首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We investigated the possible role of calmodulin (CaM) in the control of histamine release from human basophil leukocytes using several CaM antagonists. Trifluoperazine (TFP) (10(-6)-2 X 10(-5) M), pimozide (10(-6)-1.5 X 10(-5) M), chlorpromazine (CPZ) (10(-5)-10(-4) M) and promethazine (PMZ) (2 X 10(-5)-10(-4) M) inhibited in vitro histamine secretion from human basophils induced by several immunological (antigen, anti-IgE, and formyl-L-methionyl-L-leucyl-L-phenylalanine: f-met peptide) and nonimmunological (Ca2+ ionophore A23187 and the tumor promoter 12-0-tetradecanoyl-phorbol-13-acetate: TPA) stimuli. Trifluoperazine sulfoxide (TFP-S) and chlorpromazine sulfoxide (CPZ-S), which have very low affinity to CaM, had practically no inhibitory effect on histamine release from human basophils. The inhibitory effect of TFP could be made irreversible by irradiating the cells with UV light. A sulfonamide derivative, the compound N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide hydrochloride (W-7) (2.5 X 10(-5)-2 X 10(-4) M), which selectively binds to CaM, inhibited the release of histamine from basophils. In contrast, the chloride deficient analogue, W-5, which interacts only weakly with CaM, had practically no inhibiting effect. The IC50 for enzyme release by a series of eight CaM antagonists was closely correlated (r = 0.91; p less than 0.001) with the CaM specific binding, supporting the concept that these agents act by binding to CaM and thereby inhibiting histamine release. TFP and W-7 inhibited histamine release in the absence and in the presence of increasing concentrations of extracellular Ca2+. These results emphasize the possible role of CaM in the control of histamine secretion from human basophils.  相似文献   

2.
The ATP-gated P2X1 ion channel is the only P2X subtype expressed in human platelets. Via transmission electron microscopy, we found that P2X1 mediates fast, reversible platelet shape change, secretory granule centralization, and pseudopodia formation. In washed human platelets, the stable P2X1 agonist alpha,beta-methylene ATP (alpha,beta-meATP) causes rapid, transient (2-5 s), and dose-dependent myosin light chain (MLC) phosphorylation, requiring extracellular Ca2+. Phosphorylation was inhibited by the calmodulin (CaM) inhibitor W-7, but not by the Rho kinase inhibitor HA-1077, i.e. it is exclusively regulated by Ca2+/CaM-dependent MLC kinase. Correspondingly, the P2X1-induced platelet shape change was inhibited by W-7 and by the MLC kinase inhibitor ML-7 but not by HA-1077. W-7, ML-7, the protein kinase C inhibitor GF109203-X, and the Src family kinase inhibitor PP1 inhibited the collagen and convulxin-induced early platelet degranulation, shape change, and subsequent aggregation, indicating a role for Ca2+/CaM and MLC kinase in these glycoprotein VI-related platelet responses. The secreted ATP-mediated P2X1-dependent ERK2 activation induced by low collagen concentrations contributes to MLC kinase activation since P2X1 desensitization or blockade of ERK2 phosphorylation by U0126 strongly attenuated MLC phosphorylation, degranulation, and aggregation. We therefore conclude that at low doses of collagen, glycoprotein VI activation leads to early protein kinase C- and MLC kinase-dependent degranulation. Rapidly released ATP triggers P2X1 -mediated Ca2+ influx, activating ERK2, in turn amplifying platelet secretion by reinforcing the early MLC kinase phosphorylation. Hence, the P2X1-ERK2-MLC axis contributes to collagen-induced platelet activation by enhancing platelet degranulation.  相似文献   

3.
Both cAMP and Ca2+ play important roles in the steroidogenic action of LH in hen granulosa cells. However, the interaction of these intracellular messengers is not fully understood. In the present study we used two calcium ionophores (ionomycin and A23187), as well as trifluoperazine (TFP), an inhibitor of calmodulin, to investigate LH- and forskolin-induced cAMP production in granulosa cells isolated from the largest (F1) preovulatory follicle of White Leghorn laying hens. Between 0.1 and 1.0 microM, both ionophores significantly potentiated cAMP responses to LH in the presence of 0.1 mM extracellular Ca2+. When calcium was omitted from the medium, ionophores had no effect. When either calcium was raised above 1 mM, or the concentration of ionophores was increased above 1 microM, LH-induced cAMP production was drastically inhibited. In the presence of 0.5-2.0 mM calcium, A23187 inhibited forskolin-promoted cAMP synthesis. TFP, while having no effect on basal cAMP, suppressed LH-induced responses and the potentiating effect of ionomycin. It is concluded that for full activation of the adenylate cyclase/cAMP system by LH, Ca-calmodulin is required at a site upstream from the catalytic component of the enzyme. However, high intracellular Ca2+ and/or other effects of ionophores (such as uncoupling of oxidative phosphorylation) inhibit LH-induced cAMP production.  相似文献   

4.
Alloreactivity of intragraft and peripheral blood lymphocytes from tolerant canine lung allograft recipients was examined. Tolerance was induced by variable periods of treatment with cyclosporine. Analysis of effector cells from lung allografts (obtained by bronchoalveolar lavage) revealed the absence of specific cytolytic T lymphocyte (CTL) activity and the presence of a low level of cytolytic activity detected in a lectin-dependent cell-mediated cytotoxicity assay. In contrast, high levels of specific CTL activity and lectin-dependent activity were detected in cell preparations from lung allografts undergoing rejection. Tolerant recipients retained normal ability to generate specific CTL activity to third party alloantigens in mixed lymphocyte cultures (MLC) but had diminished ability to generate CTL to donor alloantigens in recipient X donor MLC. Addition of exogenous interleukin 2 to these MLC was unable to restore donor-specific CTL activity. Lymphocytes from tolerant recipients were, however, capable of generating proliferative responses and lectin-dependent cytotoxicity on exposure to donor alloantigens in MLC. Evidence presented in this report suggests that the lectin-dependent cytolytic activity generated in these MLC is mediated by lymphokine-activated killer cells. Such cells are likely to be activated by interleukin 2 released in the proliferative response. The results support the proposal that the cyclosporine-induced tolerant state is characterized by the relative inability to respond against major histocompatibility complex class I antigens in contrast to class II antigens and/or minor histocompatibility antigens since MLC-induced CTL are directed, for the most part, against class I molecules.  相似文献   

5.
CBA spleen T lymphocytes were stimulated by the T mitogens concanavalin-A (Con-A), phytohemagglutinin (PHA), and leukoagglutinin (LA). On the 2nd to 3rd culture day the activated cells (blasts) were separated from the nonactivated cells (lymphocytes) by 1g velocity sedimentation. The lymphocytes which were not activated during the primary culture (lymphocyte fraction from the velocity sedimentation) were then stimulated by the same mitogens or in one-way MLC to DBA/2 m, and tested for relevant target lysis after MLC stimulation. Primary stimulation with Con-A abolished the responses to Con-A, to PHA, and to LA, whereas primary stimulation with PHA or with LA abolished the responses to these mitogens but left behind a considerable Con-A response. Stimulation with any one of the listed T mitogens did not significantly affect the MLC responses. While primary stimulation with Con-A abolished the relevant target cell lysis after MLC stimulation, primary stimulation with PHA or with LA reduced it only slightly. Assuming that the various mitogens stimulate separate subpopulations of T cells, the results seem to indicate that the Con-A-responsive population includes the PHA- and LA-responsive populations but not the MLC-responsive population. It also appears that the T cells generated to killer cells during MLC are mainly confined to the concanavalin-responsive population.  相似文献   

6.
Mitogenic factor from BCG-sensitized cells stimulated with antigen (PPD) was found to have a m.w. between 20 and 25,000 daltons and an isoelectric point of about 7.5. The blastogenic activity of this factor was not affected by L-fucose or heating at 56 degrees C for up to 1 hr. Mitogenic factor obtained from supernatants of allogeneic cell mixtures (MLC-MF) on the other hand, had a m.w. at 15 to 18,000 daltons and an isoelectric point of 6.5. The blastogenic activity of MLC-MF was inhibited by 0.1 M L-fucose. The factor was stable at 56 degrees C for 1 hr. An antibody prepared against MLC-MF inhibited the MLC reaction as well as the activity of MLC-MF on non-committed cells. This antibody, however, did not affect the response of lymphocytes to PHA or PPD and had no suppressive effect on PPD-MF. The antibody was not cytotoxic and its suppressive activity in the MLC response could not be absorbed out by lymphoid cells indicating that it is probably directed against a lymphocyte activation product (MLC-MF) rather than membrane antigens. The chemical and immunologic differences exhibited by PPD-MF and MLC-MF indicate that these two lymphokines are distinct molecular entities.  相似文献   

7.
Summary High levels of cytotoxic activity against the natural killer (NK) cell-sensitive target K562 and the NK-resistant target UCLA-SO-M14 (M14) can be generated in vitro either by mixed lymphocyte culture (MLC) or by culture of lymphocytes in interleukin 2 (IL2) (lymphokine activated killer (LAK) cells). The purpose of this study was to identify similarities and differences between MLC-LAK and IL2-LAK cells and allospecific cytotoxic T cells. Induction of cytotoxicity against K562 and M14 in both culture systems was inhibited by antibodies specific either for IL2 or the Tac IL2 receptor. Like NK effector cells, the precursors for the MLC-LAK cells were low density large lymphocytes. However these precursors differed from the large granular lymphocytes that mediated NK cytolysis in sensitivity to the toxic lysosomotropic agent L-leucine methyl ester (LME). The resistance of the MLC-LAK precursors to LME indicated that the precursors included large agranular lymphocytes. Although interferon-gamma (IFN-gamma) is produced in MLC and in IL2 containing cultures, it is not required for induction of either type of cytotoxic activity. Neutralization of IFN-gamma in MLC-and IL2-containing cultures with specific antibodies had no effect on the induction of cytotoxic activities. Both allospecific cytotoxic T lymphocyte (CTL) and LAK activities were enhanced by IL2 and IFN-gamma at the effector cell stage. However, the mechanism of cytolysis was different in the two systems. NK- and MLC-induced LAK activities were independent of CD3-T cell receptor complex while CTL activity was blocked by monoclonal antibodies specific for the CD3 antigen. These results suggest that NK and the in vitro induced LAK cytotoxicities are a family of related functions that differ from CTL. Furthermore, MLC-induced and IL2-induced cytotoxicities against K562 and M14 appear to be identical.This work was supported by NIH grant CA34442  相似文献   

8.
Rabbit antisera were obtained against cytotoxic small peritoneal lymphocytes (IPEL) of CBA (H-2k) mice immune to alloantigens C57BL/6 (H-2b) and to the enriched 5-day MLC cytotoxic blast lymphocytes (MLC--CL). After appropriate absorption by cells and tissues of intact mice the cytotoxicity of the sera was lost relative to normal lymphoid cells. The absorbed anti-CPL serum inhibited, in the presence of complement, the cytotoxic effect of CPL but not that of MLC--CL on 51Cr-labeled allogeneic macrophages. This inhibition was restricted by idiotypic and strain specificity. Conversely, the absorbed anti-MLC--CL serum inhibited the cytotoxic effect of both CPL and MLC--CL of various mouse strains, irrespective of their immunologic specificity. It is supposed that the effect of the anti-CPL serum is mainly caused by antibodies againts idiotypic determinants of the killer T receptors, whereas the effect of the anti-MLC--CL serum is due to antibodies against differentiation antigens of the proliferating lymphocytes.  相似文献   

9.
W Rella  H Winterleitner  W Knapp 《Blut》1979,39(1):17-25
The MLC-activating potential of 25 ALL blasts (16 "common" ALL, 6 T-ALL, 3 not identified) was investigated. Mitomycin-treated leukemic blasts or X-irradiated lymphocytes were cultured with heparinized whole blood from different healthy donors. MLC activation by blast cells was expressed as percentage of MLC activation by X-irradiated lymphocytes. Leukemic blasts showed a heterogeneous pattern of MLC activation, ranging from 2% to 245%. Eleven out of 25 cases of ALL poorly stimulated the MLC (2% to 33% response). Twelve ALL stimulated a normal response (50% to 120%); and 2/25 ALL stimulated a supranormal response (more than 200%). Four of six cases of T-ALL stimulated the MLC as efficiently as irradiated lymphocytes, 2/6 were among the poor stimulators. Most poor stimulator blasts had, however, normal MLC-activating properties if, instead of whole blood, isolated lymphocytes were used as the responding cells. The poor activation of lymphocytes by some leukemic blasts in whole blood appeared to be associated with impaired release of blastogenic factor(s) during the MLBC. No evidence for active suppressor mechanisms was found. The significance of the MLC-activating properties of leukemic blasts for the classification and immunotherapeutic use of ALL is discussed.  相似文献   

10.
L-ornithine was found to differentially affect the induction of allospecific cytotoxic T lymphocytes (CTL) and suppressor T cells (Ts). At a concentration of 10 mM, ornithine inhibited the development of CTL in a mixed-leukocyte culture (MLC). This same population of cells suppressed the generation of CTL when irradiated and cocultured with fresh syngeneic lymphocytes and alloantigen. Suppression was mediated by Lyt-1-2+ cells and was antigen specific. Suppression was abrogated when IL-2 (10 U/ml) was added to the cocultures, but could not be reversed by increasing the antigen dose. Ornithine was not toxic to CTL precursors but rather arrested their development. Cells from MLC plus ornithine developed CTL activity within 2 days of transfer to secondary cultures in the absence of ornithine. Development of CTL effector cells (CTLe) was augmented by but did not require exogenous IL-2. Generation of CTLe from the MLC plus ornithine population was radiation sensitive and could be inhibited by reexposure to ornithine, even in the presence of IL-2. Thus, Lyt-1-2+ T cells allostimulated in vitro in MLC plus ornithine and lacking CTL activity convey radiation-resistant, antigen-specific suppression.  相似文献   

11.
In this study the capacity of T cells and monocytes to induce cell-mediated lympholysis (CML) in primary and secondary MLC was investigated. The T lymphocytes were enriched by rosetting with sheep red blood cells (E) and further purified by sedimentation at unit gravity, which completely removed the contaminating monocytes. In addition, a highly purified monocyte population was obtained by 1 X G sedimentation of the non-E rosette-forming cells. These purified T cells have a poor CML-inducing capacity in primary and secondary MLC. In contrast, monocytes were very effective in inducing CML in both primary and secondary MLC. Induction of CML by monocytes in primary MLC was inhibited by heterologous anti-Ia-like antisera, indicating that the induction of CML by monocytes was related to the presence of HLA-DR (Ia-like) antigens on these cells.  相似文献   

12.
The purpose of the present study was to investigate the role and type of Ca2+ channels involved in the stimulatory effects of endothelin-1 (ET-1) on the Ca2+-dependent functional responses, p42/p44 MAP kinase phosphorylation, 20-kDa myosin light chain (MLC) phosphorylation and contraction, in rabbit iris sphincter, a nonvascular smooth muscle. ET-1 induced inositol phosphates production, MAP kinase phosphorylation, MLC phosphorylation (MLC20-P plus MLC20-2P) and contraction in a concentration-dependent manner with EC50 values of 71, 8, 6 and 25 nM, respectively. ET-1-induced MAP kinase phosphorylation, MLC phosphorylation and contraction were not significantly affected by nifedipine (1-60 microM), an L-type Ca2+ channel blocker, or by LOE 908 (1-100 microM), a blocker of Ca2+-permeable nonselective cation channels. However, SKF96365, a receptor-operated Ca2+ channel (ROCC) blocker, inhibited MAP kinase phosphorylation, MLC phosphorylation and contraction in a concentration-dependent manner with IC50 values of 28, 30 and 42 microM, respectively. 2-APB, a store-operated Ca2+ channel (SOCC) blocker, inhibited ET-1-induced MLC phosphorylation and contraction in a concentration-dependent manner with IC50 values of 12.7 and 19 microM, respectively, but was without effect on MAP kinase phosphorylation. The combined effects of submaximal concentrations of SKF96365 and 2-APB on ET-1-induced MLC phosphorylation and contraction were not additive, implying that their inhibitory actions could be mediated through a common Ca2+ entry channel. PD98059, a MAP kinase inhibitor, had no effect on ET-1-induced MLC phosphorylation and contraction, suggesting that these ET-1 effects in the rabbit iris muscle are MAP kinase-independent. In conclusion, the present study demonstrated for the first time that in rabbit iris sphincter (a) ET-1, through the ETA receptor, stimulates MAP kinase phosphorylation, MLC phosphorylation and contraction in a concentration-dependent manner, (b) that these Ca2+-dependent functional responses are not significantly affected by nifedipine or LOE908, and (c) that ET-1-induced MLC phosphorylation and contraction are inhibited by SKF96365 and 2-APB, suggesting that these effects are mainly due to store- and/or receptor Ca2+ entry.  相似文献   

13.
Effects of ryanodine in skinned cardiac cells   总被引:6,自引:0,他引:6  
Ryanodine (1 X 10(-5) M) did not affect the Ca2+ sensitivity of the myofilaments of skinned (sarcolemma removed by microdissection) cardiac cells from the rat ventricle. Ryanodine (1 X 10(-5) M) inhibited three types of Ca2+ release from the sarcoplasmic reticulum (SR), which have different mechanisms: 1) Ca2+-induced release of Ca2+ triggered by a rapid and transient increase of [free Ca2+] at the outer surface of the SR; 2) caffeine-induced release of Ca2+; 3) spontaneous cyclic release of Ca2+ occurring in the continuous presence of a [free Ca2+] sufficient to overload the SR. These results suggest that the three types of Ca2+ release are through the same channel across the SR membrane, although the gating mechanisms are different for the three types. Ryanodine also diminished the rate of Ca2+ accumulation into the SR. Even in the presence of 1 X 10(-5) M ryanodine the SR accumulated Ca2+ that could be released when the SR was sufficiently overloaded with Ca2+. Thus, ryanodine pretreatment did not permit the direct activation of the myofilaments by externally applied Ca2+. The approximately 1000-fold difference in the effective concentrations of ryanodine in intact vs. skinned cardiac cells suggests that low concentrations of ryanodine act in the intact cardiac tissues through processes or on structures that are destroyed by the skinning procedure. No significant differences were observed in the effects of ryanodine in skinned cardiac cells from different adult mammalian species.  相似文献   

14.
The production of interferon (IF) by human and mouse lymphocytes sensitized to alloantigens in mixed lymphocyte cultures (MLC) was analyzed. During primary MLC, IF appeared in the culture fluid on day 2 and was maximal on day 5. Based on several biologic criteria, the IF produced is of the "immune" type. When lymphocytes sensitized to alloantigens were reestimulated in vitro, IF was produced within a few hours of culture. In all stimulated cultures, cell proliferation was observed in spite of the high concentrations of IF. The IF-producing cells in human MLC were identified as T lymphocytes lacking the receptor for the Fc fragment of IgG molecules (Fc gamma R(-)). Human MLC supernatants containing immune type IF mediate the enhancement of natural killer (NK) cell activity and protect NK target cells from lysis.  相似文献   

15.
Sustained smooth-muscle contraction or its experimental counterpart, Ca2+ sensitization, by G(q/13)-coupled receptor agonists is mediated via RhoA-dependent inhibition of MLC (myosin light chain) phosphatase and MLC20 (20 kDa regulatory light chain of myosin II) phosphorylation by a Ca2+-independent MLCK (MLC kinase). The present study identified the corresponding pathways initiated by G(i)-coupled receptors. Somatostatin acting via G(i)1-coupled sstr3 receptor, DPDPE ([D-Pen2,D-Pen5]enkephalin; where Pen is penicillamine) acting via G(i)2-coupled delta-opioid receptors, and cyclopentyl adenosine acting via G(i)3-coupled adenosine A1 receptors preferentially activated PI3K (phosphoinositide 3-kinase) and ILK (integrin-linked kinase), whereas ACh (acetylcholine) acting via G(i)3-coupled M2 receptors preferentially activated PI3K, Cdc42 (cell division cycle 42)/Rac1, PAK1 (p21-activated kinase 1) and p38 MAPK (mitogen-activated protein kinase). Only agonists that activated ILK induced sustained CPI-17 (protein kinase C potentiated inhibitor 17 kDa protein) phosphorylation at Thr38, MLC20 phosphorylation at Ser19, and contraction, consistent with recent evidence that ILK can act as a Ca2+-independent MLCK capable of phosphorylating the MLC phosphatase inhibitor, CPI-17, at Thr38. ILK activity, and CPI-17 and MLC20 phosphorylation were inhibited by LY294002 and in muscle cells expressing ILK(R211A) or treated with siRNA (small interfering RNA) for ILK. ACh acting via M2 receptors activated ILK, and induced CPI-17 and MLC20 phosphorylation and muscle contraction, but only after inhibition of p38 MAPK; all these responses were inhibited in cells expressing ILK(R211A). Conversely, ACh activated PAK1, a step upstream of p38 MAPK, whereas the three other agonists did so only in cells transfected with ILK(R211A) or siRNA for ILK. The results demonstrate reciprocal inhibition between two pathways downstream of PI3K, with ILK inhibiting PAK1, and p38 MAPK inhibiting ILK. Sustained contraction via G(i)-coupled receptors is dependent on CPI-17 and MLC20 phosphorylation by ILK.  相似文献   

16.
Calmodulin was purified from human tonsillar lymphocytes utilizing calcium-dependent binding of calmodulin to fluphenazine-Sepharose. The molecular weight and phosphodiesterase activation of the lymphocyte calmodulin were very similar to those of purified bovine brain calmodulin. Trifluoperazine (TFP), a calmodulin inhibitor, suppressed lymphocyte stimulation as assessed by 3H-thymidine incorporation into DNA of lectin-stimulated lymphocytes. TFP had no effect on the early 45Ca2+ uptake induced by mitogenic lectins, although this latter was inhibited by verapamil which also suppressed the 3H-thymidine incorporation. The results are in keeping with the interpretation that the inhibition of T cell stimulation by TFP was not due to suppression of Ca2+ uptake, but due to inactivation of Ca(2+)-calmodulin complex which might be formed subsequent to Ca2+ entry into the cell.  相似文献   

17.
The signaling cascades initiated by motilin receptors in gastric and intestinal smooth muscle cells were characterized. Motilin bound with high affinity (IC(50) 0.7 +/- 0.2 nM) to receptors on smooth muscle cells; the receptors were rapidly internalized via G protein-coupled receptor kinase 2 (GRK2). Motilin selectively activated G(q) and G(13), stimulated G alpha(q)-dependent phosphoinositide (PI) hydrolysis and 1,4,5-trisphosphate (IP(3))-dependent Ca(2+) release, and increased cytosolic free Ca(2+). PI hydrolysis was blocked by expression of G alpha(q) minigene and augmented by overexpression of dominant negative RGS4(N88S) or GRK2(K220R). Motilin induced a biphasic, concentration-dependent contraction (EC(50) = 1.0 +/- 0.2 nM), consisting of an initial peak followed by a sustained contraction. The initial Ca(2+)-dependent contraction and myosin light-chain (MLC)(20) phosphorylation were inhibited by the PLC inhibitor U-73122 and the MLC kinase inhibitor ML-9 but were not affected by the Rho kinase inhibitor Y27632 or the PKC inhibitor bisindolylmaleimide. Sustained contraction and MLC(20) phosphorylation were RhoA dependent and mediated by two downstream messengers: PKC and Rho kinase. The latter was partly inhibited by expression of G alpha(q) or G alpha(13) minigene and abolished by coexpression of both minigenes. Sustained contraction and MLC(20) phosphorylation were partly inhibited by Y27632 and bisindolylmaleimide and abolished by a combination of both inhibitors. The inhibition reflected phosphorylation of two MLC phosphatase inhibitors: CPI-17 via PKC and MYPT1 via Rho kinase. We conclude that motilin initiates a G alpha(q)-mediated cascade involving Ca(2+)/calmodulin activation of MLC kinase and transient MLC(20) phosphorylation and contraction as well as a sustained G alpha(q)- and G alpha(13)-mediated, RhoA-dependent cascade involving phosphorylation of CPI-17 by PKC and MYPT1 by Rho kinase, leading to inhibition of MLC phosphatase and sustained MLC(20) phosphorylation and contraction.  相似文献   

18.
Mechanisms of Ca2+ sensitization of both myosin light chain (MLC) phosphorylation and force development by protein kinase C (PKC) were studied in permeabilized tonic smooth muscle obtained from the rabbit femoral artery. For comparison, the Ca2+ sensitizing effect of guanosine 5'-O-(gamma-thiotriphosphate) (GTP gamma S) was examined, which had been previously shown to inhibit MLC phosphatase in phasic vascular smooth muscle. We now report that PKC activators (phorbol esters, short chain synthetic diacylglycerols and a diacylglycerol kinase inhibitor) and GTP gamma S significantly increase both MLC phosphorylation and force development at constant [Ca2+]. Major phosphorylation site occurring in the presence of phorbol-12,13- dibutyrate (PDBu) or GTP gamma S at constant [Ca2+] is the same serine residue (Ser-19) as that phosphorylated by MLC kinase in response to increased Ca2+ concentrations. In an ATP- and Ca(2+)-free solution containing 1-(5-chloronaphthalene-1-sulfonyl)-1H-hexahydro-1,4- diazepine (ML-9), to avoid the kinase activity, both PDBu and GTP gamma S significantly decreased the rate of MLC dephosphorylation to half its control value. However, PDBu inhibited the relaxation rate more than did GTP gamma S. In the presence of microcystin-LR to inhibit the phosphatase activity, neither PDBu nor GTP gamma S affected MLC phosphorylation and force development. These results indicate that PKC, like activation of GTP binding protein, increases Ca2+ sensitivity of both MLC phosphorylation and force production through inhibition of MLC phosphatase.  相似文献   

19.
We have explored the role of calmodulin in plasma membrane-related phenomena in lymphocyte activation by measurement of [125I]calmodulin binding to highly purified plasma membrane of human peripheral blood lymphocytes. Calcium-dependent calmodulin binding to lymphocyte membrane was found to reach equilibrium within 5 min of incubation at 37 degrees C and to be saturable and specific. A single class of high affinity-binding sites was identified, with a dissociation constant (Kd) of 1 to 3 X 10(-8) M and a total binding capacity (Bt) of 1 to 2 pmol/mg membrane protein. The free calcium concentration necessary for half-maximal binding was 100 to 300 nM. This was strikingly similar to the cytoplasmic-free calcium activity [Ca2+]i measured by the Quin-2 fluorescence technique, particularly after stimulation with phytomitogens. Calmodulin binding was inhibitable by trifluoperazine (TFP), W-7, and chloropramazine, all of which are calmodulin antagonists. The concentration of TFP that caused 50% inhibition of lymphocyte proliferative responses to phytomitogens was found to be identical to the concentration of TFP which causes 50% inhibition of calmodulin binding to lymphocyte plasma membrane. SDS-polyacrylamide gel electrophoresis followed by gel overlay and autoradiography with iodinated calmodulin revealed five calcium-dependent, TFP-inhibitable, calmodulin-binding polypeptides.  相似文献   

20.
The in vitro effect of prednisolone (PRD) on NK and ADCC activities of human lymphocytes was investigated. PRD at concentrations ranging from 7.5 X 10(-3) to 1 X 10(-5) M significantly inhibited NK activity, while concentrations of 7.5 X 10(-3) to 1 X 10(-4) M inhibited ADCC activities of PBL when added directly to the mixture of effector and target cells. Lymphocytes pre-cultured for 24 hr with PRD at concentrations ranging from 1 X 10(-4) M to 1 X 10(-6) M showed significant suppression of their NK activity. Inhibition was proportional to the concentration of the drug, and was observed at as early as 1 hr of incubation at various effector to target cell ratios with several targets. PRD also inhibited NK and ADCC activities of purified T cells, non-T cells, and NK-enriched effector cells. In target-binding assays, PRD decreased the target-binding capacity of effector lymphocytes in a dose-dependent manner. PRD-induced inhibition could be reversed by incubating lymphocytes for 1 hr with interferon or IL 2. Pretreatment of targets with PRD for 4 hr did not affect cytotoxic activity. Inhibition of cytotoxicity was not due to direct toxicity to effector cells because lymphocytes treated with PRD showed normal spontaneous 51Cr release, and their viability after 24 hr of pre-culture with PRD was comparable to that of untreated control cells. These results demonstrate that PRD has significant immunomodulatory effects on human NK and ADCC activities that may be of clinical relevance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号