首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
E. coli is still one of the most commonly used hosts for protein production. However, when it is grown with excess glucose, acetate accumulation occurs. Elevated acetate concentrations have an inhibitory effect on growth rate and recombinant protein yield, and thus elimination of acetate formation is an important aim towards industrial production of recombinant proteins. Here we examine if over-expression of citrate synthase (gltA) or phosphoenolpyruvate carboxylase (ppc) can eliminate acetate production. Knock-out as well as over-expression mutants were constructed and characterized. Knocking out ppc or gltA decreased the maximum cell density by 14% and increased the acetate excretion by 7%, respectively decreased it by 10%. Over-expression of ppc or gltA increased the maximum cell dry weight by 91% and 23%, respectively. No acetate excretion was detected at these increased cell densities (35 and 23 g/l, respectively).  相似文献   

2.
Signal peptide mutants ofEscherichia coli   总被引:10,自引:0,他引:10  
Numerous secretory proteins of the Gram-negative bacteriaE. coli are synthesized as precursor proteins which require an amino terminal extension known as the signal peptide for translocation across the cytoplasmic membrane. Following translocation, the signal peptide is proteolytically cleaved from the precursor to produce the mature exported protein. Signal peptides do not exhibit sequence homology, but invariably share common structural features: (1) The basic amino acid residues positioned at the amino terminus of the signal peptide are probably involved in precursor protein binding to the cytoplasmic membrane surface. (2) A stretch of 10 to 15 nonpolar amino acid residues form a hydrophobic core in the signal peptide which can insert into the lipid bilayer. (3) Small residues capable of -turn formation are located at the cleavage site in the carboxyl terminus of the signal peptide. (4) Charge characteristics of the amino terminal region of the mature protein can also influence precursor protein export. A variety of mutations in each of the structurally distinct regions of the signal peptide have been constructedvia site-directed mutagenesis or isolated through genetic selection. These mutants have shed considerable light on the structure and function of the signal peptide and are reviewed here.  相似文献   

3.
4.
Summary The ppc gene of Corynebacterium glutamicum encoding phosphoenolpyruvate (PEP) carboxylase was isolated by complementation of a ppc mutant of Escherichia coli using a cosmid gene bank of chromosomal c. glutamicum DNA. By subsequent subcloning into the plasmid pUC8 and deletion analysis, the ppc gene could be located on a 3.3 kb SalI fragment. This fragment was able to complement the E. coli ppc mutant and conferred PEP carboxylase activity to the mutant. The complete nucleotide sequence of the ppc gene including 5 and 3 flanking regions has been determined and the primary structure of PEP carboxylase was deduced. The sequence predicts a 919 residue protein product (molecular weight of 103154) which shows 34% similarity with the respective E. coli enzyme. Present address: Institut für Biotechnologie 1 der Kernforschungsanlage, Postfach 1913, D-5170 Jülich, Federal Republic of Germany  相似文献   

5.
Summary A voltage-sensitive, cation-selective ion channel ofEscherichia coli has been reconstituted into liposomes and studied with the patch-clamp method. The single channel conductance was 91 pS in symmetric solutions of 150mm KCl. Many channels were open most of the time, with frequent brief transitions to closed levels. Multiple conducting units could close and reopen simultaneously, and this apparent cooperativity in gating was increases with depolarizing voltages. Above a voltage threshold, the channels closed irreversibly, often in groups.  相似文献   

6.
EightEscherichia coli strains were characterized by determining their adhesion to xylene, surface free energy, zeta potential, relative surface charge, and their chemical composition. The latter was done by applying X-ray photoelectron spectroscopy (XPS) and infrared spectroscopy (IR). No relationship between the adhesion to xylene and the water contact angles of these strains was found. Three strains had significantly lower surface free energies than the other strains. Surface free energies were either obtained from polar and dispersion parts or from Lifshitz-van der Waals and acid/base parts of the surface free energy. A correlation (r=0.97) between the polar parts and the electron-donor contributions to the acid/base part of the surface free energy was found. The zeta potentials of all strains, measured as a function of pH (2–11), were negative. Depending on the zeta potential as a function of pH, three groups were recognized among the strains tested. A relationship (r=0.84) was found between the acid/base component of the surface free energy and the zeta potential measured at pH=7.4. There was no correlation between results of XPS and IR studies. Data from the literature of XPS and IR studies of the gram-positive staphylococci and streptococci were compared with data from the gram-negativeE. coli used in this study. It appeared that in these three groups of bacteria, the polysaccharide content detected by IR corresponded well with the oxygen-to-carbon ratio detected by XPS.  相似文献   

7.
The hydrogenases and formate dehydrogenases ofEscherichia coli   总被引:2,自引:0,他引:2  
Escherichia coli has the capacity to synthesise three distinct formate dehydrogenase isoenzymes and three hydrogenase isoenzymes. All six are multisubunit, membrane-associated proteins that are functional in the anaerobic metabolism of the organism. One of the formate dehydrogenase isoenzymes is also synthesised in aerobic cells. Two of the formate dehydrogenase enzymes and two hydrogenases have a respiratory function while the formate dehydrogenase and hydrogenase associated with the formate hydrogenlyase pathway are not involved in energy conservation. The three formate dehydrogenases are molybdo-selenoproteins while the three hydrogenases are nickel enzymes; all six enzymes have an abundance of iron-sulfur clusters. These metal requirements alone invoke the necessity for a profusion of ancillary enzymes which are involved in the preparation and incorporation of these cofactors. The characterisation of a large number of pleiotropic mutants unable to synthesise either functionally active formate dehydrogenases or hydrogenases has led to the identification of a number of these enzymes. However, it is apparent that there are many more accessory proteins involved in the biosynthesis of these isoenzymes than originally anticipated. The biochemical function of the vast majority of these enzymes is not understood. Nevertheless, through the construction and study of defined mutants, together with sequence comparisons with homologous proteins from other organisms, it has been possible at least to categorise them with regard to a general requirement for the biosynthesis of all three isoenzymes or whether they have a specific function in the assembly of a particular enzyme. The identification of the structural genes encoding the formate dehydrogenase and hydrogenase isoenzymes has enabled a detailed dissection of how their expression is coordinated to the metabolic requirement for their products. Slowly, a picture is emerging of the extremely complex and involved path of events leading to the regulated synthesis, processing and assembly of catalytically active formate dehydrogenase and hydrogenase isoenzymes. This article aims to review the current state of knowledge regarding the biochemistry, genetics, molecular biology and physiology of these enzymes.  相似文献   

8.
Phosphoenolpyruvate carboxylase (PEPC)-deficient mutants ofEscherichia coli have been complemented with a plasmid bearing a full-length cDNA encoding the C4-type form ofSorghum leaf PEPC. Transformed cells grew on minimal medium. Two clones were selected which produce a functional and full-sized enzyme protein as determined by activity assays, immunochemical behavior and SDS-PAGE. In addition, regulatory phosphorylation of immunopurified recombinant PEPC was observed when the enzyme was incubated with a partially purified plant PEPC kinase. These results establish thatE. coli cells produce a genuine, phosphate-free, higher-plant PEPC. Application of immunoadsorbtion chromatography to bacterial extracts makes it possible to prepare highly pure protein available for biochemical studies.  相似文献   

9.
Vanillin is one of the world's principal flavoring compounds, and is used extensively in the food industry. The potential vanillin production of the bacteria was compared to select and clone genes which were appropriate for highly productive vanillin production byE. coli. Thefcs (feruloyl-CoA synthetase) andech (enoyl-CoA hydratase/aldolase) genes cloned fromAmycolatopsis sp. strain HR104 andDelftia acidovorans were introduced to pBAD24 vector with PBAD promoter and were named pDAHEF and pDDAEF, respectively. We observed 160 mg/L vanillin production withE. coli harboring pDAHEF, whereas 10 mg/L of vanillin was observed with pDDAEF. Vanillin production was optimized withE. coli harboring pDAHEF. Induction of thefcs andech genes from pDAHEF was optimized with the addition of 13.3 mM arabinose at 18 h of culture, from which 450 mg/L of vanillin was produced. The feeding time and concentration of ferulic acid were also optimized by the supplementation of 0.2% ferulic acid at 18 h of culture, from which 500 mg/L of vanillin was obtained. Under the above optimized condition of arabinose induction and ferulic acid supplementation, vanillin production was carried out with four different types of media, M9, LB, 2YT, and TB. The highest vanillin production, 580 mg/L, was obtained with LB medium, a 3.6 fold increase in comparison to the 160 mg/L obtained before the optimization of vanillin production.  相似文献   

10.
11.
Two mutants defective in succinate utilization were isolated by NTG mutagenesis of the effective wild typeRhizobium meliloti strain S14. The mutants used carbon sources in a fashion similar to strain S14, but they were not able to grow on succinate, fumarate or malate. The mutants nodulated alfalfa plants but did not exhibit any nitrogenase activity. The mutants oxidized glucose and fructose, but were not able to oxidize organic acids. Cultured free-living bacteria of strain S14 appeared to have an inducible C4-dicarboxylic acid uptake system and a constitutive glucose uptake system. When S14 cells were grown on glucose in the presence of 5mM or more succinate or malate, the rate of glucose-dependent O2 consumption significantly decreased suggesting the presence of a catabolite repression like phenomenom. Contribution no. 301, Station de Recherches, Agriculture Canada.  相似文献   

12.
Summary Interest of microbial production of amino acids has been increased greatly since development of biotechnological methods. These methods represent a perspective way applied in a future large-scale manufacture of inexpensive amino acids. In this context, the isolation of producing organisms that may be exploited in the desing of alternative methods for the production of amino acids could be of primary importance.In this review we will describe the liberation of amino acids (methionine, lysine, arginine, tryptophane and glutamic acid) byAzotobacter andAzospirillum during growth in culture media with different carbon sources under diazotrophic and adiazotrophic conditions. These organisms may be useful in developing new methods for the industrial production of amino acids.  相似文献   

13.
Summary A gene encoding pyruvate carboxylase has previously been isolated from Saccharomyces cerevisiae. We have isolated a second gene, PYC2, from the same organism also encoding a pyruvate carboxylase. The gene PYC2 is situated on the right arm of chromosome II between the DUR 1, 2 markers and the telomere. We localized the previously isolated gene, which we designate PYC1, to chromosome VII. Disruption of either of the genes did not produce marked changes in the phenotype. However, simultaneous disruption of both genes resulted in inability to grow on glucose as sole carbon source, unless aspartate was added to the medium. This indicates that in wild-type yeast there is no bypass for the reaction catalysed by pyruvate carboxylase. The coding regions of both genes exhibit a homology of 90% at the amino acid level and 85% at the nucleotide level. No appreciable homology was found in the corresponding flanking regions. No differences in the K m values for ATP or pyruvate were observed between the enzymes obtained from strains carrying inactive, disrupted versions of one or other of the genes.A preliminary report of this work was presented at the 15th International Conference on Yeast Genetics and Molecular Biology, The Hague, Netherlands. Abstract appeared in Yeast 6, S-240 (1990)  相似文献   

14.
Summary Transport of iron(III) hydroxamates across the inner membrane into the cytoplasm ofEscherichia coli is mediated by the FhuC, FhuD and FhuB proteins and displays characteristics typical of a periplasmic-binding-protein-dependent transport mechanism. In contrast to the highly specific receptor proteins in the outer membrane, at least six different siderophores of the hydroxamate type and the antibiotic albomycin are accepted as substrates. AfhuB mutant (deficient in transport of substrates across the inner membrane) which overproduced the periplasmic FhuD 30-kDa protein, bound [55Fe] iron(III) ferrichrome. Resistance of FhuD to proteinase K in the presence of ferrichrome, aerobactin, and coprogen indicated binding of these substrates to FhuD. FhuD displays significant similarity to the periplasmic FecB, FepB, and BtuE proteins. The extremely hydrophobic FhuB 70-kDa protein is located in the cytoplasmic membrane and consists of two apparently duplicated halves. The N-and C-terminal halves [FhuB(N) and FhuB(C)] were expressed separately infhuB mutants. Only combinations of FhuB(N) and FhuB(C) polypeptides restored sensitivity to albomycin and growth on iron hydroxamate as a sole iron source, indicating that both halves of FhuB were essential for substrate translocation and that they combined to form an active permease. In addition, a FhuB derivative with a large internal duplication of 271 amino acids was found to be transport-active, indicating that the extra portion did not disturb proper insertion of the active FhuB segments into the cytoplasmic membrane. A region of considerable similarity, present twice in FhuB, was identified near the C-terminus of 20 analyzed hydrophobic proteins of periplasmic-binding-protein-dependent systems. The FhuC 30 kDa protein, most likely involved in ATP binding, contains two domains representing consensus sequences among all peripheral cytoplasmic membrane proteins of these systems. Amino acid replacements in domain I (LysGlu and Gln) and domain II (AspAsn and Glu) resulted in a transport-deficient phenotype.  相似文献   

15.
The quaternary structure of ATP-dependent phosphoenolpyruvate (PEP) carboxykinases is variable. Thus, the carboxykinases from Escherichia coli, Trypanosoma brucei, and Saccharomyces cerevisiae are monomer, homodimer, and homotetramer, respectively. In this work, we studied the effect of temperature on the stability of the enzyme activity of these three carboxykinases, and have found that it follows the order monomer > dimer > tetramer. The inactivation processes are first order with respect to active enzyme. The presence of substrates leads to an increase in the thermal stability of all three PEP carboxykinases. The protection effect of the substrates on the thermal inactivation of these enzymes suggests similarities in the substrate-bound form of these proteins. We propose that the higher structural complexity of some PEP carboxykinases could be related to the acquisition of properties of relevance in vivo.  相似文献   

16.
A temperature-sensitive, protein synthesis-defective mutant ofEscherichia coli exhibiting an altered ribosomal protein L22 has been investigated. The temperature-sensitive mutation was mapped to therplV gene for protein L22. The genes from the wild type and mutant strains were amplified by the polymerase chain reaction and the products were sequenced. A cytosine to thymine transition at position 22 of the coding sequence was found in the mutant DNA, predicting an arginine to cysteine alteration in the protein. A single cysteine residue was found in the isolated mutant protein. This amino acid change accounts for the altered mobility of the mutant protein in two-dimensional gels and during reversed-phase HPLC. The temperature-sensitive phenotype was fully complemented by a plasmid carrying the wild type L22 gene. Ribosomes from the complemented cells showed only wild type protein L22 by two dimensional gel analysis and were as heat-resistant as control ribosomes in a translation assay. The point mutation in the L22 gene is uniquely responsible for the temperature-sensitivity of this strain.  相似文献   

17.
Summary Escherichia coli Rl is an Ag+-resistant strain that, as we have shown recently, harbours at least two large plasmids, pJT1 (83 kb) and pJT2 (77 kb). Tn5-Mob was introduced into theE. coli Rl host replicon via conjugation on membrane filters. The transfer functions of plasmid RP4-4 were provided in this process and Tn5-Mob clones mated withE. coli C600 yielded Ag+-resistant transconjugants. This mobilization procedure allowed transfer and expression of pJT1 Ag+ resistance inE. coli C600. Prior to use of Tn5-Mob mobilization, it was not possible to transfer Ag+-resistant determinant(s) intoE. coli by conjugation or transformation including high-voltage electroporation.E. coli C600 containing PJTI and PJT2 displayed decreased accumulation of Ag+ similar toE. coli R1.E. coli C600 could not tolerate 0.1 and 0.5 mM Ag+, rapidly accumulated Ag+ and became non-viable. Tn5-Mob mobilization may be useful in the study of metal resistance in bacteria, especially in strains not studied for resistance mechanisms.  相似文献   

18.
Utilization of d-amino acids being substrates of d-amino acid dehydrogenase of Salmonella typhimurium was examined. The experiments were done with wild type strains and the mutants dadA missing the enzyme activity and dadR in which its synthesis is released from catabolite repression. Growth on d-tryptophan, d-histidine and d-methionine used as precursors of the l-amino acids was faster when the respective auxotrophs carried dadR mutations. The dadR mutants grew faster when d-or l-alanine was present as a sole source of nitrogen. Experiments with d-amino acid dehydrogenase in vitro provided evidence that d-tryptophan is its substrate with a very low affinity to the dehydrogenase.  相似文献   

19.
The pentose-phosphate pathway ofEscherichia coli K-12, in addition to its role as a route for the breakdown of sugars such as glucose or pentoses, provides the cell with intermediates for the anabolism of amino acids, vitamins, nucleotides, and cell wall constituents. Through its oxidative branch, it is a major source of NADPH. The expression of the gene for NADP-dependent 6-phospho-gluconate dehydrogenase (gnd) is regulated by the growth rate inE. coli. The recently identified gene for ribulose-5-phosphate 3-epimerase (rpe) is part of a large operon that comprises among others genes for the biosynthesis of aromatic amino acids. In recent years, genes for all enzymes of the pathway have been cloned and sequenced. Isoenzymes have been found for transketolase (genestktA andtktB), ribose-5-phosphate isomerase (rpiA andrpiB) and transaldolase (talA andtalB).  相似文献   

20.
Pyruvate decarboxylase, PDCase, activity in wild-type yeast cells growing on ethanol is quite low but increases up to tenfold upon addition of glucose, less with galactose and only slightly with glycerol. PDCase levels in glycolysis mutant strains growing on ethanol or acetate were higher than in the wild-type strain. These levels correlated with the sum of the concentrations of three-carbon glycolytic metabolites. The highest accumulation was observed in a fructose bisphosphate aldolase deletion mutant concomintant with the highest PDCase activity wild-type level. On the other hand, the PDCase levels in the different mutants again correlated with the sum of the concentrations of the three-carbon glycolytic metabolites. This was interpreted to mean that full induction of PDCase activity requires the accumulation of hexose-and triosephosphates.Abbreviations PDCase pyruvate decarboxylase - dw dry weight - PEP phosphoenolpyruvate - WT wild-type  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号