首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Tong Q  Zheng L  Kang Q  Dodd-O J  Langer J  Li B  Wang D  Li D 《FEBS letters》2006,580(9):2207-2215
Hypoxia-induced mitogenic factor (HIMF), also known as FIZZ1 (found in inflammatory zone), plays important roles in lung inflammation. We found that intraperitoneal injection of lipopolysaccharide (LPS) induced intensive HIMF production exclusively in mouse lung, but not in the heart, liver, spleen or kidney. This HIMF production, at least partly, contributes to LPS-induced vascular cell adhesion molecule-1 (VCAM-1) upregulation and mononuclear cell sequestration to lung parenchyma, while protecting alveolar type II cells from LPS-resulted decrease in surfactant protein-C production and cell death. These data indicate that HIMF participates in LPS-induced acute lung injury and inflammation through modulating VCAM-1 and SP-C expression.  相似文献   

2.
Magi B  Bargagli E  Bini L  Rottoli P 《Proteomics》2006,6(23):6354-6369
The proteomic approach is complementary to genomics and enables protein composition to be investigated under various clinical conditions. Its application to the study of bronchoalveolar lavage (BAL) is extremely promising. BAL proteomic studies were initially based on two-dimensional electrophoretic separation of complex protein samples and subsequent identification of proteins by different methods. With the techniques available today it is possible to attain many different research objectives. BAL proteomics can contribute to the identification of proteins in alveolar spaces with possible insights into pathogenesis and clinical application for diagnosis, prognosis and therapy. Many proteins with different functions have already been identified in BAL. Some could be biomarkers that need to be individually confirmed by correlation with clinical parameters and validation by other methods on larger cohorts of patients. The standardization of BAL sample preparation and processing for proteomic studies is an important goal that would promote and facilitate clinical applications. Here, we review the principal literature on BAL proteomic analysis applied to the study of lung diseases.  相似文献   

3.
The aim of this study was to analyze the type of immune response (Th1, Th2) and protein composition of bronchoalveolar lavage (BAL) of patients with sarcoidosis, pulmonary fibrosis associated with systemic sclerosis (SSc) and idiopathic pulmonary fibrosis (IPF). Flow cytometry analysis of intracellular cytokines revealed different patterns: in IPF and SSc Th2 profiles were predominant, whereas in sarcoidosis Th1 prevailed. The proteomic analysis of BAL fluid (BALF) showed that there were quantitative differences between the three diseases. These were more evident between sarcoidosis and IPF, confirming our previous observations, whereas SSc had an intermediate profile between the two, however with some peculiarities. Comparison of BALF protein maps, constructed with the same quantity of total proteins, enabled us to identify the main profiles of the three diseases: an increase in plasma protein prevalent in sarcoidosis and also present in SSc, though for fewer proteins with respect to IPF and a greater abundance of low molecular weight proteins, mainly locally produced, in IPF. These findings are in line with the different pathogenesis of these diseases: IPF is considered a prevalently fibrotic disorder limited to the lung, with intense local production of functionally different proteins, whereas sarcoidosis and SSc are systemic immunoinflammatory diseases.  相似文献   

4.
5.
Angiotensin II (Ang II) plays an important role in inflammatory process. Acute lung injury (ALI), an inflammatory disorder of the lung, is commonly associated with endotoxemia; however, the mechanism that endotoxin (lipopolysaccharide, LPS) induces the inflammatory response in ALI is not well defined. Here, we showed, in LPS-induced ALI rat model, that Ang II and Ang II type 1 (AT1) receptor were significantly increased in lung tissues, compared with those in controls. Meanwhile, nuclear factor (NF)-κB-DNA-binding activity, tumor necrosis factor (TNF)-α mRNA, and pneumocytic apoptosis were significantly increased. Moreover, pretreatment of rats with losartan, an antagonist of AT1 receptor for Ang II, improved the inflammation, reduced the elevation of Ang II and AT1 receptor, and inhibited NF-κB-DNA-binding activity, expression of TNF-α mRNA, and pneumocytic apoptosis. The data indicate that Ang II may mediate the inflammatory process in LPS-induced ALI through AT1 receptor, which can be blocked by losartan.  相似文献   

6.
Lee YS  Chen PW  Tsai PJ  Su SH  Liao PC 《Proteomics》2006,6(7):2236-2250
Exposure to oil mist has been associated with a variety of acute and chronic respiratory effects. Using proteomics approaches to investigate exposure-associated proteins may provide useful information to understand the mechanisms of associated respiratory effects. The aim of this study was to investigate changes in rat bronchoalveolar lavage fluid proteins associated with oil mist exposure using nano-HPLC-ESI-MS/MS. The results revealed that 29 proteins exhibited significant changes after exposure. These proteins included surfactant-associated proteins (SP-A and SP-D), inflammatory proteins (complement component 3, immunoglobulins, lysozyme, etc.), growth factors (e.g., transforming growth factor alpha (TGF-alpha)), calcium-binding proteins (calcyclin, calgranulin A, calreticulin, and calvasculin), and other proteins (e.g., cathepsin D, saposin, and intestinal trefoil factor). To further evaluate changes in protein levels, a simple quantitative strategy was developed in this study. A large decrease in protein levels of SP-A and SP-D (0.24- and 0.38-fold, respectively) following exposure was observed. In contrast, protein levels of TGF-alpha and calcium-binding proteins were significantly increased (4.46- and 1.4-1.8-fold, respectively). Due to the diverse functions of these proteins, the results might contribute to understand the mechanisms involved in lung disorders induced by oil mist exposure.  相似文献   

7.
Mammalian thioredoxin reductase (TrxR) catalyzes the reduction of oxidized thioredoxin in a NADPH-dependent manner, and contains a selenocysteine residue near the C-terminus. Glutathione peroxidase (GPx) is one of the primary antioxidant enzymes that scavenge hydrogen peroxide and organic hydroperoxides. Both TrxR and GPx play an important role in protecting against oxidative stress. Cyclophosphamide (CTX), one of the most widely prescribed antineoplastic drugs, could cause cystitis. We found that 4 h after a bolus dose of CTX (30, 90, 150, 300 and 450 mg/kg) were administrated intraperitoneally, TrxR activity was significantly decreased in a dose-dependent manner, by 32%, 44%, 68%, 87% and 99%, respectively, in comparison with control group. When fixing CTX dose at 150 mg/kg, TrxR activity changed over time, significantly reduced to 68% of the activity in comparison with control tissue at 2 h, and gradually recovered to normal level within 24 h. In addition, we found that GPx activity was induced significantly after 4h. The results of the present study suggest that marked suppression of TrxR activity could be involved in the mechanism of CTX-induced cystitis, bladder may have a protective system against tissue damage by CTX via upregulation of TrxR and GPx, which is an adaptive response to oxidative stress.  相似文献   

8.
目的:观察硬膜外阻滞(TEA)对脂多糖(LPS)致急性肺损伤(ALI)兔肺水肿程度及支气管肺泡灌洗液中炎症细胞数量及炎症因子的影响。方法:66只日本大耳白兔,随机分为对照组(A组)、LPS致伤组(B组)、LPS致伤加硬膜外阻滞干预组(C组)。脂多糖5 mg/kg缓慢静脉注射复制兔ALI模型,T4-5硬膜外腔头侧置管注射0.5%利多卡因0.3 m L·kg-1·h-1进行干预,监测动脉血气分析,测支气管肺泡灌洗液中炎症细胞总数并观察肺水肿的程度,ELISA法检测支气管肺泡灌洗液中白介素-8(IL-8)、肿瘤坏死因子-α(TNF-α)水平。结果:B组和C组中炎症细胞总数明显多于A组,且B组多于C组,P0.05。C组硬膜外阻滞干预后肺水肿程度较B组明显减轻,P0.05。支气管肺泡灌洗液中IL-8、TNF-α水平B组高于C组,P0.05,差异有统计学意义。结论:胸段硬膜外阻滞能够减轻脂多糖所导致兔的急性肺损伤的肺部炎症反应。  相似文献   

9.

Aims

Anethole, the major component of the essential oil of star anise, has been reported to have antioxidant, antibacterial, antifungal, anti-inflammatory, and anesthetic properties. In this study, we investigated the anti-inflammatory effects of anethole in a mouse model of acute lung injury induced by lipopolysaccharide (LPS).

Main methods

BALB/C mice were intraperitoneally administered anethole (62.5, 125, 250, or 500 mg/kg) 1 h before intratracheal treatment with LPS (1.5 mg/kg) and sacrificed after 4 h. The anti-inflammatory effects of anethole were assessed by measuring total protein and cell levels and inflammatory mediator production and by histological evaluation and Western blot analysis.

Key findings

LPS significantly increased total protein levels; numbers of total cells, including macrophages and neutrophils; and the production of inflammatory mediators such as matrix metalloproteinase 9 (MMP-9), tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), and nitric oxide (NO) in bronchoalveolar lavage fluid. Anethole (250 mg/kg) decreased total protein concentrations; numbers of inflammatory cells, including neutrophils and macrophages; and the inflammatory mediators MMP-9, TNF-α and NO. In addition, pretreatment with anethole decreased LPS-induced histopathological changes. The anti-inflammatory mechanism of anethole in LPS-induced acute lung injury was assessed by investigating the effects of anethole on NF-κB activation. Anethole suppressed the activation of NF-κB by blocking IκB-α degradation.

Significance

These results, showing that anethole prevents LPS-induced acute lung inflammation in mice, suggest that anethole may be therapeutically effective in inflammatory conditions in humans.  相似文献   

10.
Acute lung injury (ALI) is a severe disease characterized by alveolar neutrophilia, with limited treatment options and high mortality. Experimental models of ALI are key in enhancing our understanding of disease pathogenesis. Lipopolysaccharide (LPS) derived from gram positive bacteria induces neutrophilic inflammation in the airways and lung parenchyma of mice. Efficient pulmonary delivery of compounds such as LPS is, however, difficult to achieve. In the approach described here, pulmonary delivery in mice is achieved by challenge to aerosolized Pseudomonas aeruginosa LPS. Dissolved LPS was aerosolized by a nebulizer connected to compressed air. Mice were exposed to a continuous flow of LPS aerosol in a Plexiglas box for 10 min, followed by 2 min conditioning after the aerosol was discontinued. Tracheal intubation and subsequent bronchoalveolar lavage, followed by formalin perfusion was next performed, which allows for characterization of the sterile pulmonary inflammation. Aerosolized LPS generates a pulmonary inflammation characterized by alveolar neutrophilia, detected in bronchoalveolar lavage and by histological assessment. This technique can be set up at a small cost with few appliances, and requires minimal training and expertise. The exposure system can thus be routinely performed at any laboratory, with the potential to enhance our understanding of lung pathology.  相似文献   

11.
Thioredoxin-1 (TRX) is a redox-active protein with anti-inflammatory effects. This study investigated the optimal delivery method and the mechanisms of recombinant human TRX (rhTRX) to suppress neutrophil recruitment in a rat bleomycin (BLM)-induced sustained acute lung injury model. In male Wister rats intratracheally administered with 0.125 mg/kg BLM, 8 mg/kg/day rhTRX was intravenously administered on days 3–6 using one of three protocols: daily bolus injection, 3 h daily infusion or continuous infusion for 96 h. Only the continuous-infusion of rhTRX significantly reduced the neutrophil infiltration compared with the other two methods. The BLM-induced down-regulation of l-selectin expression on circulating neutrophils was inhibited by rhTRX. Oxidized rhTRX showed a comparable effect with reduced rhTRX and rhTRX incubated with plasma or circulating in plasma was more than 99% oxidized. These results suggest that rhTRX becomes oxidized in circulation and continuous infusion of rhTRX suppresses neutrophil recruitment in the airway.  相似文献   

12.
Excessive inflammatory response induced by lipopolysaccharide (LPS) plays a critical role in the development of acute lung injury (ALI). Paralemmin-3 (PALM3) is a novel protein that can modulate LPS-stimulated inflammatory responses in alveolar epithelial A549 cells. However, it remains unclear whether it is involved in the progression of ALI in vivo. Therefore, we studied the role of PALM3 in the pathogenesis of ALI induced by LPS. ALI was induced by LPS peritoneal injection in C57BL/6J mice. Lentivirus-mediated small interfering RNA (siRNA) targeting the mouse PALM3 gene and a negative control siRNA were intranasally administered to the mice. We found that the expression of PALM3 was up-regulated in the lung tissues obtained from the mouse model of LPS-induced ALI. The LPS-evoked inflammatory response (neutrophils and the concentrations of proinflammatory cytokines [IL-6, IL-1β, TNF-α, MIP-2] in the bronchoalveolar lavage fluid [BALF]), histologic lung injury (lung injury score), permeability of the alveolar capillary barrier (lung wet/dry weight ratio and BALF protein concentration) and mortality rates were attenuated in the PALM3 siRNA-treated mice. These results indicate that PALM3 contributes to the development of ALI in mice challenged with LPS. Inhibiting PALM3 through the intranasal application of specific siRNA protected against LPS-induced ALI.  相似文献   

13.
Thioredoxin-1 (TRX) is a redox-active protein with anti-inflammatory effects. This study investigated the optimal delivery method and the mechanisms of recombinant human TRX (rhTRX) to suppress neutrophil recruitment in a rat bleomycin (BLM)-induced sustained acute lung injury model. In male Wister rats intratracheally administered with 0.125 mg/kg BLM, 8 mg/kg/day rhTRX was intravenously administered on days 3-6 using one of three protocols: daily bolus injection, 3 h daily infusion or continuous infusion for 96 h. Only the continuous-infusion of rhTRX significantly reduced the neutrophil infiltration compared with the other two methods. The BLM-induced down-regulation of L-selectin expression on circulating neutrophils was inhibited by rhTRX. Oxidized rhTRX showed a comparable effect with reduced rhTRX and rhTRX incubated with plasma or circulating in plasma was more than 99% oxidized. These results suggest that rhTRX becomes oxidized in circulation and continuous infusion of rhTRX suppresses neutrophil recruitment in the airway.  相似文献   

14.
Objective: The aim of the present study is to investigate the anti-injury and anti-inflammatory effects of dexmedetomidine (Dex) in acute liver injury induced by lipopolysaccharide (LPS) in Sprague–Dawley rats and its possible mechanism.Methods: The acute liver injury model of male rats was established by injecting LPS into tail vein. The mean arterial pressure (MAP) of rats was recorded at 0–7 h, and lactic acid was detected at different time points. Wet/dry weight ratio (W/D) was calculated. Pathological changes of rat liver were observed by HE staining. ALT and AST levels in serum were detected. The activities of myeloperoxidase (MPO) and superoxide dismutase (SOD) in liver tissue homogenate and the levels of IL-1β and IL-18 in serum were detected by ELISA. Protein levels of Caveolin-1 (Cav-1), TLR-4 and NLRP3 in liver tissue were tested by immunohistochemistry method. The expression of Cav-1, TLR-4 and NLRP3 mRNA in liver tissue was detected by quantitative polymerase chain reaction (qPCR) to explore its related mechanism.Results: Compared with NS group, serum lactic acid, W/D of liver tissue, MPO, SOD, IL-1β and IL-18 were significantly increased and MAP decreased significantly in LPS group and D+L group. However, compared with NS group, D group showed no significant difference in various indicators. Compared with LPS group, MPO, SOD, IL-1β and IL-18 were significantly decreased and MAP was significantly increased in D+L group. D+L group could significantly increase the level of Cav-1 protein and decrease the level of TLR-4 and NLRP3 protein in liver tissue caused by sepsis. The expression of Cav-1 mRNA was significantly up-regulated and the expression of TLR-4 and NLRP3 mRNA was inhibited in D+L group.Conclusion: Dex pretreatment protects against LPS-induced actue liver injury via inhibiting the activation of the NLRP3 signaling pathway by up-regulating the expression of Cav-1 by sepsis.  相似文献   

15.
16.
The total number of lymphocytes in the bronchoalveolar lavage (BAL) fluids significantly increased in mice injected intravenously with pertussis toxin (PT), while the absolute number of alveolar macrophages markedly decreased. This finding probably reflects the lymphocyte accumulation in interstitial spaces as we previously observed in mice injected with PT. In addition, indomethacin, at lower dosage (0.5 mg/kg) prevented peripheral lymphocytosis and lymphocyte accumulation in the alveolar spaces of the lungs of mice injected with PT. These results provide evidence that PT is responsible for lymphocyte accumulation together with a marked decrease of alveolar macrophages in the lungs of treated mice; moreover, indomethacin is effective in preventing bronchoalveolar changes caused by PT.  相似文献   

17.

Background

A strategy for preventing cisplatin nephrotoxicity due to enhanced oxidative stress and inflammatory response is highly desirable. Thioredoxin-1 (Trx), an endogenous redox-active protein, has a short retention time in the blood. A long acting form of Trx, human serum albumin-Trx (HSA-Trx), was produced by recombinant HSA fusion and its effectiveness in preventing cisplatin nephrotoxicity was examined.

Methods

HSA-Trx was prepared in Pichia expression system. Cisplatin-induced nephropathy mouse model was established by a single administration of cisplatin.

Results

Compared to saline, Trx or N-acetylcysteine, an intravenous administration of HSA-Trx attenuated the cisplatin-induced elevation in serum creatinine, blood urea nitrogen and urinary N-acetyl-β-d-glucosaminidase along with the decrease in creatinine clearance. HSA-Trx caused a substantial reduction in the histological features of renal tubular injuries and the apoptosis-positive tubular cells. Changes in superoxide, 8-OHdG, glutathione and nitrotyrosine levels indicated that HSA-Trx significantly suppressed renal oxidative stress. HSA-Trx also suppressed the elevation of TNF-α, IL-1β and IL-6. Administered fluorescein isothiocyanate-labeled HSA-Trx was found partially localized in the proximal tubular cells whereas majority remained in the blood circulation. Specific cellular uptake and the scavenging of intracellular reactive oxygen species by HSA-Trx were observed in HK-2 cells.

Conclusion

HSA-Trx could be a novel and effective approach for preventing cisplatin nephrotoxicity due to its prolonged anti-oxidative and anti-inflammatory action not only in extracellular compartment but also inside the proximal tubular cell.

General significance

We report the renoprotective effect of HSA-Trx against cisplatin nephrotoxicity. This work would enhance developing therapeutics against acute kidney injuries including cisplatin nephrotoxicity.  相似文献   

18.
目的 研究重症肺炎新生儿支气管肺泡灌洗液的病原菌分布和耐药性。方法 选择2016年4月至2018年4月在本院呼吸科治疗的新生儿268例,其中符合重症肺炎诊断标准的患儿142例,归为重症肺炎组;不符合重症肺炎诊断标准的患儿126例,归为对照组。检测患儿肺泡灌洗液病原菌分布情况和耐药情况。结果 重症肺炎组患儿肺炎克雷伯菌、流感嗜血菌、铜绿假单胞菌、阴沟肠杆菌、大肠埃希菌、金黄葡萄球菌、溶血葡萄球菌、表皮葡萄球菌、肺炎链球菌、草绿链球菌检出率明显高于对照组。肺炎克雷伯菌对亚胺培南,美罗培南的耐药性为0.0%,大肠埃希菌对亚胺培南,美罗培南,阿米卡星的耐药性为0.0%,阴沟肠杆菌对亚胺培南,美罗培南,左氧氟沙星的耐药性为0.0%,肺炎链球菌对万古霉素的耐药性为0.0%,金黄葡萄球菌对万古霉素的耐药性为0.0%。结论 新生儿重症肺炎患者病原菌以革兰阴性菌为主,亚胺培南、美罗培南、万古霉素可以用于治疗新生儿重症肺炎,但由于其毒副作用较大,应严格把握适应症。  相似文献   

19.
Zhao JH  Arao Y  Sun SJ  Kikuchi A  Kayama F 《Life sciences》2006,78(8):812-819
Genistein, the principal isoflavone present in soy, has been identified as a protein tyrosine kinase (PTK) inhibitor that has in vitro anti-inflammatory effects. Whether genistein has in vivo anti-inflammatory effects remains unknown yet. Injecting or feeding rats with the unconjugated form of genistein (aglycone) results in decreased thymic weight and lymphocytopenia. However, 95-99% of genistein is present as the conjugated form genistin (genistein glycoside) in soy or soy-derived products. This study was undertaken to reveal whether genistin, as well as genistein, has anti-inflammatory effects in vivo. After oral administration of equimolar genistein (namely 7.4 or 74 micromol/dose) at daily doses of 2.0 or 20 mg/kg, or genistin at daily doses of 3.2 or 32 mg/kg for 3 days to male rats, both aglycone and glycoside suppressed the production of lipopolysaccharide (LPS)-induced tumor necrosis factor-alpha (TNF-alpha), interleukin (IL)-1beta, and IL-6 in both from the liver and in the sera. Aglycone induced thymic atrophy while glycoside did not. In vitro preincubation of liver slices from na?ve rat with genistein aglycone or glycoside suppressed LPS-induced TNF-alpha production in a dose-dependent manner. Taken together, both in vivo and in vitro administration of genistin and genistein suppressed LPS-induced liver pro-inflammatory cytokine production. However, equimolar oral administration of genistin did not induce thymus atrophy. Further investigation in long-term isoflavone intake is required especially among neonates. The results suggest that the safety evaluation of the consumption of isoflavone should be based on isoflavone glycoside but not aglycone.  相似文献   

20.
Phorbol myristate acetate (PMA) causes acute lung injury (ALI). The present study was designed to elucidate the role of nitric oxide (NO), inducible NO synthase (iNOS), neutrophil elastase (NE) and other mediators in the ALI caused by PMA. In isolated rat’s lungs, PMA at various doses (1, 2 and 4 μg/g lung weight) was added into the lung perfusate. Vehicle group received dimethyl sulfoxide (the solvent for PMA) 100 μg/g. We measured the lung weight changes, pulmonary arterial pressure, capillary filtration coefficient, exhaled NO, protein concentration in bronchoalveolar lavage (PCBAL) and Evan blue dye leakage. Nitrate/nitrite, methyl guanidine, proinflammatory cytokines, NE and myeloperoxidase (MPO) in lung perfusate were determined. Histopathological examination was performed. We detected the iNOS mRNA expression in lung tissue. PMA caused dose-dependent increases in variables for lung changes, and nitrate/nitrite, methyl guanidine, proinflammatory cytokines, NE and MPO in lung perfusate. The pathology was characterized by alveolar hemorrhagic edema with inflammatory cell infiltration. Scanning electron microscopy revealed endothelial damage. PMA upregulated the expression of iNOS mRNA. Our results suggest that neutrophil activation by PMA causes release of NE, upregulation of iNOS and a series of inflammatory responses leading to endothelial damage and ALI.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号