首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Demethoxylation reactions in the cultures of the brown-rot fungi Gloeophyllum trabeum and Poria placenta were studied by determining the evolution of (14)CO(2) from a non-phenolic lignin model, beta-O-4 dimer, [O(14)CH(3)]-labelled at position 4 in the A ring (model I), and from [O(14)CH(3)]-labelled vanillic acid (model II). The fungi were grown under oxygen or air atmosphere on an agar medium with or without spruce sapwood blocks. The dimeric model (I) was impregnated onto agar or wood block in cultures to clarify the possible effect of wood as growth substrate. In the case of vanillic acid (model II), birch wood was used. The effect of supplemented nutrient nitrogen (2 mM N) and glucose (0.1 or 1.0% w/v) on demethoxylation was also studied. G. trabeum enhanced the production of (14)CO(2) from the dimer in the presence of spruce wood blocks. It released (14)CO(2) from the methoxyl groups giving 30-60% of the applied activity in 8 weeks. P. placenta produced almost 30% (14)CO(2 )from vanillic acid (model II) in 9 weeks under oxygen, but from the methoxyl group of the dimer only 3% of (14)CO(2) was evolved in 4 weeks. The biomasses determined as ergosterol assay showed variation from 14 to 226 microg g(-1) dry weight of agar, and 2 to 9 microg g(-1 )of wood, but they did not correlate with the production of (14)CO(2). The results indicate that these brown-rot fungi possess different mechanisms for demethoxylation.  相似文献   

2.
The degradation of the phenylcoumaran substructure model compound methyl dehydrodiconiferyl alcohol by the white-rot wood decay fungus Phanerochaete chrysosporium was investigated using culture conditions optimized for lignin oxidation. Initial attack was in the cinnamyl alcohol side chain, which was oxidized to a glycerol structure. This was subsequently converted by loss of the two terminal carbon atoms, C and C, to yield a C-aldehyde structure, which was further oxidized to the C-acid compound. The next detected intermediate, a phenylcoumarone, was produced by double bond formation between C and C, and oxidation of the C-alcohol to an aldehyde group. Further oxidation of C to an acid yielded the next intermediate. The final identified degradation product was veratric acid. No products from the 5-substituted aromatic ring, and no phenolic products, were found. The initial glycerol-containing intermediate was a mixture of the threo and erythro forms, and no optical activity could be found, suggesting that its formation might have involved nonstereospecific C-C epoxidation followed by non-enzymatic hydrolysis of the epoxide.Abbreviations TLC thin layer chromatography - LDA lithium diisopropyl amide - DDQ 2,3-dichloro-5,6-dicyanobenzoquinone - MS mass spectrometry - UV ultraviolet spectroscopy  相似文献   

3.
Radiolabeled [14C]arabinoxylan from wheat meal and [14C]galactoglucomannan from red clover meal were prepared by using 14CO2 as a precursor. Twice as much mannan was mineralized than xylan after 14 days of incubation with Phlebia radiata. Low-molecular-weight phenolic compounds structurally related to lignin increased during mineralization of both hemicellulose fractions. Veratryl alcohol increased degradation of arabinoxylan by approximately 28.5%, whereas veratric acid increased it by only 9.0%. Vanillic acid and ferulic acid also stimulated degradation by 16.6% and 34.7%, respectively. Veratryl alcohol and ferulic acid increased degradation of galactoglucomannan by approximately 75%. Veratraldehyde in both cases repressed the degradation process (23.6% arabinoxylan, 43.8% galactoglucomannan). These results indicate that the degradation of hemicelluloses, e.g., xylan and mannan, by P. radiata is enhanced by addition of aromatic compounds. Journal of Industrial Microbiology & Biotechnology (2002) 28, 168–172 DOI: 10.1038/sj/jim/7000221 Received 25 July 2001/ Accepted in revised form 23 October 2001  相似文献   

4.
Adenylate cyclase activity in Phanerochaete chrysosporium was present in cell fractions sedimenting at 1,000xg, 15,000xg, and in the 150,000xg supernatant. A small amount of activity in the 1,000xg pellet could be solubilised by treatment with Triton X-100, and the enzyme in all fractions required an ATP-Mn2+ substrate. Adenylate cyclase activity in the 150,000xg pellet was low (0.003 nmol/mg protein·min) and may have resulted from contamination by other fractions. Highest adenylate cyclase specific activity (0.37 nmol/mg protein ·min) was recorded in the 150,000xg supernatant at the onset of idiophasic metabolism. During this growth phase, adenylate cyclase activity also increased in the 1,000xg pellet and was maximally 4.5-fold greater than that in primary phase cultures. No significant cAMP-phosphodiesterase activity could be detected during growht in any of the cell fractions or in the growth medium with either Mn2+, Mg2+, or Ca2+ as added cations. The extracellular cAMP concentration increased logarithmically during primary growth; however, in cultures in idiophasic metabolism cAMP levels remained constant and relatively low. We suggest that excretion into the medium is the principal means by which intracellular cAMP levels are decreased in P. chrysosporium.Abbreviation EB extraction buffer  相似文献   

5.
A soluble enzyme fraction from Phanerochaete chrysosporium catalyzed the oxidative decarboxylation of vanillic acid to methoxy-p-hydroquinone. The enzyme, partially purified by ammonium sulfate precipitation, required NADPH and molecular oxygen for activity. NADH was not effective. Optimal activity was displayed between pH 7.5–8.5. Neither EDTA, KCN, NaN3, nor o-phenanthroline (5 mM) were inhibitory. The enzyme was inducible with maximal activity displayed after incubation of previously grown cells with 0.1% vanillate for 30h.Abbreviations MHQ Methoxy-p-hydroquinone - GLC gas liquid chromatography - TMSi trimethylsilane - TLC thin layer chromatography  相似文献   

6.
Kraft lignins (KL), bleached kraft lignins (BKL), and lignin sulfonates (LS) were prepared from synthetic 14C-lignins labeled in the aromatic nuclei or in the propyl side chains. These and control lignins (CL) were incubated with the lignin-decomposing white-rot fungus, Phanerochaete chrysosporium Burds., in a defined culture medium containing cellulose as growth substrate. Decomposition was monitored by measuring the 14CO2 evolved. Average percentages of the [ring-14C]- and [side chain-14C]-lignins, respectively, recovered as 14CO2 at the cessation of 14CO2 evolution were: KL, 41 and 31; BKL, 42 and 26; LS, 28 and 21; and CL, 26 and 24. Gel permeation chromatography of radiolabeled materials extracted from spent cultures showed that substantial degradation to nonvolatile products had occurred. The polymeric components in the extracts were further degraded in fresh cultures. These results indicate that industrial lignins are significantly bioalterable, and that under favorable conditions industrial lignins are substantially biodegradable.  相似文献   

7.
In the present work, the production of ligninolytic enzymes by semi-solid-statecultures of Phanerochaete chrysosporium BKM-F-1767 (ATCC 24725),employing different lignocellulosic wastes as support, was investigated. Thewaste materials employed were grape seeds, wheat straw and wood shavings.Maximum lignin peroxidase activities of 1620 ± 123 U/l, 364 ± 35 U/l and 571 ± 42 U/l were attained, respectively. Nevertheless, lowmanganese-dependent peroxidase activities were found, being insignificantin the grape seed cultures. Moreover, the in vivo decolourisation of a model dye compound, the polymeric dye Poly R-478 (polyvinylamine sulfonateanthrapyridone), by the above-mentioned cultures was monitored to assessthe degrading capability of the extracellular liquid secreted by such cultures.The percentage of biological decolourisation attained by grape seed and woodshaving cultures was around 74% and 63%, respectively, whereas it was ratherlow (40%) in the wheat straw ones.  相似文献   

8.
The present work was carried out to determine the optimum culture conditions of Phanerochaete chrysosporium (ATCC 20696) for maximizing ligninolytic enzyme production. Additionally, separation of its lignin peroxidase was conducted. After experiments, an optimized culture medium/condition was constructed (per liter of Kirk’s medium): dextrose 10 g, ammonium tartrate 0.11 g, Tween-80 0.5 g, MnSO4 7 mg, and veratryl alcohol 0.3 g in 10 mM acetic acid buffer pH 4.5. Under the optimized experimental condition, both lignin peroxidase (LiP) and manganese peroxidase (MnP) were detected and reach the highest yield at 30°C on the 8th day culture. Salt precipitation methods was used in the extraction and purification processes. Results show that salt precipitation with 60% (NH4)2SO4 yielded the best result, especially toward LiP. Enzyme separation was conducted and two fractions with LiP activity. LiP1 and LiP2 were produced using three columns sequentially: desalting column, Q FF ion exchange column and Sepharyl S-300 HR gel filtration. LiP1 and LiP2 had been purified by 9.6- and 7.6-fold with a yield of 22.9% and 18.6%, respectively. According to the data of sodium dodecyl sulfate polyacrilamide gel electrophoresis (SDS-PAGE), the molecular weights of the enzymes are 38 kDa and 40 kDa, respectively.  相似文献   

9.
Removal and degradation of pentachlorophenol (PCP) by Phanerochaete chrysosporium in static flask cultures was studied using ammonium lignosulphonates (LS), a waste product of the papermill industry, as a carbon and nitrogen source. After 3 days, cultures of P. chrysosporium grown in either a 2% LS (nitrogen-sufficient) medium or a 0.23% LS and 2% glucose (nitrogen-deficient) medium removed 72 to 75% of PCP, slightly less than the 95% removal seen using nitrogen-deficient glucose and ammonia medium. PCP dehalogenation occurred despite the fact that extracellular enzyme (LiP) activity, measured by a veratryl alcohol oxidation assay and by PCP disappearance in cell-free extracts, was inhibited by LS. This inactivation of LiP likely contributed to the lower percent of PCP dehalogenation observed using the LS media. In order to better understand the relationship between PCP disappearance and dehalogenation, we measured the fate of the chlorine in PCP. After 13 days, only 1.8% of the initial PCP added was recoverable as PCP. The remainder of the PCP was either mineralized or transformed to breakdown intermediates collectively identified as organic halides. The largest fraction of the original chlorine (58%) was recovered as organic (non-PCP) halide, most of which (73%) was associated with the cell mass. Of the remaining chlorine, 40% was released as chloride ion, indicating a level of dehalogenation in agreement with previously reported values.  相似文献   

10.
We investigated the influence of pellet size on the growth and lignin peroxidase (LiP) productivity of Phanerochaete chrysosporium. Different pellet sizes were obtained by varying the vessel diameter under constant shaking conditions. Under these varying conditions the pellet size was in the range of 2–18 mm, while the number of pellets in a single vessel varied from around 1,200 in the Erlenmeyer flask to around 6 in the narrowest vessel. A correlation between the final pellet size and the shear rate was obtained, demonstrating that the pellet size is mainly affected by hydrodynamics. The growth of large pellets was described by a cubic growth model. Despite different pellet sizes, LiP activity appeared in all vessels, but the onset of LiP activity showed a delay based upon the pellet size, while maximal LiP activities varied by only 15%, being around 850 U/l.  相似文献   

11.
The ligninolytic white-rot fungus Phanerochaete chrysosporium BKM-F-1767 produced extracellular cellulolytic enzymes (carboxymethylcellulase, CMCase and -glucosidase) and xylanolytic enzymes (xylanase and -xylosidase) in liquid medium containing 1.0% sugarcane bagasse with or without 1.0% glucose. The changes in pH and soluble protein content were monitored in the culture filtrates. The results obtained showed that the pH decreased after 3 days and then increased. The soluble protein content increased and reached the maximum value after 12 days. The results showed that the activities of enzymes were higher in the case of sugarcane bagasse without glucose. The characterization study indicated that the optimum pH values were 4.6, 4.2, 5.0 and 5.0 for CMCase, -glucosidase, xylanase and -xylosidase, respectively and the optimum temperatures were 60, 70, 65 and 60 °C for the investigated enzymes, respectively. The results showed also that after prolonged heating (5 h) at 60 °C, CMCase, -glucosidase, xylanase and -xylosidase retained 81.2, 86.8, 51.5 and 27.4% activity, respectively.  相似文献   

12.
Summary The lignin-degrading fungiPhanerochaete chrysosporium, P. sordida, Trametes hirsuta, andCeriporiopsis subvermispora were evaluated for their ability to decrease the concentration of pentachlorophenol (PCP) and to cause dry weight loss in PCP-treated wood. Hardwood and softwood materials from PCP-treated ammunition boxes that were chipped to pass a 3.8-cm screen were used. All four fungi caused significant weight losses and decreases in the PCP concentration. The largest PCP decrease (84% in 4 weeks) was caused byT. hirsuta, and the smallest decrease was caused byC. subvermispora (37% in 4 weeks). After 4 weeks, the fate of spiked14C[PCP] in softwood chips inoculated withT. hirsuta was as follows: 27% was mineralized, 42.5% was non-extractable and bound to the chips, 23.5% was associated with fungal hyphae, and 6% was organic-extractable. Decreases of PCP byP. chrysosporium andP. sordida averaged 59% and 57%, respectively. PCP decreases caused byPhanerochaete spp. were not significantly affected by wood type or sterilization and were primarily due to methylation of PCP that resulted in accumulation of pentachloroanisole. Softwood weight losses caused byT. hirsuta, P. chrysosporium andC. subvermispora were respectively, 24, 6.5, and 17%, after 4 weeks. These weight losses are comparable to reported weight losses by these organisms in non-treated softwood. Nutrient supplementation significantly increased weight loss but not percentage decrease of PCP. The results of this research demonstrate the potential for using lignin-degrading fungi to destroy PCP-treated wood.  相似文献   

13.
In order to better understand which enzyme are of importance in lignin degradation, new cellulase deficient strains from Sporotrichum pulverulentum have been isolated by spontaneous and induced mutations from both wild type and from the earlier studied cellulase deficient strain 44. These new strains are xylanase positive (Xyl+), and produce considerably higher amounts of phenol oxidases (Pox) than either parent type. The new strains have been compared with the wild type and strain 44 with respect to their ability to release 14CO2 from a) vanillic acid labelled in the carboxyl, methoxyl and ring carbons; b) the dimer (4-methoxy-14C)-veratryl-glycerol--guaiacyl ether; c) 14C-ring-labelled DHP and 14C[-carbon side chain] labelled DHP.The new strains, the wild type and strain 44 were compared with respect to their ability to cause weight losses in wood blocks and to delignify wood. One of the new strains, 63-2, caused a higher weight loss in wood than either the wild type or strain 44. Another strain, 44-2, produced a higher weight loss than strain 44. An increase in acid-soluble lignin was observed in wood blocks treated for two weeks with the two new mutant strains and wild type. After prolonged incubation for 6 and 8 weeks the amount of acid-soluble lignin decreased.Abbreviations DHP Dehydrogenation polymerizate - DMS 2,2-dimethylsuccinic acid  相似文献   

14.
The lignin-degrading basidiomycete Phanerochaete chrysosporium synthesizes veratryl alcohol (3,4-dimethoxybenzyl alcohol) via phenylalanine, 3,4-dimethoxycinnamyl alcohol and veratrylglycerol. Study of the conversion of 3,4-dimethoxycinnamyl alcohol to veratrylglycerol and veratryl alcohol showed is to be (a) catalyzed by a secondary metabolic system, (b) markedly suppressed by culture agitation, and (c) strongly inhibited by l-glutamate. The amount of veratryl alcohol synthesized de novo was positively correlated with the O2 concentration after primary growth. Other work has shown that the cinnamyl alcohol terminal residue in a lignin substructure model compound is degraded via arylglycerol and benzyl alcohol structures in ligninolytic cultures of P. chrysosporium, and that the ligninolytic system exhibits traits (a)-(c) above. Ligninolytic activity is also strongly and positively correlated with O2 concentration. The results here suggest, therefore, that the actual biosynthetic secondary metabolic product is 3,4-dimethoxycinnamyl alcohol, but that this is degraded by the ligninolytic system to veratryl alcohol via veratrylglycerol. Veratryl alcohol is only slowly metabolized by the fungus, and accumulates.Non-standard abbreviation tlc thin layer chromatography  相似文献   

15.
When subjected to nitrogen limitation, the wood-degrading fungus Phanerochaete chrysosporium produces two groups of secondary metabolic, extracellular isoenzymes that depolymerize lignin in wood: lignin peroxidases and manganese peroxidases. We have shown earlier the turnover in activity of the lignin peroxidases to be due in part to extracellular proteolytic activity. This paper reports the electrophoretic characterization of two sets of acidic extracellular proteases produced by submerged cultures of P. chrysosporium. The protease activity seen on day 2 of incubation, during primary growth when nitrogen levels are not known to be limiting, consisted of at least six proteolytic bands ranging in size from 82 to 22 kDa. The activity of this primary protease was strongly reduced in the presence of SDS. Following the day 2, when nitrogen levels are known to become limiting and cultures become ligninolytic, the main protease activity (secondary protease) consisted of a major proteolytic band of 76 kDa and a minor band of 25 kDa. The major and minor secondary protease activities were inhibited by phenylmethylsulfonyl fluoride and pepstatin A, respectively. When cultures were grown in the presence of excess nitrogen (non-ligninolytic condition), the primary protease remained the principal protease throughout the culture period. These results identify and characterize a specific proteolytic activity associated with conditions that promote lignin degradation.  相似文献   

16.
In this study, a N-deregulated mutant (der8-5) of Phanerochaete chrysosporium was used as a tool to investigate the interrelationships between N, C, and Mn(II) regulation of LIP and MNP production in this organism. The results showed that LIP and MNP production by der8-5 was blocked in excess C medium but not in excess N medium. Furthermore, LIP and MNP production in this organism was subject to Mn(II) regulation regardless of the fact whether it is grown in low N medium or in high N medium. These and other results indicate that N regulation of LIP and MNP production in P. chrysosporium is independent of C and Mn(II) regulation.Abbreviations LIP lignin peroxidase - MNP manganese-dependent peroxidase - WT wild-type - der8-5 nitrogen-deregulated mutant  相似文献   

17.
Biodegradation of Pinus radiata softwood by white- and brown-rot fungi   总被引:4,自引:0,他引:4  
The weight and component losses of Pinus radiata wood after decay by six species of white-rot and two species of brown-rot fungi for periods varying from 30 to 360 days were evaluated. Three groups of decayed wood samples were identified based on the principal component analysis (PCA) of the data on their weight and component losses. Selective lignin degradation was produced by Ceriporiopsis subvermispora and Punctularia atropurpurascens within different periods, the longest one lasting 90 days, and also by Merulius tremellosus after 90 days of biodegradation. Comparing the data on biodegradation of P. radiata by Trametes versicolor with the ones reported for biodegradation of Eucalyptus globulus and E. grandis indicated that P. radiata is as susceptible to wood decay by this white-rot fungus as the two types of hardwood.  相似文献   

18.
Pyranose oxidase (glucose 2-oxidase) and pyranosone dehydratase were purified 27.6- and 43.9-fold respectively from mycelial extracts of the fungus Phanerochaete chrysosporium using hydrophobic interaction, anion exchange and gel filtration chromatography. The enzymes appeared substantially homogeneous on SDS-PAGE and were comprised of identical subuntis with apparent Mr values of 69 000 and 99 000 for pyranose oxidase and pyranosone dehydratase, respectively. The apparent Mr's of the native enzymes, based on equilibrium ultracentrifugation, were 308 000 and 221 000. In coupled reactions, the enzymes catalyzed conversion of d-glucose via d-glucosone (d-arabino-2-hexosulose) to the antibiotic -pyrone, cortalcerone. The latter compound was isolated as a diphenylhydrazone derivative and spectroscopically identified.Abbreviations DMAB 3-dimethylaminobenzoic acid - FPLC fast protein liquid chromatography - MBTH 3-methyl-2-benzothiazolinone hydrazone hydrochloride - PD pyranosone dehydratase - PMSF phenylmethylsulfonyl fluoride - POD pyranose oxidase  相似文献   

19.
There was no direct correlation between the surface hydrophobicity or hydrophilicity of four solid carriers and the amount of immobilized Phanerochaete chrysosporium. The immobilized biomass was 1.5–1.8 times higher and the fungal degradation activity was 5–8 and 3 times greater in terms of decolorization and phenolics reduction, respectively, with porous carriers than with non-porous carriers. Morphology of the carriers was important and governed the amount of immobilized mycelium and specially the fungal biodegradation activity.  相似文献   

20.
Pyranose oxidase and pyranosone dehydratase (aldos-2-ulose dehydratase), enzymes which convert in coupled reactions d-glucose to -pyrone cortalcerone, peaked coincidently during idiophasic growth of Phanerochaete chrysosporium under agitated conditions. The enzymes were purified from mycelial extracts of the fungus and separated from each other by hydrophobic interaction chromatography on Phenyl-Sepharose and Phenyl-Superose. Two pyranosone dehydratase activity peaks, PD I and PD II, were resolved. The major PD I fraction, consisting about 74% of the total dehydratase activity, was further purified by anion exchange chromatography on Mono Q to yield apparently pure enzyme as judged by SDS-PAGE and gel filtration on Superose 12. Isoelectric focusing indicated microheterogeneity of the protein by the presence of at least five protein bands with pI 5.1–5.3. PD II had a pI of 5.75. Overall PD I purification was 60.7-fold with 50% yield. The enzyme acted on several osones (glycosuloses), with the preferred substrate being d-glucosone. d-Xylosone and 6-deoxy-d-glucosone were dehydrated at C-3-C-4 to give the corresponding 5-hydroxy-2,3-dioxoalcanals (4-deoxy-2,3-glycosdiuloses), new enzymatically produced sugar derivatives. The latter labile compounds were trapped as diphenylhydrazine or o-phenylenediamine derivatives and spectroscopically identified. The analogous d-glucosone dehydration product did not accumulate due to its further transformation. pH optimum of PD I activity was 6.0 and its pH stability was optimal at pH 7-11. The enzyme was sensitive to Me2+ chelating agents and some heavy metal ions (Hg2+, Cu2+).Abbreviations DMAB 3-dimethylaminobenzoic acid - DTT dithiothreitol - MBTH 3-methyl-2-benzothiazolinone hydrazone-hydrochloride - PD pyranosone dehydratase - PMSF phenylmethylsulfonyl fluoride - POD pyranose oxidase  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号