首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 588 毫秒
1.
A simple and highly sensitive method is described for the HPLC determination of 4-nonylphenol (NP), 4-nonylphenol mono- (NP1EO) and diethoxylates (NP2EO) in fish and shellfish together with bisphenol A (BPA), 4-tert.-butylphenol (BP) and 4-tert.-octylphenol (OP). The NP, NP1EO, NP2EO and other alkylphenols in the samples are extracted with acetonitrile and the lipid in the sample extract is eliminated by partitioning between hexane and acetonitrile. After Florisil PR clean-up the sample extract is analyzed by HPLC with a fluorescence detection. Recoveries in Japanese smelt, carp and corbicura are 81.8–84.3% for NP, 83.5–84.3% for NP1EO, 90.5–96.2% for NP2EO, 70.7–72.9% for BPA, 71.0–73.4% for BP and 77.1–83.2% for OP spiked at 0.5 μg each chemical per 5 g of the fish and shellfish samples. The detection limits are 2 ng/g for NP, NP1EO and NP2EO, and 1ng/g for BPA, BP and OP.  相似文献   

2.
A system of an automatic sample preparation procedure followed by on-line injection of the sample extract into a gas chromatograph-mass spectrometer (GC–MS) was developed for the simultaneous analysis of seven barbiturates in human serum. A sample clean-up was performed by a solid-phase extraction (SPE) on a C18 disposable cartridge. A SPE cartridge was preconditioned with methanol and 0.1 M phosphate buffer. After loading 1.5 ml of a diluted serum sample into the SPE cartridge, the cartridge was washed with 2.5 ml of methanol–water (1:9, v/v). Barbiturates were eluted with 1.0 ml of chloroform–isopropanol (3:1, v/v) from the cartridge. The eluate (1 μl) was injected into the GC–MS. The calibration curves, using an internal standard method, demonstrated a good linearity throughout the concentration range from 0.1 to 10 μg ml−1 for all barbiturates extracted. The proposed method was applied to 27 clinical serum samples from three patients who were administrated secobarbital.  相似文献   

3.
This study investigated the feasibility of applying solid-phase microextraction (SPME) combined with gas chromatography–mass spectrometry to analyze chlorophenols in urine. The SPME experimental procedures to extract chlorophenols in urine were optimized with a polar polyacrylate coated fiber at pH 1, extraction time for 50 min and desorption in GC injector at 290°C for 2 min. The linearity was obtained with a precision below 10% R.S.D. for the studied chlorophenols in a wide range from 0.1 to 100 μg/l. In addition, sample extraction by SPME was used to estimate the detection limits of chlorophenols in urine, with selected ion monitoring of GC–MS operated in the electron impact mode and negative chemical ionization mode. Detection limits were obtained at the low ng/l levels. The application of the methods to the determination of chlorophenols in real samples was tested by analyzing urine samples of sawmill workers. The chlorophenols were found in workers, the urinary concentration ranging from 0.02 μg/l (PCP) to 1.56 μg/l (2,4-DCP) depending on chlorophenols. The results show that trace chlorophenols have been detected with SPME–GC–MS in the workers of sawmill where chlorophenol-containing anti-stain agents had been previously used.  相似文献   

4.
An analytical procedure to screen butorphanol in horse race urine using ELISA kits and its confirmation by GC–MS is described. Urine samples (5 ml) were subjected to enzymatic hydrolysis and extracted by solid-phase extraction. The residues were then evaporated, derivatized and injected into the GC–MS system. The ELISA test (20 μl of sample) was able to detect butorphanol up to 104 h after the intramuscular administration of 8 mg of Torbugesic, and the GC–MS method detected the drug up to 24 h in FULL SCAN or 31 h in the SIM mode. Validation of the GC–MS method in the SIM mode using nalbuphine as internal standard included linearity studies (10–250 ng/ml), recovery (±100%), intra-assay (4.1–14.9%) and inter-assay (9.3–45.1%) precision, stability (10 days), limit of detection (10 ng/ml) and limit of quantitation (20 ng/ml).  相似文献   

5.
A sample preparation method for mass chromatographic detection of doping drugs from horse plasma is described. Bond Elut Certify (1 g/6 ml) is used for the extraction of 4 ml of horse plasma. Fractionation is performed with 6 ml of CHCl3–Me2CO (8:2) and 5 ml of 1% TEA–MeOH according to its property. Simple and effective clean-up based on non-aqueous partitioning is adopted to remove co-eluted contaminants in both acid and basic fractions. Two kinds of 1-(N,N-diisopropylamino)-n-alkanes are co-injected with the sample into the GC–MS system for the calculation of the retention index. Total recoveries of 107 drugs are examined. Some data of post administration plasma are presented. This procedure achieves sufficient recoveries and clean extracts for GC–MS analysis. The method is able to detect ng/ml drug levels in horse plasma.  相似文献   

6.
Certain naturally occurring isoflavonoids have been shown to inhibit protein-tyrosine kinases, and this has led to investigations of ring-modified structural analogs. Most recently, 2-(3-methyl-4-aminophenyl)-benzothiazole (MAB: NSC 674495) was shown to possess significant activity against certain breast cell cancer lines in vitro and in vivo. Our efforts thus focussed on developing a simple and sensitive method for quantitating MAB in plasma using GC–MS. The GC–MS assay was found to be linear over the range of 0.050 to 5.0 μg/ml, and was applied to monitor the plasma concentration of MAB in a rat dosed with 25 mg/kg as a 1 min intravenous infusion. Plasma was collected at intervals from 3 through 180 min, and concentrations of MAB were determined. Non-linear regression analysis of the plasma concentration-time data revealed that levels declined from a maximum at 3 min of 18 μg/ml to 1 μg/ml at 3 h in a biphasic manner. In another investigation, significant plasma concentrations of a major metabolite was detected and determined to be mono-N-acetylated MAB.  相似文献   

7.
A simple method for analysis of five local anaesthetics in blood was developed using headspace solid-phase microextraction (HS-SPME) and gas chromatography–mass spectrometry–electron impact ionization selected ion monitoring (GC–MS–EI-SIM). Deuterated lidocaine (d10-lidocaine) was synthesized and used as a desirable internal standard (I.S.). A vial containing a blood sample, 5 M sodium hydroxide and d10-lidocaine (I.S.) was heated at 120°C. The extraction fiber of the SPME system was exposed for 45 min in the headspace of the vial. The compounds adsorbed on the fiber were desorbed by exposing the fiber in the injection port of a GC–MS system. The calibration curves showed linearity in the range of 0.1–20 μg/g for lidocaine and mepivacaine, 0.5–20 μg/g for bupivacaine and 1–20 μg/g for prilocaine in blood. No interfering substances were found, and the time for analysis was 65 min for one sample. In addition, this proposed method was applied to a medico–legal case where the cause of death was suspected to be acute local anaesthetics poisoning. Mepivacaine was detected in the left and right heart blood samples of the victim at concentrations of 18.6 and 15.8 μg/g, respectively.  相似文献   

8.
A chromatographic method was developed to detect and confirm the presence of chlorpropamide (I) in horse plasma samples, for antidoping control. The plasma sample (1 ml) was extracted with dichloromethane and screened by high-performance liquid chromatography, and confirmation of the drug's presence was accomplished by using gas chromatography–mass spectrometry (GC–MS). The limit of detection was found to be 3.5 ng/ml at a signal-to-noise ratio of three. Derivatization of I with N,O-bis-(trimethylsilyl)trifluoroacetamide with 1% trimethylchlorosilane allowed for highly stable, accurate and sensitive GC–MS analysis. Plasma samples collected after the administration of diabinese were positive for I (one–five days) in all samples analysed.  相似文献   

9.
A simple, highly selective and reproducible reversed-phase high-performance liquid chromatography method has been developed for the analysis of the new anti-cancer pro-drug AQ4N. The sample pre-treatment involves a simple protein precipitation protocol, using methanol. Chromatographic separations were performed using a HiChrom HIRPB (25 cm×4.6 mm I.D.) column, with mobile phase of acetonitrile–ammonium formate buffer (0.05 M) (22:78, v/v), with final pH adjusted to 3.6 with formic acid. The flow-rate was maintained at 1.2 ml min−1. Detection was via photodiode array performed in the UV range at 242 nm and, since the compounds are an intense blue colour, in the visible range at 612 nm. The structurally related compound mitoxantrone was used as internal standard. The validated quantification range of the method was 0.05–10.0 μg ml−1 in mouse plasma. The inter-day relative standard deviations (RSDs) (n=5) ranged from 18.4% and 12.1% at 0.05 μg ml−1 to 2.9% and 3.3% at 10.0 μg ml−1 for AQ4N and AQ4, respectively. The intra-day RSDs for supplemented mouse plasma (n=6) ranged from 8.2% and 14.2% at 0.05 μg ml−1 to 7.6% and 11.5% at 10.0 μg ml−1 for AQ4N and AQ4, respectively. The overall recovery of the procedure for AQ4N was 89.4±1.77% and 76.1±7.26% for AQ4. The limit of detection was 50 ng ml−1 with a 100 μl sample volume. The method described provides a suitable technique for the future analysis of low levels of AQ4N and AQ4 in clinical samples.  相似文献   

10.
Methods for the determination of 3,4-dichloroaniline (3,4-DCA) and 3,5-dichloroaniline (3,5-DCA) as common markers of eight non-persistent pesticides in human urine are presented. 3,5-DCA is a marker for the exposure to the fungicides vinclozolin, procymidone, iprodione, and chlozolinate. Furthermore the herbicides diuron, linuron, neburon, and propanil are covered using their common marker 3,4-DCA. The urine samples were treated by basic hydrolysis to degrade all pesticides, metabolites, and their conjugates containing the intact moieties completely to the corresponding dichloroanilines. After addition of the internal standard 4-chloro-2-methylaniline, simultaneous steam distillation extraction (SDE) followed by liquid–liquid extraction (LLE) was carried out to produce, concentrate and purify the dichloroaniline moieties. Gas chromatography (GC) with mass spectrometric (MS) and tandem mass spectrometric (MS–MS) detection and also detection with an electron-capture detector (ECD) after derivatisation with heptafluorobutyric anhydride (HFBA) were employed for separation, detection, and identification. Limit of detection of the GC–MS–MS and the GC–ECD methods was 0.03 and 0.05 μg/l, respectively. Absolute recoveries obtained from a urine sample spiked with the internal standard, 3,5-, and 3,4-DCA, ranged from 93 to 103% with 9–18% coefficient of variation. The three detection techniques were compared concerning their performance, expenditure and suitability for their application in human biomonitoring studies. The described procedure has been successfully applied for the determination of 3,4- and 3,5-DCA in the urine of non-occupationally exposed volunteers. The 3,4-DCA levels in these urine samples ranged between 0.13 and 0.34 μg/g creatinine or 0.11 and 0.56 μg/l, while those for 3,5-DCA were between 0.39 and 3.33 μg/g creatinine or 0.17 and 1.17 μg/l.  相似文献   

11.
Optimization for headspace solid-phase microextraction (SPME) was studied with a view to performing gas chromatographic–mass spectrometric (GC–MS) screening of volatile hydrocarbons (VHCs) in blood. Twenty hydrocarbons comprising aliphatic hydrocarbons ranging from n-hexane to n-tridecane, and aromatic hydrocarbons ranging from benzene to trimethylbenzenes were used in this study. This method can be used for examining a burned body to ascertain whether the victim had been alive or not when the burning incident took place. n-Hexane, n-heptane and benzene, the main indicators of gasoline components, were found as detectable peaks through the use of cryogenic oven trapping upon SPME injection into a GC–MS instrument. The optimal screening procedure was performed as follows. The analytes in the headspace of 0.2 g of blood mixed with 0.8 ml of water plus 0.2 μg of toluene-d8 at −5°C were adsorbed to a 100-μm polydimethylsiloxane (PDMS) fiber for 30 min, and measured using the full-mass-scanning GC–MS method. The lower detection limits of all the compounds were 0.01 μg per 1 g of blood. Linearities (r2) within the range 0.01 to 4 μg per 1 g of blood were only obtained for the aromatic hydrocarbons at between 0.9638 (pseudocumene) and 0.9994 (toluene), but not for aliphatic hydrocarbons at between 0.9392 (n-tridecane) and 0.9935 (n-hexane). The coefficients of variation at 0.2 μg/g were less than 8.6% (n-undecane). In conclusion, this method is feasible for the screening of volatile hydrocarbons from blood in forensic medicine.  相似文献   

12.
A selective gas–liquid chromatographic method with mass spectrometry (GC–MS) for the simultaneous confirmation and quantification of ephedrine, pseudo-ephedrine, nor-ephedrine, nor-pseudoephedrine, which are pairs of diastereoisomeric sympathomimetic amines, and methyl-ephedrine was developed for doping control analysis in urine samples. O-Trimethylsilylated and N-mono-trifluoroacetylated derivatives of ephedrines — one derivative was formed for each ephedrine — were prepared and analyzed by GC–MS, after alkaline extraction of urine and evaporation of the organic phase, using d3-ephedrine as internal standard. Calibration curves, with r2>0.98, ranged from 3.0 to 50 μg/ml depending on the analyte. Validation data (specificity, % RSD, accuracy, and recovery) are also presented.  相似文献   

13.
High-temperature headspace solid-phase microextraction (SPME) with simultaneous (“in situ”) derivatisation (acetylation or silylation) is a new sample preparation technique for the screening of illicit drugs in urine and for the confirmation analysis in serum by GC–MS. After extraction of urine with a small portion of an organic solvent mixture (e.g., 2 ml of hexane–ethyl acetate) at pH 9, the organic layer is separated and evaporated to dryness in a small headspace vial. A SPME-fiber (e.g., polyacrylate) doped with acetic anhydride–pyridine (for acetylation) is exposed to the vapour phase for 10 min at 200°C in a blockheater. The SPME fiber is then injected into the GC–MS for thermal desorption and analysis. After addition of perchloric acid and extraction with n-hexane to remove lipids, the serum can be analysed after adjusting to pH 9 as described for urine. Very clean extracts are obtained. The various drugs investigated could be detected and identified in urine by the total ion current technique at the following concentrations: amphetamines (200 μg/l), barbiturates (500 μg/l), benzodiazepines (100 μg/l), benzoylecgonine (150 μg/l), methadone (100 μg/l) and opiates (200 μg/l). In serum all drugs could be detected by the selected ion monitoring technique within their therapeutic range. As compared to liquid–liquid extraction only small amounts of organic solvent are needed and larger amounts of the pertinent analytes could be transferred to the GC column. In contrast to solid-phase extraction (SPE), the SPME-fiber is reusable several times (as there is no contamination by endogenous compounds). The method is time-saving and can be mechanised by the use of a dedicated autosampler.  相似文献   

14.
Headspace solid-phase microextraction (HS-SPME) was utilized for the determination of three dichlorobenzene isomers (DCBs) in human blood. In the headspace at 30°C, DCBs were absorbed for 15 min by a 100-μm polydimethylsiloxane (PDMS) fiber. They were then analyzed by capillary column gas chromatography–mass spectrometry (GC–MS). By setting the initial column oven temperature at 20°C, the three isomers were resolved at the baseline level. p-Xylene-d10 was used as the internal standard (I.S.). For quantitation, the molecular ion at m/z 146 for each isomer and the molecular ion at m/z 116 for I.S. were selected. For day-to-day precision, relative standard deviations in the range 3.2–10.7% were found at blood concentrations of 1.0 and 10 μg/ml. Each compound was detectable at a level of at least 0.02 μg per 1 g of whole blood (by full mass scanning). HS-SPME–GC–MS, when performed at relatively low temperatures, was found to be feasible in toxicological laboratories. Using this method, the plasma levels of one patient who had drunk a pesticide-like material were measured.  相似文献   

15.
A gas chromatographic–mass spectrometric method was developed for the quantitative analysis of the three Di(2-ethylhexyl)phthalate (DEHP) metabolites, 2-ethylhexanoic acid, 2-ethyl-3-hydroxyhexanoic acid and 2-ethyl-3-oxohexanoic acid in urine. After oximation with O-(2,3,4,5,6-pentafluorobenzyl)-hydroxylamine hydrochloride and sample clean-up with Chromosorb P filled glass tubes, all three organic acids were converted to their tert.-butyldimethylsilyl derivatives. Quantitation was done with trans-cinnamic acid as internal standard and GC–MS analysis in the selected ion monitoring mode (SIM). Calibration curves for all three acids in the range from 20 to 1000 μg/l showed correlation coefficients from 0.9972 to 0.9986. The relative standard deviation (RSD) values determined in the observed concentration range were between 1.3 and 8.9% for all three acids. Here we report for the first time the identification of 2-ethyl-3-hydroxyhexanoic acid and 2-ethyl-3-oxohexanoic acid in human urine next to the known DEHP metabolite 2-ethylhexanoic acid. In 28 urine samples from healthy persons we found all three acids with mean concentrations of 56.1±13.5 μg/l for 2-ethylhexanoic acid, 104.8± 80.6 μg/l for 2-ethyl-3-hydroxyhexanoic acid and 482.2± 389.5 μg/l for 2-ethyl-3-oxohexanoic acid.  相似文献   

16.
Determination of four toxic Aconitum alkaloids, aconitine, mesaconitine, hypaconitine and jesaconitine, in blood and urine samples has been established using high-performance liquid chromatography (HPLC) combined with ultraviolet absorbance detection, solid-phase extraction and mass spectrometry (MS). These alkaloids were hydrolyzed rapidly in alkaline solution (half lives (t1/2)<one day), were stable in solutions of acetonitrile, tetrahydrofuran and diluted hydrochloric acid (t1/2>five months) and were unstable in solutions of methanol and ethanol (t1/2<one month). These alkaloids were separated on an octadecylsilica column with isocratic elution using a solvent mixture of tetrahydrofuran and 0.2% trifluoroacetic acid (14:86, v/v), which was found to be the optimal solvent of the elution systems examined. Calibration curves with UV detection were linear on injection of amounts ranging from 2.5 to 500 ng, and the limit of detection was 1 ng (S/N = 3). These four alkaloids in aqueous solution were recovered almost totally by solid-phase extraction using the styrene polymer resin, Sep-Pak Plus PS-1, and were eluted using a mixture of acetonitrile and hydrochloric acid. These Aconitum alkaloids were confirmed by HPLC coupled with fast atom bombardment MS, giving their protonated molecular ions as base peaks. These alkaloids were detected by HPLC with UV detection from blood samples spiked with more than 50 ng ml−1 of alkaloids, but were not detectable from urine samples spiked with 5 μg ml−1 of alkaloids because of severe sample interference.  相似文献   

17.
Semi-automated 96-well plate solid-phase extraction (SPE) was used for sample preparation of fluprostenol, a prostaglandin analog, in rat plasma prior to detection by gas chromatography–negative chemical ionization tandem mass spectrometry (GC–NCI-MS–MS). A liquid handling system was utilized for all aspects of sample handling prior to SPE including transferring of samples into a 96-well format, preparation of standards as well as addition of internal standard to standards, quality control samples and study samples. SPE was performed in a 96-well plate format using octadecylsilane packing and the effluent from the SPE was dried in a custom-made 96-well apparatus. The sample residue was derivatized sequentially with pentafluorobenzylbromide followed by N-methyl-N-trimethylsilyltrifluoroacetamide. The derivatized sample was then analyzed using GC–NCI-MS–MS. The dynamic range for the method was from 7 to 5800 pg/ml with a 0.1-ml plasma sample. The methodology was evaluated over a 4-day period and demonstrated an accuracy of 90–106% with a precision of 2.4–12.9%.  相似文献   

18.
We extended the application of a sensitive high-performance liquid chromatography assay of amoxicillin developed in this laboratory for human plasma and middle ear fluid (MEF) to other sample matrices including chinchilla plasma or MEF and human and chinchilla whole blood with minor modification and validated the limit of quantitation at 0.25 μg/ml with a 50-μl sample size for human and chinchilla plasmas or MEFs. Amoxicillin and cefadroxil, the internal standard, were extracted from 50 μl of the samples with Bond Elut C18 cartridges. The extract was analyzed on a Keystone MOS Hypersil-1 (C8) column with UV detection at 210 nm. The mobile phase was 6% acetonitrile in 5 mM phosphate buffer, pH 6.5 and 5 mM tetrabutylammonium. The within-day coefficients of variation were 2.7–9.9 (n=4) and 1.7–7.2% (n=3) for chinchilla plasma and MEF samples, respectively; 2.8–8.1% (n=3) and 2.9–4.7% (n=3) for human and chinchilla whole blood, respectively. An alternative mobile phase composition for chinchilla plasma and MEF samples reduced the analysis time significantly.  相似文献   

19.
The present study describes the simultaneous determination of seven different kinds of local anesthetics and one metabolite by GC–MS with solid-state extraction: Mepivacaine, propitocaine, lidocaine, procaine (an ester-type local anesthetics), cocaine, tetracaine (an ester-type local anesthetics), dibucaine (Dib) and monoethylglycinexylidide (a metabolite of lidocaine) were clearly separated from each other and simultaneously determined by GC–MS using a DB-1 open tubular column. Their recoveries ranged from 73–95% at the target concentrations of 1.00, 10.0 and 100 μg/ml in plasma, urine and water. Coefficients of variation of the recoveries ranged from 2.3–13.1% at these concentrations. The quantitation limits of the method were approximately 100 ng/ml for monoethylglycinexylidide, propitocaine, procaine, cocaine, tetracaine and dibucaine, and 50 ng/ml for lidocaine and mepivacaine. This method was applied to specimens of patients who had been treated with drip infusion of lidocaine, and revealed that simultaneous determination of lidocaine and monoethylglycinexylidide in the blood and urine was possible.  相似文献   

20.
A GC–MS method, using deuterium-labelled 19-noretiocholanolone as internal standard and following an extensive LC purification prior to selected ion monitoring of the bis(trimethylsilyl) ethers at ion masses m/z 405, 419, 420 and 421, allowed the quantitation of subnanogram amounts of 19-norandrosterone present in 10-ml urine samples at m/z 405. Thirty healthy men, free of anabolic androgen supply, delivered 24-h urine collections in 4 timed fractions. Accuracy was proven by the equation, relating added (0.05–1 ng/ml) to measured analyte, which had a slope not significantly different from 1. Precision (RSD) was 4% at a concentration of 0.4 ng/ml, and 14% at 0.04 ng/ml. Analytical recovery was 82%. The limit of quantitation was 0.02 ng/ml. The excretion ranges were 0.03–0.25 μg/24 h or 0.01–0.32 ng/ml in nonfractionated 24-h urine.Taking into account inter-individual variability and log-normal distribution, a threshold of 19-norandrosterone endogenous concentration of 2 ng/ml, calculated as the geometric mean plus 4 SD, was established. This value corresponds to the decision limit advised by sport authorities for declaring positive (anabolic) doping with nandrolone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号