首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Abstract.The intracisternal (= ergastoplasmic) granules in the adipokinetic hormone-secreting cells of the glandular lobes of the corpora cardiaca in Locusta migratoria migratorioides represent accumulations of adipokinetic prohormones within cisternae of the rough endoplasmic reticulum. Solitary locusts have more and larger intracisternal granules than gregarious locusts. This coincides with the general locomotor activity and thus the energy metabolism in solitary locusts being quite different from that of gregarious locusts, which apparently has consequences for the amounts of adipokinetic hormones synthesized and/or released and, consequently, for the storage of these hormones in the intracisternal granules. These granules apparently function as supplementary stores of secretory material.  相似文献   

2.
A new type of cytoplasmic granules was demonstrated with the electron microscope in a substantial percentage of absorptive cells in the small intestine of standard-fed, fasted and oil-fed CFW/L1 mice, and extremely rarely in standard-fed Balb/C mice. The granules appeared as the accumulations of electron-dense material within the distended cisternae of the rough endoplasmic reticulum. Most of the intracisternal granules were situated in the basal part of the cell, close to the nucleus. The diameter of the granules ranged from 0.24 μm to 0.96 μm.  相似文献   

3.
4.
5.
The in vitro study was performed in order to demonstrate the structural changes of lipophorin induced in vivo by the injection of adipokinetic hormone (AKH) into adult locusts. After many unsuccessful attempts, we have established the reconstructed incubation system in which purified lipophorin and apolipophorin-III (9 mol/mol lipophorin) are incubated with the fat body in the presence of AKH under a supply of excess oxygen. In this system, high density lipophorin (HDLp) originally present in the incubation medium can be transformed entirely into low density lipophorin (LDLp) due to the loading of an increased amount of diacylglycerol from the fat body. The LDLp formed in this incubation system was exactly the same as the LDLp formed in vivo by the injection of AKH, in terms of density, particle size, diacylglycerol content, and the association with apolipophorin-III (apoLp-III). In the absence of apoLp-III, AKH did not exhibit its function to any extent. It was also demonstrated that the transformation of HDLp to LDLp requires calcium ions. Moreover, it appears that, up to a certain limit, the increase of diacylglycerol content of lipophorin and the amount of apoLp-III associated with lipophorin is nearly proportional to the amount of apoLp-III added to the incubation medium.  相似文献   

6.
The reversible association of a low molecular weight hemolymph protein (mol wt 20,000 estimated by SDS-polyacrylamide gel electrophoresis) with lipophorin, following treatment with adipokinetic hormone (AKH), was demonstrated by density gradient ultracentrifugation and by specific precipitation of lipophorin from the hemolymph of resting and AKH-injected locusts. The injection of AKH also stimulated the loading of diacylglycerol from fat body by lipophorin and resulted in a lower density lipophorin ("activated lipophorin"). The activated lipophorin particles (diameter 21.7 +/- 3.0 nm, 15.8 to 33.6 nm) were larger and more heterogeneous in size than those of resting lipophorin (14.5 +/- 1.6 nm, 11.9 to 19.2 nm). A theoretical analysis based on the experimental data (e.g., density gradient profile, electron microscopic observation, and diacylglycerol content) suggests that very large lipophorin particles result from intermolecular fusion of the lipophorin molecules that are activated by AKH. Attempts to demonstrate the effect of AKH on the structure of lipophorin, in vitro, were unsuccessful.  相似文献   

7.
Immunoreactivity of granules containing secretory material in the adipokinetic cells of the insect Locusta migratoria was studied using antisera specific for the adipokinetic hormone-associated peptides (AAP) I, II and III. Immunocytochemical detection of these associated peptides represents a new strategy for studying the intracellular location of the adipokinetic hormones and their prohormones. Fixation with 2% glutaraldehyde and 2% formaldehyde with low-temperature embedding in Lowicryl HM20 allowed highly selective immunogold labelling of both secretory and intracisternal granules. All three associated peptides were co-localized in secretory granules. This indicates that also all three adipokinetic hormones can be co-localized in these granules, which was confirmed by experiments in which, after secretory stimulation, adipokinetic hormone III was released from the adipokinetic cells together with adipokinetic hormones I and II. The immunopositivity of the intracisternal granules was similar to that of the secretory granules, although with the exception that the intracisternal granules did not show any specific reaction with anti-AAP III. The presence of AAP I and AAP II in intracisternal granules indicates that these granules only function as stores of adipokinetic prohormones I and II and not of adipokinetic prohormone III. The observed differences in storage in intracisternal granules among the three adipokinetic prohormones suggest differences in physiological significance of the three adipokinetic hormones in L. migratoria.  相似文献   

8.
Alvarez J 《Cell calcium》2012,51(3-4):331-337
Cellular Ca(2+)signaling results from a complex interplay among a variety of Ca(2+) fluxes going across the plasma membrane and across the membranes of several organelles, together with the buffering effect of large numbers of Ca(2+)-binding sites distributed along the cell architecture. Endoplasmic and sarcoplasmic reticulum, mitochondria and even nucleus have all been involved in cellular Ca(2+) signaling, and the mechanisms for Ca(2+) uptake and release from these organelles are well known. In neuroendocrine cells, the secretory granules also constitute a very important Ca(2+)-storing organelle, and the possible role of the stored Ca(2+) as a trigger for secretion has attracted considerable attention. However, this possibility is frequently overlooked, and the main reason for that is that there is still considerable uncertainty on the main questions related with granular Ca(2+) dynamics, e.g., the free granular [Ca(2+)], the physical state of the stored Ca(2+) or the mechanisms for Ca(2+) accumulation and release from the granules. This review will give a critical overview of the present state of knowledge and the main conflicting points on secretory granule Ca(2+) homeostasis in neuroendocrine cells.  相似文献   

9.
Summary The immunocytochemical reactivity of the glandular cells of the corpus cardiacum (CCG-cells) of Locusta migratoria and Schistocerca gregaria was investigated at the electron-microscopic level, using the protein A-gold method, with three antisera against fragments of the adipokinetic hormones AKH I and AKH II. This combination of antisera permitted discrimination between anti-AKH I and anti-AKH II immunoreactivity. Fixation in a mixture of 2% glutaraldehyde and 2% formaldehyde, in combination with low-temperature embedding in Lowicryl K4M, produced the highest and most consistent selective immunogold labelling of the secretory and ergastoplasmic granules. All secretory granules in all CCG-cells investigated possessed a distinct anti-AKH I-immunopositive reaction, whereas most secretory granules showed a weaker anti-AKH II immunoreaction. Ergastoplasmic granules reacted similar to the secretory granules. The average immunolabelling of the secretory granules was higher in the processes than in the cell bodies of the CCG-cells. The results in Schistocerca gregaria were essentially similar to those in Locusta migratoria. It is concluded that (i) the individual CCG-cells synthesize AKH I as well as AKH II; (ii) these hormones coexist in the same ergastoplasmic and secretory granules; and (iii) these granules contain a higher content of AKH I than AKH II.  相似文献   

10.

Background

Mast cell secretory granules accommodate a large number of components, many of which interact with highly sulfated serglycin proteoglycan (PG) present within the granules. Polyamines (putrescine, spermidine and spermine) are absolutely required for the survival of the vast majority of living cells. Given the reported ability of polyamines to interact with PGs, we investigated the possibility that polyamines may be components of mast cell secretory granules.

Methodology/Principal Findings

Spermidine was released by mouse bone marrow derived mast cells (BMMCs) after degranulation induced by IgE/anti-IgE or calcium ionophore A23187. Additionally, both spermidine and spermine were detected in isolated mouse mast cell granules. Further, depletion of polyamines by culturing BMMCs with α-difluoromethylornithine (DFMO) caused aberrant secretory granule ultrastructure, impaired histamine storage, reduced serotonin levels and increased β-hexosaminidase content. A proteomic approach revealed that DFMO-induced polyamine depletion caused an alteration in the levels of a number of proteins, many of which are connected either with the regulated exocytosis or with the endocytic system.

Conclusions/Significance

Taken together, our results show evidence that polyamines are present in mast cell secretory granules and, furthermore, indicate an essential role of these polycations during the biogenesis and homeostasis of these organelles.  相似文献   

11.
Summary Chromogranins A and B are glycoproteins originally detected in the adrenal medulla. These proteins are also present in a variety of neuroendocrine cells. The subcellular distribution of the chromogranins, and particularly their intra-granular topology are of special interest with respect to their putative functions.Endocrine cells of the guinea pig adrenal medulla, pancreas and gastric mucosa were investigated immunoelectron microscopically for the subcellular distribution of both chromogranins. Out of 13 established endocrine cell types in all locations, only two endocrine cell types showed immunoreactivity for both chromogranin A and B, and eight endocrine cell types showed immunoreactivities only for chromogranin A. These immunoreactivities varied inter-cellularly. Three endocrine cell types were unreactive for the chromogranins. Moreover, some hormonally non-identified endocrine cells in the pancreas and the gastric mucosa also contained chromogranin A immunoreactivities.Subcellularly, chromogranin A or B were confined to secretory granules. In most endocrine cells, the secretory granules showed chromogranin immunoreactivities of varying densities. Furthermore, the intra-granular topology of chromogranin A or B in the secretory granules varied considerably: in some endocrine cell types, i.e. chromaffin-, gastrin- and enterochromaffin-like-cells, chromogranin A immunoreactivity was localized in the perigranular and/or dense core region of the secretory granules; in others, i.e. insulin-, pancreatic polypeptide-and bovine adrenal medulla dodecapeptide-cells, it was present preferentially in the electron-opaque centre of the secretory granules; chromogranin B immunoreactivity was localized preferentially in the perigranular region of the secretory granules of chromaffin cells and gastrin-cells. The inter-cellular and inter-granular variations of chromogranin A and B immunoreactivities point to differences in biosynthesis or processing of the chromogranins among endocrine cells and their secretory granules.  相似文献   

12.
The elemental content of rat peritoneal mast-cell secretory granules has been measured by X-ray micro-analysis. Two distinct categories of granules were analyzed: intact granules, seen in control samples, and spumous granules, corresponding to exocytosed granule matrices. The average Ca content of intact granules was found to be approximately equal to cytosolic concentration, and to increase up to 40-fold in spumous granules. A significant increase was also observed for Na and Cl. These changes were not observed (for Ca) or weaker (for Na and Cl) if the cells had been challenged in the absence of nominal extracellular Ca; in this case, there was also a significant decrease in the sulphur content, suggesting a partial dispersion of the organic matrix components. In exocytosed granule matrices, in the presence but not in the absence of extracellular Ca, a slow and long-lasting increase of intragranular free Ca was monitored by changes in the fluorescence of the Ca-sensitive probes Fluo-3 and Calcium Green-5N, accumulated within rat mast-cell secretory granules. These findings are discussed along two lines: It is proposed that the calcium uptake by the exocytosed mast-cell granule matrices can have a physiological relevance for the surrounding tissue. Mast-cell granules do not disperse after exocytosis. The major uptake of Ca which is seen after opening of the exocytotic pore could be responsible for the exceptional stability of the externalized matrices.  相似文献   

13.
Synposis The granules of parotid acinar cells and submandibular granular tubule cells of rats contain one or more periodic acid-Schiff positive substances that are extracted during fixation with lipid solvents or acidic solutions or if frozen sections are stained in aqueous solutions. The granules in these cells can be stained by Schmorl's reaction, Luxol Fast Blue and a permanganate-Aldehyde Fuchsin sequence. The results obtained with these stains after a variety of fixation procedures strongly suggest that the secretory granules of these two cell types contain several components and that in parotid acinar and submandibular granular tubule cells, at least one of these components is a lipoidal substance.  相似文献   

14.
Summary Complex carbohydrates in secretory granules and at the apical cell surface of mouse gastric mucoid cells were studied during embryogenesis and in the early postnatal period by various cytochemical methods; the periodic acid-thiocarbohydrazide-silver proteinate (PA-TCH-SP) and tannic acid-uranyl acetate (TA-UA) procedures made neutral mucosubstances (NMS) visible, whereas the hexose residues of glycoconjugates were identified using WGA-, RCA II- and ConA-ferritin. The glycocalyx was stained with ruthenium red (RR). During differentiation of the embryonic mucoid cells the number of secretory granules increased in parallel to the increase in their carbohydrate component. NMS-stainable parts in secretory granules also had binding sites for the conjugates RCA II- and WGA-ferritin, but the binding of ConA could not be identified. The increasing quantity of NMS in secretory granules was correlated with the increased amount of PA-TCH-SP and TA-UA positive substances in the apical glycocalyx only in 14- and 18-day-old embryos. The observed uniform affinity for RR and lectin conjugates in all analysed developmental stages remains to be explained.  相似文献   

15.
Summary The development and fate of the secretory granules in murine, rat and human juxtaglomerular epithelioid cells were examined using ultrastructural and immunocytochemical methods. The formation of mature renin granules occurs by fusion of rhomboid protogranules followed by coalescence of their paracrystalline contents, and by the fusion of roundish juvenile granules having an amorphous internum. Protogranules with paracrystalline contents are prominent in animals with stimulated renin synthesis, indicating an overcharge in processing and/or packaging of the secretory product, renin, under these conditions. Various similarities between lysosomes/multivesicular bodies (MVBs) and juvenile renin granules have been observed. With the exception of small MVBs, no renin-negative organelles that could be regarded as lysosomes were found in epithelioid cells of mice and rats. Therefore, we suggest that renin granules are modified lysosomes. Immunocytochemical findings indicate that juvenile secretory granules of epithelioid cells represent the converting and activating compartment for prorenin. Endocytosed foreign tracers such as HRP or cationized ferritin are preferentially internalized by juvenile renin granules, which hence appear to be outstanding by their fusogeneity. Consequently, juvenile granules are probably responsible for the secretion of prorenin, and mature granules for that of active renin.These studies were supported by the German Research Foundation within the Forschergruppe Niere/Heidelberg  相似文献   

16.
Non-hydrolysable analogues of GTP, such as GTP gamma S and GMP-PNP, have previously been shown to inhibit the formation of constitutive secretory vesicles (CSVs) and immature secretory granules (ISGs) from the trans-Golgi network (TGN). Using a cell-free system, we show here that the formation of these vesicles is also inhibited by [A1F4]-, a compound known to act on trimeric G-proteins. Addition of highly purified G-protein beta gamma subunits stimulated, in a differential manner, the cell-free formation of both CSVs and ISGs. ADP-ribosylation experiments revealed the presence of a pertussis toxin-sensitive G-protein alpha subunit in the TGN. We conclude that trimeric G-proteins regulate the formation of secretory vesicles from the TGN.  相似文献   

17.
Low-pH- and calcium-induced aggregation of regulated secretory proteins has been proposed to play a role in their retention and storage in secretory granules. However, this has not been tested for secretory proteins that are stored in the exocrine parotid secretory granules. Parotid granule matrix proteins were analyzed for aggregation in the presence or absence of calcium and in the pH range of 5.5 to 7.5. Amylase did not aggregate under these conditions, although <10% of parotid secretory protein (PSP) aggregated below pH 6.0. To test aggregation directly in isolated granules, rat parotid secretory granules were permeabilized with 0.1% saponin in the presence or absence of calcium and in the pH range of 5.0 to 8.4. In contrast to the low-pH-dependent retention of amylase in exocrine pancreatic granules, amylase was quantitatively released and most PSP was released from parotid granules under all conditions. Both proteins were completely released upon granule membrane solubilization. Thus neither amylase nor PSP show low-pH- or calcium-induced aggregation under physiological conditions in the exocrine parotid secretory granules.  相似文献   

18.
Y Cetin  D Grube 《Histochemistry》1991,96(4):301-310
Chromogranins A and B are glycoproteins originally detected in the adrenal medulla. These proteins are also present in a variety of neuroendocrine cells. The subcellular distribution of the chromogranins, and particularly their intra-granular topology are of special interest with respect to their putative functions. Endocrine cells of the guinea pig adrenal medulla, pancreas and gastric mucosa were investigated immunoelectron microscopically for the subcellular distribution of both chromogranins. Out of 13 established endocrine cell types in all locations, only two endocrine cell types showed immunoreactivity for both chromogranin A and B, and eight endocrine cell types showed immunoreactivities only for chromogranin A. These immunoreactivities varied inter-cellularly. Three endocrine cell types were unreactive for the chromogranins. Moreover, some hormonally non-identified endocrine cells in the pancreas and the gastric mucosa also contained chromogranin A immunoreactivities. Subcellularly, chromogranin A or B were confined to secretory granules. In most endocrine cells, the secretory granules showed chromogranin immunoreactivities of varying densities. Furthermore, the intra-granular topology of chromogranin A or B in the secretory granules varied considerably: in some endocrine cell types, i.e. chromaffin-, gastrin- and enterochromaffin-like-cells, chromogranin A immunoreactivity was localized in the perigranular and/or dense core region of the secretory granules; in others, i.e. insulin-, pancreatic polypeptide- and bovine adrenal medulla dodecapeptide-cells, it was present preferentially in the electron-opaque centre of the secretory granules; chromogranin B immunoreactivity was localized preferentially in the perigranular region of the secretory granules of chromaffin cells and gastrin-cells. The inter-cellular and inter-granular variations of chromogranin A and B immunoreactivities point to differences in biosynthesis or processing of the chromogranins among endocrine cells and their secretory granules.  相似文献   

19.
During the cell cycle the distribution of the ACTH-containing secretory granules in AtT20 cells, as revealed by immunofluorescence labeling and electron microscopy of thin sections, undergoes a cycle of changes. In interphase cells the granules are concentrated in the Golgi region, where they form, and also at the tips of projections from the cells, where they accumulate. These projections contain many microtubules extending to their tips. During metaphase and anaphase the granules are randomly distributed in the cytoplasm of the rounded-up mitotic cells. On entry into telophase there is a rapid and striking redistribution of the granules, which accumulate in large numbers in the midbody as it develops during cytokinesis. This accumulation of secretory granules in the midbody is dependent upon the presence of microtubules. The changing pattern of distribution of the secretory granules during the cell cycle fulfills the predictions of a model envisaging first that secretory granules associate with and move along interphase microtubules in a net anterograde direction away from the centrioles, and secondly that they do not associate with microtubules of the mitotic spindle during metaphase and anaphase.  相似文献   

20.
Electron microscopy has revealed endocrine secretory granules in the endothelial cells of the rat liver, spleen and bone marrow capillaries. The granules were responsible for serotonin, melatonin, catecholamines and insulin synthesis. Local mechanisms of hormonal control of hemostasis are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号