interactions. Differential scanning calorimetry and X-ray diffraction show that on further heating the usual structural changes Lβ′ → Pβ′ and Pβ′ → Lα occur at the pre- and main transitions, at approx. 35°C and 41°C, respectively.  相似文献   

16.
In vitro incubations of non-histone proteins from rat liver nuclei with labelled L-3, 5, 3′ triiodothyronine demonstrate the existence of high affinity, limited capacity binding sites for the hormone in this protein group; the affinity was found identical for triiodothyroacetic acid and lower for L-thyroxine. Binding ability was highly temperature dependent. At 4°C, the rate constant of association was 0.9 × 107 M?1 h?1 and the rate constant of dissociation was 0.015 h?1. The dissociation constant Kd was calculated from these data or measured by Scatchard analysis and found to be between 1.6 and 5 × 10?9 M. The maximum binding capacity was 10?13 moles of L-3, 5, 3′ triiodothyronine per 100 μg non-histone proteins or 6000 hormone molecules per nucleus. Protein binding had a half-life of 20 hours at 4°C, in the absence of hormone, but was found to be very stable in the presence of hormone.  相似文献   

17.
18.
The successive enthalpy changes for the four steps of oxygen binding by diphosphoglycerate-free adult human hemoglobin have been measured by direct calorimetry at pH 7.4 and 6°. Average results in kcal/(mole O2) are: ΔH1 = ?25.1 ± 2.8; ΔH2 = ?12.6 ± 3.0, ΔH3 = ?12.5 ± 3.0, and ΔH4 = ?10.1 ± 1.4. These results imply a substantial temperature dependence for the cooperativity of O2 binding by the protein and generally resemble the van't Hoff results by Roughton et al. [Roy. Soc. of London Proc., B 144, 29 (1955)] for sheep hemoglobin at pH 9.1 and a temperature range of 2° to 19°.  相似文献   

19.
The binding of [3H]γ-aminobutyric acid to cat cerebellar membranes is reversibly inhibited in a competitive manner by pyridoxal-5′-phosphate present during the binding assay. Structural analogues of the inhibitor have no such effect. If, on the other hand, the membranes are preincubated with pyridoxal-5′-phosphate followed by the addition of sodium borohydride, a rapid, irreversible inhibition of subsequent γ-aminobutyric acid binding is observed. Since pyridoxal-5′-phosphate is known to inactivate certain enzymes by reacting with essential lysine residues, the present results suggest that such a lysine residue may be present within the γ-aminobutyric acid receptor.  相似文献   

20.
An isogenic series of Escherichia coli strains deficient in various combinations of three 5' leads to 3' exonucleases (exonuclease V, exonuclease VII, and the 5' leads to 3' exonuclease of DNA polymerase I) was constructed and examined for the ability to excise pyrimidine dimers after UV irradiation. Although the recB and recC mutations (deficient in exonuclease V) proved to be incompatible with the polA(Ex) mutation (deficient in the 5' leads to 3' exonuclease of DNA polymerase I), it was possible to reduce the level of the recB,C exonuclease by the use of temperature-sensitive recB270 recC271 mutants. It was found that, by employing strains deficient in exonuclease V, postirradiation DNA degradation could be reduced and dimer excision measurements could be facilitated. Mutants deficient in exonuclease V were found to excise dimers at a rate comparable to that of the wild type. Mutants deficient in exonuclease V and the 5' leads to 3' exonuclease of DNA polymerase I are slightly slower than the wild type at removing dimers accumulated after doses in excess of 40 J/m2. However, although strains with reduced levels of exonuclease VII excised dimers at the same rate as the wild type, the addition of an exonuclease VII deficiency to a strain with reduced levels of exonuclease V and the 5' leads to 3' exonuclease of DNA polymerase I caused a marked decrease in the rate and extent of dimer excision. These observations support previous indications that the 5' leads to 3' exonuclease of DNA polymerase I is important in dimer removal and also suggest a role for exonuclease VII in the excision repair process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号