首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Gravity acts on the circulatory system to decrease arterial blood pressure (AP) by causing blood redistribution and reduced venous return. To evaluate roles of the baroreflex and vestibulosympathetic reflex (VSR) in maintaining AP during gravitational stress, we measured AP, heart rate (HR), and renal sympathetic nerve activity (RSNA) in four groups of conscious rats, which were either intact or had vestibular lesions (VL), sinoaortic denervation (SAD), or VL plus SAD (VL + SAD). The rats were exposed to 3 G in dorsoventral axis by centrifugation for 3 min. In rats in which neither reflex was functional (VL + SAD group), RSNA did not change, but the AP showed a significant decrease (-8 +/- 1 mmHg vs. baseline). In rats with a functional baroreflex, but no VSR (VL group), the AP did not change and there was a slight increase in RSNA (25 +/- 10% vs. baseline). In rats with a functional VSR, but no baroreflex (SAD group), marked increases in both AP and RSNA were observed (AP 31 +/- 6 mmHg and RSNA 87 +/- 10% vs. baseline), showing that the VSR causes an increase in AP in response to gravitational stress; these marked increases were significantly attenuated by the baroreflex in the intact group (AP 9 +/- 2 mmHg and RSNA 38 +/- 7% vs. baseline). In conclusion, AP is controlled by the combination of the baroreflex and VSR. The VSR elicits a huge pressor response during gravitational stress, preventing hypotension due to blood redistribution. In intact rats, this AP increase is compensated by the baroreflex, resulting in only a slight increase in AP.  相似文献   

2.
It is well known that environmental stimulation is important for the proper development of sensory function. The vestibular system senses gravitational acceleration and then alters cardiovascular and motor functions through reflex pathways. The development of vestibular-mediated cardiovascular and motor functions may depend on the gravitational environment present at birth and during subsequent growth. To examine this hypothesis, arterial pressure (AP) and renal sympathetic nerve activity (RSNA) were monitored during horizontal linear acceleration and performance in a motor coordination task in rats born and reared in 1-G or 2-G environments. Linear acceleration of +/-1 G increased AP and RSNA. These responses were attenuated in rats with a vestibular lesion, suggesting that the vestibular system mediated AP and RSNA responses. These responses were also attenuated in rats born in a 2-G environment. AP and RSNA responses were partially restored in these rats when the hypergravity load was removed, and the rats were maintained in a 1-G environment for 1 wk. The AP response to compressed air, which is mediated independently of the vestibular system, did not change in the 2-G environment. Motor coordination was also impaired in the 2-G environment and remained impaired even after 1 wk of unloading. These results indicate that hypergravity impaired both the vestibulo-cardiovascular reflex and motor coordination. The vestibulo-cardiovascular reflex was only impaired temporarily and partially recovered following 1 wk of unloading. In contrast, motor coordination did not return to normal in response to unloading.  相似文献   

3.
To examine a cooperative role for the baroreflex and the vestibular system in controlling arterial pressure (AP) during voluntary postural change, AP was measured in freely moving conscious rats, with or without sinoaortic baroreceptor denervation (SAD) and/or peripheral vestibular lesion (VL). Voluntary rear-up induced a slight decrease in AP (-5.6 ± 0.8 mmHg), which was significantly augmented by SAD (-14.7 ± 1.0 mmHg) and further augmented by a combination of VL and SAD (-21 ± 1.0 mmHg). Thus we hypothesized that the vestibular system sensitizes the baroreflex during postural change. To test this hypothesis, open-loop baroreflex analysis was conducted on anesthetized sham-treated and VL rats. The isolated carotid sinus pressure was increased stepwise from 60 to 180 mmHg while rats were placed horizontal prone or in a 60° head-up tilt (HUT) position. HUT shifted the carotid sinus pressure-sympathetic nerve activity (SNA) relationship (neural arc) to a higher SNA, shifted the SNA-AP relationship (peripheral arc) to a lower AP, and, consequently, moved the operating point to a higher SNA while maintaining AP (from 113 ± 5 to 114 ± 5 mmHg). The HUT-induced neural arc shift was completely abolished in VL rats, whereas the peripheral arc shifted to a lower AP and the operating point moved to a lower AP (from 116 ± 3 to 84 ± 5 mmHg). These results indicate that the vestibular system elicits sympathoexcitation, shifting the baroreflex neural arc to a higher SNA and maintaining AP during HUT.  相似文献   

4.
Galvanic vestibular stimulation (GVS) is a simple, safe, and specific way to elicit vestibular reflexes. Yet, despite a long history, it has only recently found popularity as a research tool and is rarely used clinically. The obstacle to advancing and exploiting GVS is that we cannot interpret the evoked responses with certainty because we do not understand how the stimulus acts as an input to the system. This paper examines the electrophysiology and anatomy of the vestibular organs and the effects of GVS on human balance control and develops a model that explains the observed balance responses. These responses are large and highly organized over all body segments and adapt to postural and balance requirements. To achieve this, neurons in the vestibular nuclei receive convergent signals from all vestibular receptors and somatosensory and cortical inputs. GVS sway responses are affected by other sources of information about balance but can appear as the sum of otolithic and semicircular canal responses. Electrophysiological studies showing similar activation of primary afferents from the otolith organs and canals and their convergence in the vestibular nuclei support this. On the basis of the morphology of the cristae and the alignment of the semicircular canals in the skull, rotational vectors calculated for every mode of GVS agree with the observed sway. However, vector summation of signals from all utricular afferents does not explain the observed sway. Thus we propose the hypothesis that the otolithic component of the balance response originates from only the pars medialis of the utricular macula.  相似文献   

5.
Previous studies demonstrated that responses of a particular sympathetic nerve to vestibular stimulation depend on the type of tissue the nerve innervates as well as its anatomic location. In the present study, we sought to determine whether such precise patterning of vestibulosympathetic reflexes could lead to specific hemodynamic alterations in response to vestibular afferent activation. We simultaneously measured changes in systemic blood pressure and blood flow (with the use of Doppler flowmetry) to the hindlimb (femoral artery), forelimb (brachial artery), and kidney (renal artery) in chloralose-urethane-anesthetized, baroreceptor-denervated cats. Electrical vestibular stimulation led to depressor responses, 8 +/- 2 mmHg (mean +/- SE) in magnitude, that were accompanied by decreases in femoral vasoconstriction (23 +/- 4% decrease in vascular resistance or 36 +/- 7% increase in vascular conductance) and increases in brachial vascular tone (resistance increase of 10 +/- 6% and conductance decrease of 11 +/- 4%). Relatively small changes (<5%) in renal vascular tone were observed. In contrast, electrical stimulation of muscle and cutaneous afferents produced pressor responses (20 +/- 6 mmHg) that were accompanied by vasoconstriction in all three beds. These data suggest that vestibular inputs lead to a complex pattern of cardiovascular changes that is distinct from that which occurs in response to activation of other types of somatic afferents.  相似文献   

6.
Galvanic vestibular stimulation (GVS) is a research tool used to activate the vestibular system in human subjects. When a low-intensity stimulus (1-4 mA) is delivered percutaneously to the vestibular nerve, a transient electromyographic response is observed a short time later in lower limb muscles. Typically, galvanically evoked responses are present when the test muscle is actively engaged in controlling standing balance. However, there is evidence to suggest that GVS may be able to modulate the activity of lower limb muscles when subjects are not in a free-standing situation. The purpose of this review is to examine 2 studies from our laboratory that examined the effects of GVS on the lower limb motoneuron pool. For instance, a monopolar monaural galvanic stimulus modified the amplitude of the ipsilateral soleus H-reflex. Furthermore, bipolar binaural GVS significantly altered the onset of activation and the initial firing frequency of gastrocnemius motor units. The following paper examines the effects of GVS on muscles that are not being used to maintain balance. We propose that GVS is modulating motor output by influencing the activity of presynaptic inhibitory mechanisms that act on the motoneuron pool.  相似文献   

7.
8.
It has been suggested that the midbrain periaqueductal gray (PAG) is a neural integrating site for the interaction between the muscle pressor reflex and the arterial baroreceptor reflex. The underlying mechanisms are poorly understood. The purpose of this study was to examine the roles of GABA and nitric oxide (NO) in modulating the PAG integration of both reflexes. To activate muscle afferents, static contraction of the triceps surae muscle was evoked by electrical stimulation of the L7 and S1 ventral roots of 18 anesthetized cats. In the first group of experiments (n = 6), the pressor response to muscle contraction was attenuated by bilateral microinjection of muscimol (a GABA receptor agonist) into the lateral PAG [change in mean arterial pressure (DeltaMAP) = 24 +/- 5 vs. 46 +/- 8 mmHg in control]. Conversely, the pressor response was significantly augmented by 0.1 mM bicuculline, a GABAA receptor antagonist (DeltaMAP = 65 +/- 10 mmHg). In addition, the effect of GABAA receptor blockade on the reflex response was significantly blunted after sinoaortic denervation and vagotomy (n = 4). In the second group of experiments (n = 8), the pressor response to contraction was significantly attenuated by microinjection of L-arginine into the lateral PAG (DeltaMAP = 26 +/- 4 mmHg after L-arginine injection vs. 45 +/- 7 mmHg in control). The effect of NO attenuation was antagonized by bicuculline and was reduced after denervation. These data demonstrate that GABA and NO within the PAG modulate the pressor response to muscle contraction and that NO attenuation of the muscle pressor reflex is mediated via arterial baroreflex-engaged GABA increase. The results suggest that the PAG plays an important role in modulating cardiovascular responses when muscle afferents are activated.  相似文献   

9.
Healthy subjects (N = 10) were exposed to 10-min cumulative pseudorandom bilateral bipolar Galvanic vestibular stimulation (GVS) on a weekly basis for 12 weeks (120 min total exposure). During each trial subjects performed computerized dynamic posturography and eye movements were measured using digital video-oculography. Follow up tests were conducted 6 weeks and 6 months after the 12-week adaptation period. Postural performance was significantly impaired during GVS at first exposure, but recovered to baseline over a period of 7–8 weeks (70–80 min GVS exposure). This postural recovery was maintained 6 months after adaptation. In contrast, the roll vestibulo-ocular reflex response to GVS was not attenuated by repeated exposure. This suggests that GVS adaptation did not occur at the vestibular end-organs or involve changes in low-level (brainstem-mediated) vestibulo-ocular or vestibulo-spinal reflexes. Faced with unreliable vestibular input, the cerebellum reweighted sensory input to emphasize veridical extra-vestibular information, such as somatosensation, vision and visceral stretch receptors, to regain postural function. After a period of recovery subjects exhibited dual adaption and the ability to rapidly switch between the perturbed (GVS) and natural vestibular state for up to 6 months.  相似文献   

10.
In humans, the pressor and muscle sympathetic nerve responses to static exercise are less in women than in men. The difference has been attributed to the effect of estrogen on the exercise pressor reflex. Estrogen receptors are abundant in areas of the dorsal horn receiving input from group III and IV muscle afferents, which comprise the sensory limb of the exercise pressor reflex arc. These findings prompted us to investigate the effect of estrogen on the spinal pathway of the exercise pressor reflex arc. Previously, we found that the threshold concentration of 17beta-estradiol needed to attenuate the exercise pressor reflex in male decerebrate cats was 10 microg/ml (Schmitt PM and Kaufman MP. J Appl Physiol 94: 1431-1436, 2003). The threshold concentration for female cats, however, is not known. Consequently, we applied 17beta-estradiol to a well covering the L6-S1 spinal cord in decerebrate female cats. The exercise pressor reflex was evoked by electrical stimulation of the L7 or S1 ventral root, a maneuver that caused the hindlimb muscles to contract statically. We found that the pressor response to contraction averaged 38 +/- 7 mmHg before the application of 17beta-estradiol (0.01 microg/ml) to the spinal cord, whereas it averaged only 23 +/- 4 mmHg 30 min after application (P < 0.05). Recovery of the pressor response to contraction was not obtained for 2 h after application of 17beta-estradiol. Application of 17beta-estradiol in a dose of 0.001 microg/ml had no effect on the exercise pressor reflex (n = 5). We conclude that the concentration of 17beta-estradiol required to attenuate the exercise pressor reflex is 1,000 times more dilute in female cats than that needed to attenuate this reflex in male cats.  相似文献   

11.
Vanilloid type 1 (VR-1) receptors are stimulated by capsaicin and hydrogen ions, the latter being a by-product of muscular contraction. We tested the hypothesis that activation of VR-1 receptors during static contraction contributes to the exercise pressor reflex. We established a dose of iodoresinaferatoxin (IRTX), a VR-1 receptor antagonist, that blocked the pressor response to capsaicin injected into the arterial supply of muscle. Specifically, in eight decerebrated cats, we compared pressor responses to capsaicin (10 mug) injected into the right popliteal artery, which was subsequently injected with IRTX (100 mug), with those to capsaicin injected into the left popliteal artery, which was not injected with IRTX. The pressor response to capsaicin injected into the right popliteal artery averaged 49 +/- 9 mmHg before IRTX and 9 +/- 2 mmHg after IRTX (P < 0.05). In contrast, the pressor response to capsaicin injected into the left popliteal artery averaged 46 +/- 10 mmHg "before" and 43 +/- 6 mmHg "after" (P > 0.05). We next determined whether VR-1 receptors mediated the pressor response to contraction of the triceps surae. During contraction without circulatory occlusion, the pressor response before IRTX (100 mug) averaged 26 +/- 3 mmHg, whereas it averaged 22 +/- 3 mmHg (P > 0.05) after IRTX (n = 8). In addition, during contraction with occlusion, the pressor responses averaged 35 +/- 3 mmHg before IRTX injection and 49 +/- 7 mmHg after IRTX injection (n = 7). We conclude that VR-1 receptors play little role in evoking the exercise pressor reflex.  相似文献   

12.
As one of the causes of the space adaptation syndrome, an increased intracranial pressure due to the cephalad fluid shift is suggested. In the present study, we measured intracranial pressure (ICP), aortic pressure and cerebral flow velocity (CFV) in anesthetized rats (n=5) during 4.5 sec of microgravity induced by free drop. The rats were set at horizontal prone (Flat) and 30-degree head-up whole body tilting (HU) positions to examine the effect of gravitational pressure gradient. Then, arterial pressure at the eye level (APeye), cerebral perfusion pressure (CPP; CPP=APeye-ICP), and CPP-CFV relationship was calculated. In HU position, ICP, APeye, and CPP increased by 2.2 +/- 0.4, 12.3 +/- 2.0, and 10.1 +/- 1.7 mmHg respectively. However, CFV did not change significantly. In Flat position, none of these variables did not change significantly. In HU position the slope of CPP-CFV relationship decreased, suggesting the increased cerebral flow resistance. However, it did not change in Flat position. These results can be understood by the disappearance of gravitational pressure gradient by microgravity and the cerebral autoregulation.  相似文献   

13.
 With galvanic vestibular stimulation (GVS), electrical current is delivered transcutaneously to the vestibular afferents through electrodes placed over the mastoid bones. This serves to modulate the continuous firing levels of the vestibular afferents, and causes a standing subject to lean in different directions depending on the polarity of the current. Our objective in this study was to test the hypothesis that the sway response elicited by GVS can be used to reduce the postural sway resulting from a mechanical perturbation. Nine subjects were tested for their postural responses to both galvanic stimuli and support-surface translations. Transfer-function models were fit to these responses and used to calculate a galvanic stimulus that would act to counteract sway induced by a support-surface translation. The subjects' responses to support-surface translations, without and with the stabilizing galvanic stimulus, were then measured. With the stabilizing galvanic stimulus, all subjects showed significant reductions in both sway amplitude and sway latency. Thus, with GVS, subjects maintained a more erect stance and followed the support-surface displacement more closely. These findings suggest that GVS could possibly form the basis for a vestibular prosthesis by providing a means through which an individual's posture can be systematically controlled. Received: 11 May 2000 / Accepted in revised form: 20 November 2000  相似文献   

14.
Experiments were performed to determine if glucocorticoids potentiate central hypertensive actions of ANG II. Male Sprague-Dawley rats were treated for 3 days to 3 wk with corticosterone (Cort). Experiments were performed in conscious rats that had previously been instrumented with arterial and venous catheters and an intracerebroventricular guide cannula in a lateral ventricle. Baseline arterial pressure (AP) was greater in Cort-treated rats than in control rats (119 +/- 2 vs. 107 +/- 1 mmHg, P < 0.01). Microinjection of ANG II intracerebroventricularly produced a significantly larger increase in AP in Cort-treated rats than in control rats. For example, at 30 ng ANG II, AP increased by 23 +/- 1 and 16 +/- 2 mmHg in Cort-treated and control rats, respectively (P < 0.01). Microinjection of an angiotensin type 1 receptor antagonist significantly decreased AP (-6 +/- 2 mmHg) and heart rate (-26 +/- 7 beats/min) in Cort-treated but not control rats. Increases in AP produced by intravenous administration of ANG II were not different between control and Cort-treated rats. Intravenous injections of ANG II antagonist had no significant effects on mean AP or heart rate in control or Cort-treated rats. Therefore, a sustained increase in plasma Cort augments the central pressor effects of ANG II without altering the pressor response to peripheral administration of the hormone.  相似文献   

15.
Microgravity provides unique, though experimentally challenging, opportunities to study motor control. A traditional research focus has been the effects of linear acceleration on vestibular responses to angular acceleration. Evidence is accumulating that the high-frequency vestibulo-ocular reflex (VOR) is not affected by transitions from a 1 g linear force field to microgravity (<1 g); however, it appears that the three-dimensional organization of the VOR is dependent on gravitoinertial force levels. Some of the observed effects of microgravity on head and arm movement control appear to depend on the previously undetected inputs of cervical and brachial proprioception, which change almost immediately in response to alterations in background force levels. Recent studies of post-flight disturbances of posture and locomotion are revealing sensorimotor mechanisms that adjust over periods ranging from hours to weeks.  相似文献   

16.
It has been suggested that nitric oxide (NO) is a key modulator of both baroreceptor and exercise pressor reflex afferent signals processed within the nucleus tractus solitarius (NTS). However, studies investigating the independent effects of NO within the NTS on the function of each reflex have produced inconsistent results. To address these concerns, the effects of microdialyzing 10 mM L-arginine, an NO precursor, and 20 mM N(G)-nitro-L-arginine methyl ester (L-NAME), an NO synthase inhibitor, into the NTS on baroreceptor and exercise pressor reflex function were examined in 17 anesthetized cats. Arterial baroreflex regulation of heart rate was quantified using vasoactive drugs to induce acute changes in mean arterial pressure (MAP). To activate the exercise pressor reflex, static hindlimb contractions were induced by electrical stimulation of spinal ventral roots. To isolate the exercise pressor reflex, contractions were repeated after barodenervation. The gain coefficient of the arterial cardiac baroreflex was significantly different from control (-0.24 +/- 0.04 beats.min(-1).mmHg(-1)) after the dialysis of L-arginine (-0.18 +/- 0.02 beats.min(-1).mmHg(-1)) and L-NAME (-0.29 +/- 0.02 beats.min(-1).mmHg(-1)). In barodenervated animals, the peak MAP response to activation of the exercise pressor reflex (change in MAP from baseline, 39 +/- 7 mmHg) was significantly attenuated by the dialysis of L-arginine (change in MAP from baseline, 29 +/- 6 mmHg). The results demonstrate that NO within the NTS can independently modulate both the arterial cardiac baroreflex and the exercise pressor reflex. Collectively, these findings provide a neuroanatomical and chemical basis for the regulation of baroreflex and exercise pressor reflex function within the central nervous system.  相似文献   

17.
Buchen B  Hejnowicz Z  Braun M  Sievers A 《Protoplasma》1991,165(1-3):121-126
Summary In-vivo videomicroscopy ofChara rhizoids under 10–4g demonstrated that gravity affected the velocities of cytoplasmic streaming. Both, the acropetal and basipetal streaming velocities increased on the change to microgravity. The endogenous difference in the velocities of the oppositely directed cytoplasmic streams was maintained under microgravity, yet the difference was diminished as the basipetal streaming velocity increased more than the acropetal streaming velocity. Direction and structure of microfilaments labeled by rhodamine-phalloidin had not changed after 6 min of microgravity.Abbreviations g gravitational acceleration - Nizemi slow rotating centrifuge microscope - Texus technological experiments under reduced gravity  相似文献   

18.
Reflex cardiovascular responses to muscle contraction are mediated by mechanical and metabolic stimulation of thin muscle afferent fibers. Metabolic stimulants and receptors involved in responses are uncertain. Capsaicin depolarizes thin sensory afferent nerves that have vanilloid type 1 receptors (VR1). Among potential endogenous ligands of thin fibers, H+ has been suggested as a metabolite mediating the reflex muscle response as well as a potential stimulant of VR1. It has also been suggested that acid-sensing ion channels (ASIC) mediate H+, evoking afferent nerve excitation. We have examined the roles of VR1 and ASIC in mediating cardiovascular reflex responses to acid stimulation of muscle afferents in a rat model. In anesthetized rats, injections of capsaicin into the arterial blood supply of triceps surae muscles evoked a biphasic response (n = 6). An initial fall in mean arterial pressure (from baseline of 95.8 +/- 9.5 to 70.4 +/- 4.5 mmHg, P < 0.05 vs. baseline) was followed by an increase (to 131.6 +/- 11.3 mmHg, P < 0.05 vs. baseline). Anandamide (an endogenous substance that activates VR1) induced the same change in blood pressure as did capsaicin. The pressor (but not depressor) component of the response was blocked by capsazepine (a VR1 antagonist) and section of afferent nerves. In decerebrate rats (n = 8), H+ evoked a pressor response that was not blocked by capsazepine but was attenuated by amiloride (an ASIC blocker). In rats (n = 12) pretreated with resiniferatoxin to destroy muscle afferents containing VR1, capsaicin and H+ responses were blunted. We conclude that H+ stimulates ASIC, evoking the reflex response, and that ASIC are likely to be frequently found on afferents containing VR1. The data also suggest that VR1 and ASIC may play a role in processing of muscle afferent signals, evoking the muscle pressor reflex.  相似文献   

19.
The afferent limb of the vesicovascular reflex (VV-R) evoked by distension or contraction of the urinary bladder (UB) was studied in urethane-anesthetized female rats by examining the changes in VV-R after administration of C-fiber afferent neurotoxins [capsaicin and resiniferatoxin (RTX)]. Systemic arterial blood pressure increased parallel (5.1 to 53.7 mmHg) with graded increases in UB pressure (20 to 80 cm H(2)O) or during UB contractions. The arterial pressor response to UB distension was significantly reduced (60-85%) by acute or chronic (4 days earlier) intravesical administration of RTX (100-1,000 nM) or by capsaicin (125 mg/kg sc) pretreatment (4 days earlier). Chronic neurotoxin treatments also increased the volume threshold (>100%) for eliciting micturition in anesthetized rats but did not change voiding pressure. Acute RTX treatment (10-50 nM) did not alter the arterial pressor response during reflex UB contractions, whereas higher concentrations of RTX (100-1,000 nM) blocked reflex bladder contractions. It is concluded that VV-R is triggered primarily by distension- and contraction-sensitive C-fiber afferents located, respectively, near the luminal surface and deeper in the muscle layers of the bladder.  相似文献   

20.
Microgravity or simulated microgravity induces acute and chronic cardiovascular responses, whose mechanism is pivotal for understanding of physiological adaptation and pathophysiological consequences. We investigated hemodynamic responses of conscious Wistar rats to 45? head-down tilt (HDT) for 7 days. Arterial blood pressure (BP) was recorded by telemetry. Heart rate (HR), spectral properties and the spontaneous baroreflex sensitivity (sBRS) were calculated. Head-up tilt (HUT) was applied for 2 h before and after HDT to assess the degree of any possible cardiovascular deconditioning. Horizontal control BP and HR were 112.5+/-2.8 mmHg and 344.7+/-10 bpm, respectively. HDT elicited an elevation in BP and HR by 8.3 % and 8.8 %, respectively, in less than 1 h. These elevations in BP and HR were maintained for 2 and 3 days, respectively, and then normalized. Heart rate variability was unchanged, while sBRS was permanently reduced from the beginning of HDT (1.01+/-0.08 vs. 0.74+/-0.05 ms/mmHg). HUT tests before and after HDT resulted in BP elevations (6.9 vs. 11.6 %) and sBRS reduction (0.44 vs. 0.37 ms/mmHg), respectively. The pressor response during the post-HDT HUT test was accompanied by tachycardia (13.7 %). In conclusion, chronic HDT does not lead to symptoms of cardiovascular deconditioning. However the depressed sBRS and tachycardic response seen during the post-HDT HUT test may indicate disturbances in cardiovascular control.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号