首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Survanta, a clinically used bovine lung surfactant extract, in contact with surfactant in the subphase, shows a coexistence of discrete monolayer islands of solid phase coexisting with continuous multilayer "reservoirs" of fluid phase adjacent to the air-water interface. Exchange between the monolayer, the multilayer reservoir, and the subphase determines surfactant mechanical properties such as the monolayer collapse pressure and surface viscosity by regulating solid-fluid coexistence. Grazing incidence x-ray diffraction shows that the solid phase domains consist of two-dimensional crystals similar to those formed by mixtures of dipalmitoylphosphatidylcholine and palmitic acid. The condensed domains grow as the surface pressure is increased until they coalesce, trapping protrusions of liquid matrix. At approximately 40 mN/m, a plateau exists in the isotherm at which the solid phase fraction increases from approximately 60 to 90%, at which the surface viscosity diverges. The viscosity is driven by the percolation of the solid phase domains, which depends on the solid phase area fraction of the monolayer. The high viscosity may lead to high monolayer collapse pressures, help prevent atelectasis, and minimize the flow of lung surfactant out of the alveoli due to surface tension gradients.  相似文献   

2.
Force-area isotherms were obtained for hexadecanoic, octadecanoic, eicosanoic, and docosanoic acid monolayers at different compression rates. Equilibrium spreading pressures were determined both by monolayer collapse and by spreading from the bulk phase. Monolayers formed metastable phases at all pressures above their equilibrium spreading pressures and at all surface areas smaller than the surface areas at their equilibrium spreading pressures. These metastable phases collapsed to stable phases at the equilibrium spreading pressures of the fatty acids. Collapse phenomena and compression experiments at very slow compression rates suggested that a previously unrecognized phase transformation occurred at the equilibrium spreading pressure. The surface area at this phase transformation corresponded to the cross-sectional area of the C-form of the fatty acid crystal. Fatty acid monolayers at the phase transformations previously described by other workers had surface areas which were closely related to molecular areas in their A and B polymorphic crystal forms. These correlations indicated that molecular structure in saturated fatty acid monolayers was similar to molecular structure in fatty acid crystals.  相似文献   

3.
Experiments have shown that the depletion of polymer in the region between two apposed (contacting or nearly contacting) bilayer membranes leads to fusion. In this paper we show theoretically that the addition of nonadsorbing polymer in solution can promote lateral contraction and phase separation of the lipids in the outer monolayers of the membranes exposed to the polymer solution, i.e., outside the contact zone. This initial phase coexistence of higher- and lower-density lipid domains in the outer monolayer results in surface tension gradients in the outer monolayer. Initially, the inner layer lipids are not exposed to the polymer solution and remain in their original "unstressed" state. The differential stresses on the bilayers give rise to a Marangoni flow of lipid from the outer monolayers in the "contact zone" (where there is little polymer and hence a uniform phase) to the outer monolayers in the "reservoir" (where initially the surface tension gradients are large due to the polymer-induced phase separation). As a result, the low-density domains of the outer monolayers in the contact zone expose their hydrophobic chains, and those of the inner monolayers, to the solvent and to each other across the narrow water gap, allowing fusion to occur via a hydrophobic interaction. More generally, this type of mechanism suggests that fusion and other intermembrane interactions may be triggered by Marangoni flows induced by surface tension gradients that provide "action at a distance" far from the fusion or interaction zone.  相似文献   

4.
Todorović D 《Spatial Vision》2006,19(2-4):219-261
The illumination interpretation approach claims that lightness illusions can be explained as misapplications of lightness constancy mechanisms, processes which usually enable veridical extraction of surface reflectance from luminance distributions by discounting illumination. In particular, luminance gradients are thought to provide cues about the interactions of light and surfaces. Several examples of strong lightness illusions are discussed for which explanations based on illumination interpretation can be proposed. In criticisms of this approach, a variety of demonstrations of similarly structured control displays are presented, which involve equivalent lightness effects that cannot readily be accounted for by illumination interpretation mechanisms. Furthermore, a number of known and novel displays are presented that demonstrate effects of gradients on the qualitative appearance of uniform regions. Finally, some simple simulations of neural effects of luminance distributions are discussed.  相似文献   

5.
Summary From equilibrium thermodynamics an equation is given to show that in a liquid negative pressures (tensions) are physical reality and may reliably be recorded from any point of the aqueous phase within the xylem conduit by the xylem pressure probe introduced by Balling et al. (Naturwissenschaften 75: 409–411, 1988).  相似文献   

6.
A theoretical analysis for the problem of wave propagation in arteries is presented. Blood is treated as a Newtonian, viscous incompressible fluid. On the basis of information derived from experimental investigations on the mechanical properties of wall tissues, the arterial wall is considered to be nonlinearly viscoelastic and orthotropic. The analysis is carried out for a cylindrical artery, under the purview of membrane theory, by taking account the effect of initial stresses. The motion of the wall and that of the fluid are assumed to be axisymmetric. Particular emphasis has been paid to the propagation of small amplitude harmonic waves whose wavelength is large compared to the radius of the vessel. By employing the equations of motion of the fluid and those for the wall, together with the equations of continuity, a frequency equation is derived by exploiting the conditions of continuity of the velocity of the arterial wall and that of blood on the endosteal surface of the wall. In order to illustrate the validity of the derived analytical expressions a quantitative analysis is made for the variations of the phase velocities as well as the transmission coefficient with frequency corresponding to different transmural pressures which relate to different initial stresses. Computational results indicate that phase velocities increase with the increase of transmural pressures.  相似文献   

7.
The solid-liquid phase behaviour of stearic acid (SA) and stearonitrile (SN) in binary mixtures was investigated by differential scanning calorimetry (DSC), and the formation of SA-SN mixed monolayers at the air-water interface was followed by surface pressure-area (pi-A) measurements and by Brewster angle microscope (BAM) observation. The solid-liquid phase diagram is a eutectic type phase diagram, with the eutectic composition 0.90相似文献   

8.
This study extends the framework of adaptive dynamics to function-valued traits. Such adaptive traits naturally arise in a great variety of settings: variable or heterogeneous environments, age-structured populations, phenotypic plasticity, patterns of growth and form, resource gradients, and in many other areas of evolutionary ecology. Adaptive dynamics theory allows analysing the long-term evolution of such traits under the density-dependent and frequency-dependent selection pressures resulting from feedback between evolving populations and their ecological environment. Starting from individual-based considerations, we derive equations describing the expected dynamics of a function-valued trait in asexually reproducing populations under mutation-limited evolution, thus generalizing the canonical equation of adaptive dynamics to function-valued traits. We explain in detail how to account for various kinds of evolutionary constraints on the adaptive dynamics of function-valued traits. To illustrate the utility of our approach, we present applications to two specific examples that address, respectively, the evolution of metabolic investment strategies along resource gradients, and the evolution of seasonal flowering schedules in temporally varying environments.  相似文献   

9.
The studies reported here used fluorescence microscopy and Brewster angle microscopy to test the classical model of how pulmonary surfactant forms films that are metastable at high surface pressures in the lungs. The model predicts that the functional film is liquid-condensed (LC) and greatly enriched in dipalmitoyl phosphatidylcholine (DPPC). Both microscopic methods show that, in monolayers containing the complete set of phospholipids from calf surfactant, an expanded phase persists in coexistence with condensed domains at surface pressures approaching 70 mN/m. Constituents collapsed from the interface above 45 mN/m, but the relative area of the two phases changed little, and the LC phase never occupied more than 30% of the interface. Calculations based on these findings and on isotherms obtained on the continuous interface of a captive bubble estimated that collapse of other constituents increased the mol fraction of DPPC to no higher than 0.37. We conclude that monolayers containing the complete set of phospholipids achieve high surface pressures without forming a homogeneous LC film and with a mixed composition that falls far short of the nearly pure DPPC predicted previously. These findings contradict the classical model.  相似文献   

10.
Water and solute activity gradients created during freeze-thaw processes produce water and solute fluxes across the cell membrane resulting in volume changes. Under these conditions, osmotic and thermal stresses affect the curvature, the phase behavior, and the surface properties of the lipid bilayer. These structural changes are not considered by the classical formalisms describing permeability of lipid membranes to water and nonelectrolytes such as the Nernst-Planck equation, Eyring's absolute rate theory, and Kedem-Katchalsky's thermodynamic of irreversible processes approach. In this paper, the influence of such changes on the glycerol permeation kinetics are reported. The results indicate that osmotic and chemical effects of the cryoprotectant on the membrane properties affect the rate of volume swelling depending on whether the membrane is in the gel or in the liquid crystalline state.  相似文献   

11.
The pressure induced structural and mechanical properties of nanocrystalline ZnO, ZnS, ZnSe, GaN, CoO, CdSe, CeO(2), SnO(2), SiC, c-BC(2)N, and β-Ga(2)O(3) with different grain sizes have been analyzed under high pressures. The molecular dynamics simulation model has been used to compute isothermal equation of state, volume collapse and bulk modulus of these materials in nano and bulk phases at ambient and high pressures and compared with the experimental data. It is evident from these calculations that the change in particle size affects directly the phase transition pressure and bulk modulus. The values of phase transition pressure and bulk modulus increase with decrease in grain size of the material. The equilibrium cell volume and volume collapse in parent phase is directly proportional to the grain size of the materials. Present results are in good agreement with experimental data. The model is able to explain these thermodynamic properties at varying temperatures and pressures successfully.  相似文献   

12.
The properties of cholesteryl oleate and triolein in mixed monolayers at the air-water interface have been measured between 24 and 37 degrees C. Analysis of force-area curves obtained as a function of the mol fraction of cholesteryl oleate indicates that at relatively low surface pressures these compounds are miscible in two dimensions up to a limit of about 0.5 mol fraction. At higher pressures either cholesteryl oleate or both lipids are expelled from the monolayer to form a bulk phase which is in rapid equilibrium with the surface phase. In the monolayer phase, orientation of the ester function of cholesteryl oleate is toward the aqueous phase, interaction with triolein is minimal, and packing is uniform over the solubility range. This together with the susceptibility of the cholesteryl oleate to enzymatic hydrolysis, suggests the applicability of monolayer systems to the study of cholesterol esterase activity. Comparison of our results with the bulk properties of these lipids suggests that the expelled cholesteryl oleate exists as a smectic mesophase and thus the system may provide a model for studying the transfer of molecules between the interior and surface of lipid deposits of the type found in atherosclerotic lesions.  相似文献   

13.
Crane JM  Putz G  Hall SB 《Biophysical journal》1999,77(6):3134-3143
Prior reports that the coexistence of the liquid-expanded (LE) and liquid-condensed (LC) phases in phospholipid monolayers terminates in a critical point have been compromised by experimental difficulties with Langmuir troughs at high surface pressures and temperatures. The studies reported here used the continuous interface of a captive bubble to minimize these problems during measurements of the phase behavior for monolayers containing the phosphatidylcholines with the four different possible combinations of palmitoyl and/or myristoyl acyl residues. Isothermal compression produced surface pressure-area curves for dipalmitoyl phosphatidylcholine (DPPC) that were indistinguishable from previously published data obtained with Langmuir troughs. During isobaric heating, a steep increase in molecular area corresponding to the main LC-LE phase transition persisted for all four compounds to 45 mN/m, at which collapse of the LE phase first occurred. No other discontinuities to suggest other phase transitions were apparent. Isobars for DPPC at higher pressures were complicated by collapse of the monolayer, but continued to show evidence up to 65 mN/m for at least the onset of the LC-LE transition. The persistence of the main phase transition to high surface pressures suggests that a critical point for these monolayers of disaturated phospholipids is either nonexistent or inaccessible at an air-water interface.  相似文献   

14.
Monolayers prepared from myelin conserve all the compositional complexity of the natural membrane when spread at the air-water interface. They show a complex pressure-dependent surface pattern that, on compression, changes from the coexistence of two liquid phases to a viscous fractal phase embedded in a liquid phase. We dissected the role of major myelin protein components, myelin basic protein (MBP), and Folch-Lees proteolipid protein (PLP) as crucial factors determining the structural dynamics of the interface. By analyzing mixtures of a single protein with the myelin lipids we found that MBP and PLP have different surface pressure-dependent behaviors. MBP stabilizes the segregation of two liquid phases at low pressures and becomes excluded from the film under compression, remaining adjacent to the interface. PLP, on the contrary, organizes a fractal-like pattern at all surface pressures when included in a monolayer of the protein-free myelin lipids but it remains mixed in the MBP-induced liquid phase. The resultant surface topography and dynamics is regulated by combined near to equilibrium and out-of-equilibrium effects. PLP appears to act as a surface skeleton for the whole components whereas MBP couples the structuring to surface pressure-dependent extrusion and adsorption processes.  相似文献   

15.
This paper develops numerical techniques for two problems of interest in electrocardiography: (1) the determination of infinite-media surface potential gradients from boundedmedia torso potentials, and (2) the effects of lung-torso, blood mass-torso, and torso-air conductivity interfaces on torso surface potentials. This paper is an extension of a previous paper on the effects of conductivity interfaces which also utilized an integral equation formulation of Laplace's equation. Supported in part by USPHS Grants HE 05716 and HE 11307 and American Heart Grant 67-850.  相似文献   

16.
Chronic exposure of frog erythrocytes to beta-adrenergic agonists leads to desensitization of the responsiveness of adenylate cyclase to isoproterenol and is accompanied by "down-regulation", a decrease in the number of beta-adrenergic receptors on the cell surface. When frog erythrocyte plasma membranes are prepared by osmotic lysis of cells, the receptors lost from the cell surface during desensitization can be recovered in a "light membrane fraction", obtained by centrifuging the cell cytosol at 158,000 X g for 1 hr. These receptors are sequestered away from the plasma membrane fraction which contains the adenylate cyclase and the guanine nucleotide regulatory protein. If desensitized frog erythrocytes are disrupted by gentler freeze/thaw procedures, however, the sequestered beta-adrenergic receptors can be demonstrated to be physically associated with the plasma membrane. Typically, plasma membranes prepared in this fashion do not demonstrate a significant down regulation despite attenuation of isoproterenol-stimulated adenylate cyclase activity. Under these conditions, beta-adrenergic receptors from control and desensitized preparations co-migrate on sucrose density gradients in exactly the same place as the plasma membrane marker, adenylate cyclase. In contrast, when membranes from osmotically lysed desensitized cells are fractionated on sucrose gradients the down regulated receptors are sequestered in a light membrane fraction which barely enters the gradient and which is physically separated from adenylate cyclase activity. The data are consistent with a novel mechanism of receptor down-regulation which appears to involve the sequestration of the beta-adrenergic receptors away from the cell surface into a membrane compartment which remains physically associated with the plasma membrane.  相似文献   

17.
T Handa  H Saito    K Miyajima 《Biophysical journal》1993,64(6):1760-1765
Triolein (TO) and phospholipids (egg yolk phosphatidylcholine, egg yolk phosphatidylethanolamine, and bovine brain phosphatidylserine) had low mutual solubilities and separated into the TO-liquid phase and phospholipid-bilayers. Spreading pressures of the TO-phospholipid mixture (i.e., surface pressures of the mixed monolayer in equilibrium with the phase-separating lipid mixture) at the air/saline interface were independent of the lipid composition. On the other hand, collapse pressures of the mixed monolayer of TO and phospholipid (i.e., surface pressures of the mixed monolayer in equilibrium with the TO-liquid phase) at the interface changed with the monolayer composition and were lower than the spreading pressure. The experimental data indicated the spreading and collapse pressures as offering a phase diagram for the presence of equilibrium between the mixed monolayer, the phospholipid-bilayers and the TO-liquid phase. The diagram showed that TO and the phospholipids were miscible in the mixed monolayer, forming an eutectic mixed monolayer. When the mixed monolayer initially had the eutectic composition, no collapse of the monolayer was detected until the surface pressure reached the value of the spreading pressure. No specific complex between TO and the phospholipid is required to explain the stability and collapse of the mixed monolayers. The bulk immiscibility of the lipids elucidated by the spreading pressure-measurements, immediately leads to the phase behaviors observed.  相似文献   

18.
Room temperature mid-infrared experiments between 500 and 1800 cm(-1) have been performed on crystalline deoxyadenosine as a function of pressure up to about 10 GPa. Discontinuities observed near 2 and 4 GPa indicate that two separate phase transitions occur at these pressures. Changes in the spectra suggest that both transitions involve a rearrangement of the pucker of the deoxyribose moiety. The wavenumbers of the vibrational modes shift to higher values with applied pressure. Our results for deoxyadenosine are compared to similar measurements on adenosine. Assignments for the observed modes are made on the basis of work published in the literature.  相似文献   

19.
Simple laboratory models are useful to demonstrate cardiovascular principles involving the effects of gravity on the distribution of blood flow to the heads of animals, especially tall ones like the giraffe. They show that negative pressures cannot occur in collapsible vessels of the head, unless they are protected from collapse by external structures such as the cranium and cervical vertebrae. Negative pressures in the cerebral-spinal fluid (CSF) can prevent cerebral circulation from collapsing, and the spinal veins of the venous plexus can return blood to the heart in essentially rigid vessels. However, cephalic vessels outside the cranium are collapsible, so require positive blood pressures to establish flow; CSF pressure and venous plexus flow are irrelevant in this regard. Pressures in collapsible vessels reflect pressures exerted by surrounding tissues, which may explain the observed pressure gradient in the giraffe jugular vein. Tissue pressure is distinct from interstitial fluid pressure which has little influence on pressure gradients across the walls of major vessels.  相似文献   

20.
M D Bazzi  G L Nelsestuen 《Biochemistry》1988,27(18):6776-6783
The association of protein kinase C (PKC) with phospholipid (PL) monolayers spread at the air-water interface was examined. PKC-PL binding induced surface pressure changes that were dependent on the amount of PKC, the phospholipid composition of the monolayers, the presence of Ca2+, and the initial surface pressure of the monolayer (pi 0). Examination of surface pressure increases induced by PKC as a function of phospholipid surface pressure, pi 0, revealed that PKC-phosphatidylserine (PS) association had a critical pressure of 43 dyn/cm. Above this surface pressure, PKC cannot cause further surface pressure changes. This high critical pressure indicated that PKC should be able to penetrate many biological membranes which appear to have surface pressures of about 30 dyn/cm. PKC-induced surface pressure changes were Ca2+ dependent only for PL monolayers spread at a pi 0 greater than 26 dyn/cm. PKC alone (in the absence of PL) formed a film at the air-water interface with a surface pressure of about 26 dyn/cm. Calcium-dependent binding was studied at the higher surface pressures which effectively excluded PKC from the air-water interface. Subphase depletion measurements suggested that association of PKC with PS monolayers consisted of two stages: a rapid Ca2+-dependent interaction followed by a slower process that resulted in irreversible binding of PKC to the monolayer. The second stage appeared to involve penetration of PKC into the hydrocarbon region of the phospholipid. The commonly used in vitro substrates for PKC, histone and protamine sulfate, also associated with and penetrated PS monolayers with critical pressures of 50 and 60 dyn/cm, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号