首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The low density lipoprotein receptor-related protein (LRP) functions in the catabolism of numerous ligands including proteinases, proteinase inhibitor complexes, and lipoproteins. In the current study we provide evidence indicating an expanded role for LRP in modulating cellular signaling events. Our results show that platelet-derived growth factor (PDGF) BB induces a transient tyrosine phosphorylation of the LRP cytoplasmic domain in a process dependent on PDGF receptor activation and c-Src family kinase activity. Other growth factors, including basic fibroblast growth factor, epidermal growth factor, insulin-like growth factor-1, were unable to mediate tyrosine phosphorylation of LRP. The basis for this selectivity may result from the ability of LRP to bind PDGFBB, because surface plasmon resonance experiments demonstrated that only PDGF, and not basic fibroblast growth factor, epidermal growth factor, or insulin-like growth factor-1, bound to purified LRP immobilized on a sensor chip. The use of LRP mini-receptor mutants as well as in vitro phosphorylation studies demonstrated that the tyrosine located within the second NPXY motif found in the LRP cytoplasmic domain is the primary site of tyrosine phosphorylation by Src and Src family kinases. Co-immunoprecipitation experiments revealed that PDGF-mediated tyrosine phosphorylation of LRPs cytoplasmic domain results in increased association of the adaptor protein Shc with LRP and that Shc recognizes the second NPXY motif within LRPs cytoplasmic domain. In the accompanying paper, Boucher et al. (Boucher, P., Liu, P. V., Gotthardt, M., Hiesberger, T., Anderson, R. G. W., and Herz, J. (2002) J. Biol. Chem. 275, 15507-15513) reveal that LRP is found in caveolae along with the PDGF receptor. Together, these studies suggest that LRP functions as a co-receptor that modulates signal transduction pathways initiated by the PDGF receptor.  相似文献   

2.
Activation of the platelet-derived growth factor receptor-beta (PDGFR-beta) leads to tyrosine phosphorylation of the cytoplasmic domain of LRP and alters its association with adaptor and signaling proteins, such as Shc. The mechanism of the PDGF-induced LRP tyrosine phosphorylation is not well understood, especially since PDGF not only activates PDGF receptor but also binds directly to LRP. To gain insight into this mechanism, we used a chimeric receptor in which the ligand binding domain of the PDGFR-beta was replaced with that from the macrophage colony-stimulating factor (M-CSF) receptor, a highly related receptor tyrosine kinase of the same subfamily, but with different ligand specificity. Activation of the chimeric receptor upon the addition of M-CSF readily mediated the tyrosine phosphorylation of LRP. Since M-CSF is not recognized by LRP, these results indicated that growth factor binding to LRP is not necessary for this phosphorylation event. Using a panel of cytoplasmic domain mutants of the chimeric M-CSF/PDGFR-beta, we confirmed that the kinase domain of PDGFR-beta is absolutely required for LRP tyrosine phosphorylation but that PDGFR-beta-mediated activation of phosphatidylinositol 3-kinase, RasGAP, SHP-2, phospholipase C-gamma, and Src are not necessary for LRP tyrosine phosphorylation. To identify the cellular compartment where LRP and the PDGFR-beta may interact, we employed immunofluorescence and immunogold electron microscopy. In WI-38 fibroblasts, these two receptors co-localized in coated pits and endosomal compartments following PDGF stimulation. Further, phosphorylated forms of the PDGFR-beta co-immunoprecipitated with LRP following PDGF treatment. Together, these studies revealed close association between activated PDGFR-beta and LRP, suggesting that LRP functions as a co-receptor capable of modulating the signal transduction pathways initiated by the PDGF receptor from endosomes.  相似文献   

3.
Low‐density lipoprotein receptor‐related proteins 5 and 6 (LRP5/6) function as transmembrane receptors to transduce Wnt signals. A key mechanism for signalling is Wnt‐induced serine/threonine phosphorylation at conserved PPPSPxS motifs in the LRP6 cytoplasmic domain, which promotes pathway activation. Conserved tyrosine residues are positioned close to all PPPSPxS motifs, which suggests they have a functional significance. Using a cell culture‐based cDNA expression screen, we identified the non‐receptor tyrosine kinases Src and Fer as novel LRP6 modifiers. Both Src and Fer associate with LRP6 and phosphorylate LRP6 directly. In contrast to the known PPPSPxS Ser/Thr kinases, tyrosine phosphorylation by Src and Fer negatively regulates LRP6‐Wnt signalling. Epistatically, they function upstream of β‐catenin to inhibit signalling and in agreement with a negative role in regulating LRP6, MEF cells lacking these kinases show enhanced Wnt signalling. Wnt3a treatment of cells enhances tyrosine phosphorylation of endogenous LRP6 and, mechanistically, Src reduces cell surface LRP6 levels and disrupts LRP6 signalosome formation. Interestingly, CK1γ inhibits Fer‐induced LRP6 phosphorylation, suggesting a mechanism whereby CK1γ acts to de‐represses inhibitory LRP6 tyrosine phosphorylation. We propose that LRP6 tyrosine phosphorylation by Src and Fer serves a negative regulatory function to prevent over‐activation of Wnt signalling at the level of the Wnt receptor, LRP6.  相似文献   

4.
Ligand induced activation of the beta-receptor for platelet-derived growth factor (PDGF) leads to activation of Src family tyrosine kinases. We have explored the possibility that the receptor itself is a substrate for Src. We show that Tyr934 in the kinase domain of the PDGF receptor is phosphorylated by Src. Cell lines expressing a beta-receptor mutant, in which Tyr934 was replaced with a phenyalanine residue, showed reduced mitogenic signaling in response to PDGF-BB. In contrast, the mutant receptor mediated increased signals for chemotaxis and actin reorganization. Whereas the motility responses of cells expressing wild-type beta-receptors were attenuated by inhibition of phosphatidylinositol 3'-kinase, those of cells expressing the mutant receptor were only slightly influenced. In contrast, PDGF-BB-induced chemotaxis of the cells with the mutant receptor was attenuated by inhibition of protein kinase C, whereas the chemotaxis of cells expressing the wild-type beta-receptor was less affected. Moreover, the PDGF-BB-stimulated tyrosine phosphorylation of phospholipase C-gamma was increased in the mutant receptor cells compared with wild-type receptor cells. In conclusion, the characteristics of the Y934F mutant suggest that the phosphorylation of Tyr934 by Src negatively modulates a signal transduction pathway leading to motility responses which involves phospholipase C-gamma, and shifts the response to increased mitogenicity.  相似文献   

5.

Background

The PDGF signaling pathway plays a major role in several biological systems, including vascular remodeling that occurs following percutaneous transluminal coronary angioplasty. Recent studies have shown that the LDL receptor-related protein 1 (LRP1) is a physiological regulator of the PDGF signaling pathway. The underlying mechanistic details of how this regulation occurs have yet to be resolved. Activation of the PDGF receptor β (PDGFRβ) leads to tyrosine phosphorylation of the LRP1 cytoplasmic domain within endosomes and generates an LRP1 molecule with increased affinity for adaptor proteins such as SHP-2 that are involved in signaling pathways. SHP-2 is a protein tyrosine phosphatase that positively regulates the PDGFRβ pathway, and is required for PDGF-mediated chemotaxis. We investigated the possibility that LRP1 may regulate the PDGFRβ signaling pathway by binding SHP-2 and competing with the PDGFRβ for this molecule.

Methodology/Principal Findings

To quantify the interaction between SHP-2 and phosphorylated forms of the LRP1 intracellular domain, we utilized an ELISA with purified recombinant proteins. These studies revealed high affinity binding of SHP-2 to phosphorylated forms of both LRP1 intracellular domain and the PDGFRβ kinase domain. By employing the well characterized dynamin inhibitor, dynasore, we established that PDGF-induced SHP-2 phosphorylation primarily occurs within endosomal compartments, the same compartments in which LRP1 is tyrosine phosphorylated by activated PDGFRβ. Immunofluorescence studies revealed colocalization of LRP1 and phospho-SHP-2 following PDGF stimulation of fibroblasts. To define the contribution of LRP1 to SHP-2-mediated PDGF chemotaxis, we employed fibroblasts expressing LRP1 and deficient in LRP1 and a specific SHP-2 inhibitor, NSC-87877. Our results reveal that LRP1 modulates SHP-2-mediated PDGF-mediated chemotaxis.

Conclusions/Significance

Our data demonstrate that phosphorylated forms of LRP1 and PDGFRβ compete for SHP-2 binding, and that expression of LRP1 attenuates SHP-2-mediated PDGF signaling events.  相似文献   

6.
The use of small-molecule inhibitors to study molecular components of cellular signal transduction pathways provides a means of analysis complementary to currently used techniques, such as antisense, dominant-negative (interfering) mutants and constitutively activated mutants. We have identified and characterized a small-molecule inhibitor, SU6656, which exhibits selectivity for Src and other members of the Src family. A related inhibitor, SU6657, inhibits many kinases, including Src and the platelet-derived growth factor (PDGF) receptor. The use of SU6656 confirmed our previous findings that Src family kinases are required for both Myc induction and DNA synthesis in response to PDGF stimulation of NIH 3T3 fibroblasts. By comparing PDGF-stimulated tyrosine phosphorylation events in untreated and SU6656-treated cells, we found that some substrates (for example, c-Cbl, and protein kinase C delta) were Src family substrates whereas others (for example, phospholipase C-gamma) were not. One protein, the adaptor Shc, was a substrate for both Src family kinases (on tyrosines 239 and 240) and a distinct tyrosine kinase (on tyrosine 317, which is perhaps phosphorylated by the PDGF receptor itself). Microinjection experiments demonstrated that a Shc molecule carrying mutations of tyrosines 239 and 240, in conjunction with an SH2 domain mutation, interfered with PDGF-stimulated DNA synthesis. Deletion of the phosphotyrosine-binding domain also inhibited synthesis. These inhibitions were overcome by heterologous expression of Myc, supporting the hypothesis that Shc functions in the Src pathway. SU6656 should prove a useful additional tool for further dissecting the role of Src kinases in this and other signal transduction pathways.  相似文献   

7.
Missing in metastasis gene, or MTSS1, encodes an intracellular protein that is implicated in actin cytoskeleton reorganization and often down-regulated in certain types of tumor cells. In response to platelet-derived growth factor (PDGF), green fluorescent protein (GFP)-tagged murine Mtss1 (Mtss1-GFP) underwent redistribution from the cytoplasm to dorsal membrane ruffles along with phosphorylation at tyrosine residues in a time-dependent manner. Tyrosine phosphorylation of Mtss1-GFP was also elevated in cells where an oncogenic Src was activated but severely impaired in Src knock-out cells or cells treated with Src kinase inhibitor PP2. Mutagenesis analysis has revealed that phosphorylation occurs at multiple sites, including tyrosine residues Tyr-397 and Tyr-398. Mutation at both Tyr-397 and Tyr-398 abolished the PDGF-mediated tyrosine phosphorylation. Furthermore, recombinant Mtss1 protein was phosphorylated by recombinant Src in a manner dependent on Tyr-397 and Tyr-398. Efficient tyrosine phosphorylation of Mtss1 in response to PDGF also involves a coiled-coil domain, which is essential for a proper distribution to the cell leading edge and dorsal ruffles. Interestingly, overexpression of wild type Mtss1-GFP promoted the PDGF-induced dorsal ruffling, whereas overexpression of a mutant deficient in phosphorylation at Tyr-397 and Tyr-398 or a mutant with deletion of the coiled-coil domain impaired the formation of dorsal ruffles. These data indicate that Mtss1 represents a novel signaling pathway from PDGF receptor to the actin cytoskeleton via Src-related kinases.  相似文献   

8.
Discoidin domain receptor 2 (DDR2) is an unusual receptor tyrosine kinase in that its ligand is fibrillar collagen rather than a growth factor-like peptide. We examined signal transduction pathways of DDR2. Here we show that DDR2 is also unusual in that it requires Src activity to be maximally tyrosine-phosphorylated, and that Src activity also promotes association of DDR2 with Shc. The interaction with Shc involves a portion of Shc not previously implicated in interaction with receptor tyrosine kinases. These results identify Src kinase and the adaptor protein Shc as key signaling intermediates in DDR2 signal transduction. Furthermore, Src is required for DDR2-mediated transactivation of the matrix metalloproteinase-2 promoter. The data support a model in which Src and the DDR2 receptor cooperate in a regulated fashion to direct the phosphorylation of both the receptor and its targets.  相似文献   

9.
The low density lipoprotein receptor-related protein (LRP1) is a transmembrane receptor that integrates multiple signaling pathways. Its cytoplasmic domain serves as docking sites for several adaptor proteins such as the Src homology 2/α-collagen (ShcA), which also binds to several tyrosine kinase receptors such as the insulin-like growth factor 1 (IGF-1) receptor. However, the physiological significance of the physical interaction between LRP1 and ShcA, and whether this interaction modifies tyrosine kinase receptor signaling, are still unknown. Here we report that LRP1 forms a complex with the IGF-1 receptor, and that LRP1 is required for ShcA to become sensitive to IGF-1 stimulation. Upon IGF-1 treatment, ShcA is tyrosine phosphorylated and translocates to the plasma membrane only in the presence of LRP1. This leads to the recruitment of the growth factor receptor-bound protein 2 (Grb2) to ShcA, and activation of the Ras/MAP kinase pathway. Conversely, in the absence of ShcA, IGF-1 signaling bifurcates toward the Akt/mammalian target of rapamycin pathway and accelerates adipocyte differentiation when cells are stimulated for adipogenesis. These results establish the LRP1-ShcA complex as an essential component in the IGF-1-regulated pathway for MAP kinase and Akt/mammalian target of rapamycin activation, and may help to understand the IGF-1 signaling shift from clonal expansion to growth-arrested cells and differentiation during adipogenesis.  相似文献   

10.
In the absence of ligand, certain growth factor receptors can be activated via G-protein coupled receptor (GPCR) activation in a process termed transactivation. Serotonin (5-HT) receptors can transactivate platelet-derived growth factor (PDGF) β receptors in smooth muscle cells, but it is not known if similar pathways occur in neuronal cells. Here we show that 5-HT can transiently increase the phosphorylation of PDGFβ receptors through 5-HT1A receptors in a time- and dose-dependent manner in SH-SY5Y neuroblastoma cells. 5-HT also transactivates PDGFβ receptors in primary cortical neurons. This transactivation pathway is pertussis-toxin sensitive and Src tyrosine kinase-dependent. This pathway is also dependent on phospholipase C activity and intracellular calcium signaling. Several studies involving PDGFβ receptor transactivation by GPCRs have also demonstrated a PDGFβ receptor-dependent increase in the phosphorylation of ERK1/2. Yet in SH-SY5Y cells, 5-HT treatment causes a PDGFβ receptor-independent increase in ERK1/2 phosphorylation. This crosstalk between 5-HT and PDGFβ receptors identifies a potentially important signaling link between the serotonergic system and growth factor signaling in neurons.  相似文献   

11.
Several signal transduction events induced by angiotensin II (AngII) binding to the angiotensin II type 1 receptor resemble those evoked by platelet-derived growth factor (PDGF) binding to the PDGF-beta receptor (PDGFbeta-R). We report here, in agreement with previous data, that AngII and PDGF-B-chain homodimer (PDGF-BB) stimulate tyrosine phosphorylation of the PDGFbeta-R. Both AngII and PDGF-BB stimulated the phosphorylation of PDGFbeta-R via the binding of tyrosine-phosphorylated Shc to PDGFbeta-R. Both PDGF-BB- and AngII-induced phosphorylation of the Shc.PDGFbeta-R complex was inhibited by antioxidants such as N-acetylcysteine and Tiron, but not by calcium chelation. However, transactivation of PDGFbeta-R by AngII (measured by PDGFbeta-R tyrosine phosphorylation) differed significantly from PDGF-BB. Evidence to support different mechanisms of PDGFbeta-R phosphorylation includes differences in the time course of PDGFbeta-R phosphorylation, differing effects of inhibitors of the endogenous PDGFbeta-R tyrosine kinase and Src family tyrosine kinases, differing results when the PDGFbeta-R was directly immunoprecipitated (PDGFbeta-R-antibody) versus coimmunoprecipitated (Shc-antibody), and cell fractionation studies that suggested that the Shc.PDGFbeta-R complexes phosphorylated by AngII and PDGF-BB were located in separate subcellular compartments. These studies are the first to suggest that transactivation of tyrosine kinase receptors by G protein-coupled receptors involves a unique pathway that regulates a population of tyrosine kinase receptors different from the endogenous tyrosine kinase ligand.  相似文献   

12.
In contrast to native low density lipoprotein (LDL), mildly oxidized LDL (mox-LDL) induced platelet shape change and stimulated during shape change the tyrosine phosphorylation of specific proteins including Syk; the translocation of Src, Fyn, and Syk to the cytoskeleton; and the increase of cytosolic Ca(2+) due to mainly Ca(2+) entry. The stimulation of these early signal pathways by mox-LDL was inhibited by desensitization of the lysophosphatidic acid (LPA) receptor and specific LPA receptor antagonists, was independent of the alpha(IIb)beta(3)-integrin, and was mimicked by LPA. Stimulation of tyrosine phosphorylation and Syk activation were independent of the increase of cytosolic Ca(2+) and were suppressed by genistein and two specific inhibitors of the Src family tyrosine kinases, PP1 and PD173956. In contrast to PP1 and PD 173956, genistein prevented shape change by mox-LDL. The results indicate that mox-LDL, through activation of the LPA receptor, stimulates two separate early signal pathways, (a) Src family and Syk tyrosine kinases, and (b) Ca(2+) entry. The activation of these early signaling pathways by mox-LDL probably plays a role in platelet responses subsequent to shape change. The inhibition of mox-LDL-induced platelet activation by LPA receptor antagonists or dietary isoflavonoids such as genistein could have implications in the prevention and therapy of cardiovascular diseases.  相似文献   

13.
PDGF receptors and Src family kinases are concentrated in caveolae, where signal transduction cascades involving these molecules are thought to be organized. The Src family tyrosine kinases are cotransducers of signals emanating from the activated PDGF receptor. However, the Src family kinase substrates that are involved in PDGF-induced signaling remain to be fully elucidated. We have identified a 29-kDa protein in caveolae that was phosphorylated in response to PDGF stimulation. This protein, pp29, was tightly bound to the caveolar coat protein caveolin-1. pp29 was among the most prominent phosphoproteins observed in cells overexpressing Fyn, suggesting that it may be a Fyn substrate. Consistent with this, pp29 was among a specific subset of proteins whose PDGF-stimulated phosphorylation was blocked by expression of kinase inactive Fyn. These data indicate that pp29 lies downstream of Fyn activation in a PDGF-stimulated signaling pathway, and that pp29 is an abundant site for nucleation of signal transduction cascades.  相似文献   

14.
The activated platelet-derived growth factor (PDGF) receptor physically associates with p85, a subunit of phosphatidylinositol-3 kinase. Although this interaction may activate phosphatidylinositol-kinase and is crucial for PDGF-induced mitogenesis, it has not been shown whether p85 is modified in the process. p85 contains two SH2 (Src homology) domains, designated SH2-N and SH2-C. Recent experiments have shown that the SH2-C domain alone determines high-affinity binding of p85 to the PDGF receptor. The function of SH2-N, which binds receptors with lower affinity, is unknown. In this study, using a receptor-blotting technique, we find that p85 is modified by PDGF stimulation of intact cells. This modification involves inhibition of binding of the SH2-N region of p85 to the PDGF receptor. Studies with vanadate suggest that tyrosine phosphorylation of p85 is responsible for the modification of p85 detected by receptor blotting. Furthermore, recombinant p85 is modified in a similar manner when it is tyrosine phosphorylated in vitro by PDGF receptors. Tyrosine phosphorylation of p85 does not block binding of the SH2-C domain and therefore does not release p85 from high-affinity binding sites on the receptor in vitro. Instead, phosphorylation may regulate the ability of the SH2-N of p85 to bind to a different portion of the PDGF receptor or to another molecule in the signaling complex. This study provides the first evidence that p85 is tyrosine phosphorylated upon PDGF stimulation of cells and suggests that tyrosine phosphorylation of p85 regulates its activity or its interaction with other proteins.  相似文献   

15.
Platelet-derived growth factor BB (PDGF) stimulates DNA synthesis through a mechanism that is at least partially dependent upon Src family tyrosine kinases, although the signal transduction pathway downstream of Src is poorly understood. We have studied the signaling between Src and different protein kinase C (PKC) isoforms and its possible role in the regulation of PDGF-stimulated DNA synthesis. We found that Src promoted the tyrosine phosphorylation of PKCdelta, and its subsequent degradation. Enforced expression of PKCdelta inhibited PDGF-stimulated DNA synthesis, whereas expression of PKCalpha and PKCepsilon did not, a finding consistent with a model in which PKCdelta negatively regulates G1-to-S-phase progression. We used mutagenesis to map a critical Src phosphorylation site on PKCdelta to tyrosine 311. A mutant form of PKCdelta in which tyrosine 311 was replaced with phenylalanine (Y311F) was more stable in the presence of Src, suggesting that Src-induced degradation was a direct result of PKCdelta tyrosine phosphorylation. We conclude that PKCdelta is downstream of Src but is unlikely to play a positive role in the signaling pathway by which Src promotes DNA synthesis.  相似文献   

16.
Sphingosine 1-phosphate (S1P), a ligand for endothelial differentiation gene family proteins, is one of the most potent signal mediators released from activated platelets. Here, we report that S1P induces membrane ruffling of human umbilical vein endothelial cells (HUVECs) via the vascular endothelial growth factor receptor (VEGFR), Src family tyrosine kinase(s), and the CrkII adaptor protein. S1P induced prominent phosphorylation of CrkII in HUVECs, indicating that CrkII was involved in the S1P-induced signaling pathway. S1P-induced CrkII phosphorylation was blocked by pertussis toxin and overexpression of the carboxyl terminus of beta-adrenergic receptor kinase, indicating that the betagamma subunit of G(i) was required for the phosphorylation. Notably, the S1P-induced CrkII phosphorylation was also abolished by inhibitors of VEGFR or Src family tyrosine kinases. By using Picchu, a real time monitoring protein for CrkII phosphorylation, we found that S1P induced rapid CrkII phosphorylation at membrane ruffles. Finally, we observed that expression of a dominant negative mutant of CrkII inhibited the S1P-induced membrane ruffling and cell migration. These results delineated a novel S1P signaling pathway that involves sequential activation of G(i)-coupled receptor(s), VEGFR, Src family tyrosine kinase(s), and the CrkII adaptor protein, and which is responsible for both the induction of membrane ruffling and the increase in cell motility.  相似文献   

17.
The receptor tyrosine phosphatase (RPTP) LAR negatively regulates the activity of several receptor tyrosine kinases. To investigate if LAR affects the platelet-derived growth factor (PDGF) receptor signaling, mouse embryonic fibroblasts (MEFs) from mice where the LAR phosphatase domains were deleted (LARΔP), and wt littermates, were stimulated with 20 ng/ml PDGF-BB. In LAR phosphatase deficient MEFs, the phosphorylation of the PDGF β-receptor was surprisingly reduced, an event that was rescued by re-expression of wt LAR. The decreased phosphorylation of the PDGF β-receptor was observed independent of ligand concentration and occurred on all tyrosine residues, as determined by immunoblotting analysis using site-selective phosphotyrosine antibodies. This suggests that LAR is required for full PDGF β-receptor kinase activation. Downstream of receptor activation, phosphorylation of Akt and PLCγ were decreased in LARΔP MEFs, whereas Src and Erk MAP kinase pathways were less affected. The proliferation of LARΔP MEFs in response to PDGF-BB was also reduced. The inhibitory effect on the PDGF β-receptor in LARΔP cells was exerted via increased basal activity of c-Abl, since inhibition of c-Abl, by AG957 or siRNA, restored PDGF β-receptor phosphorylation. These observations suggest that LAR reduces the basal c-Abl activity thereby allowing for PDGF β-receptor kinase activation.  相似文献   

18.
G-protein-coupled receptors are a large group of integral membranal receptors, which in response to ligand binding initiate diverse downstream signaling. Here we studied the gonadotropin-releasing hormone (GnRH) receptor, which uses Gq for its downstream signaling. We show that extracellular signal-regulated kinase (ERK) activation is fully dependent on protein kinase C (PKC), but only partially dependent on Src, dynamin, and Ras. Receptor tyrosine kinases, FAK, Gbetagamma, and beta-arrestin, which were implicated in some G-protein-coupled receptor signaling to MAPK cascades, do not play a role in the GnRH to ERK pathway. Our results suggest that the activation of ERK by GnRH involves two distinct signaling pathways, which converge at the level of Raf-1. The main pathway involves a direct activation of Raf-1 by PKC, and this step is partially dependent on a second pathway consisting of Ras activation, which occurs in a dynamin-dependent manner, downstream of Src.  相似文献   

19.
Autophosphorylation sites of growth factor receptors with tyrosine kinase activity function as specific binding sites for Src homology 2 (SH2) domains of signaling molecules. This interaction appears to be a crucial step in a mechanism by which receptor tyrosine kinases relay signals to downstream signaling pathways. Nck is a widely expressed protein consisting exclusively of SH2 and SH3 domains, the overexpression of which causes cell transformation. It has been shown that various growth factors stimulate the phosphorylation of Nck and its association with autophosphorylated growth factor receptors. A panel of platelet-derived growth factor (PDGF) receptor mutations at tyrosine residues has been used to identify the Nck binding site. Here we show that mutation at Tyr-751 of the PDGF beta-receptor eliminates Nck binding both in vitro and in living cells. Moreover, the Y751F PDGF receptor mutant failed to mediate PDGF-stimulated phosphorylation of Nck in intact cells. A phosphorylated Tyr-751 is also required for binding of phosphatidylinositol-3 kinase to the PDGF receptor. Hence, the SH2 domains of p85 and Nck share a binding site in the PDGF receptor. Competition experiments with different phosphopeptides derived from the PDGF receptor suggest that binding of Nck and p85 is influenced by different residues around Tyr-751. Thus, a single tyrosine autophosphorylation site is able to link the PDGF receptor to two distinct SH2 domain-containing signaling molecules.  相似文献   

20.
Some data in the literature suggest that serine/threonine phosphorylation is required for activation of the mixed-lineage kinases (MLKs), a subgroup of mitogen-activated protein kinase kinase kinases (MAPKKKs). In this report, we demonstrate that the MLK family member DLK is activated and concurrently tyrosine-phosphorylated in cells exposed to the protein tyrosine phosphatase inhibitor vanadate. Tyrosine phosphorylation appears crucial for activation as incubation of vanadate-activated DLK molecules with a tyrosine phosphatase substantially reduced DLK enzymatic activity. Interestingly, the effects of vanadate on DLK are completely blocked by treatment with a Src family kinase inhibitor, PP2, or the expression of short hairpin RNA (shRNA) directed against Src. DLK also fails to undergo vanadate-stimulated tyrosine phosphorylation and activation in fibroblasts which lack expression of Src, Yes and Fyn, but reintroduction of wild-type Src or Fyn followed by vanadate treatment restores this response. In addition to vanadate, stimulation of cells with platelet-derived growth factor (PDGF) also induces tyrosine phosphorylation and activation of DLK by a Src-dependent mechanism. DLK seems important for PDGF signaling because its depletion by RNA interference substantially reduces PDGF-stimulated ERK and Akt kinase activation. Thus, our findings suggest that Src-dependent tyrosine phosphorylation of DLK may be important for regulation of its activity, and they support a role for DLK in PDGF signaling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号