共查询到20条相似文献,搜索用时 0 毫秒
1.
The role of Ca2+ ions in the regulation of motility, cell cycle, and division of prokaryotes is discussed, as well as their involvement in the pathogenesis of some infectious diseases. The structural and functional organization of the prokaryotic Ca2+ signaling system and the mechanisms of Ca2+ membrane transport and homeostasis are described. Special attention is paid to the role of Ca2+ cation channels, Ca2+ transporters, and Ca2+-binding proteins in the regulation of the intercellular Ca2+ concentration. 相似文献
2.
3.
Szabadkai G Simoni AM Bianchi K De Stefani D Leo S Wieckowski MR Rizzuto R 《Biochimica et biophysica acta》2006,1763(5-6):442-449
Recent data shed light on two novel aspects of the mitochondria-Ca2+ liaison. First, it was extensively investigated how Ca2+ handling is controlled by mitochondrial shape, and positioning; a playground also of cell death and survival regulation. On the other hand, significant progress has been made to explore how intra- and near-mitochondrial Ca2+ signals modify mitochondrial morphology and cellular distribution. Here, we shortly summarize these advances and provide a model of Ca2+-mitochondria interactions. 相似文献
4.
Miriam Eckstein Francisco J. Aulestia Meerim K. Nurbaeva Rodrigo S. Lacruz 《Biochimica et Biophysica Acta (BBA)/Molecular Cell Research》2018,1865(11):1778-1785
Biomineralization requires the controlled movement of ions across cell barriers to reach the sites of crystal growth. Mineral precipitation occurs in aqueous phases as fluids become supersaturated with specific ionic compositions. In the biological world, biomineralization is dominated by the presence of calcium (Ca2+) in crystal lattices. Ca2+ channels are intrinsic modulators of this process, facilitating the availability of Ca2+ within cells in a tightly regulated manner in time and space. Unequivocally, the most mineralized tissue produced by vertebrates, past and present, is dental enamel. With some of the longest carbonated hydroxyapatite (Hap) crystals known, dental enamel formation is fully coordinated by specialized epithelial cells of ectodermal origin known as ameloblasts. These cells form enamel in two main developmental stages: a) secretory; and b) maturation. The secretory stage is marked by volumetric growth of the tissue with limited mineralization, and the opposite is found in the maturation stage, as enamel crystals expand in width concomitant with increased ion transport. Disruptions in the formation and/or mineralization stages result, in most cases, in permanent alterations in the crystal assembly. This introduces weaknesses in the material properties affecting enamel's hardness and durability, thus limiting its efficacy as a biting, chewing tool and increasing the possibility of pathology. Here, we briefly review enamel development and discuss key properties of ameloblasts and their Ca2+-handling machinery, and how alterations in this toolkit result in enamelopathies. 相似文献
5.
Calcium (Ca2+) signals are generated across a broad time range. Kinetic considerations impact how information is processed to encode and decode Ca2+ signals, the choreography of responses that ensure specific and efficient signaling and the overall temporal amplification such that ephemeral Ca2+ signals have lasting physiological value. The reciprocal importance of timing for Ca2+ signaling, and Ca2+ signaling for timing is exemplified by the altered kinetic profiles of Ca2+ signals in certain diseases and the likely role of basal Ca2+ fluctuations in the perception of time itself. 相似文献
6.
TRP channels and Ca2+ signaling 总被引:3,自引:0,他引:3
Minke B 《Cell calcium》2006,40(3):261-275
There is a rapidly growing interest in the family of transient receptor potential (TRP) channels because TRP channels are not only important for many sensory systems, but they are crucial components of the function of neurons, epithelial, blood and smooth muscle cells. These facts make TRP channels important targets for treatment of diseases arising from the malfunction of these channels in the above cells and for treatment of inflammatory pain. TRP channels are also important for a growing number of genetic diseases arising from mutations in various types of TRP channels. The Minerva-Gentner Symposium on TRP channels and Ca(2+) signaling, which took place in Eilat, Israel (February 24-28, 2006) has clearly demonstrated that the study of TRP channels is a newly emerging field of biomedicine with prime importance. In the Eilat symposium, investigators who have contributed seminal publications and insight into the TRP field presented their most recent, and in many cases still unpublished, studies. The excellent presentations and excitement generated by them demonstrated that much progress has been achieved. Nevertheless, it was also evident that the field of TRP channels is still in its infancy in comparison to other fields of ion channels, and even the fundamental knowledge of the gating mechanism of TRP channels is still unsolved. The beautiful location of the symposium, together with informal intensive discussions among the participants, contributed to the success of this meeting. 相似文献
7.
8.
Nicotinic acid adenine dinucleotide phosphate (NAADP) is a potent Ca2+ mobilizing nucleotide essentially involved in T cell activation. Using combined microinjection and single cell calcium imaging, we demonstrate that co-injection of NAADP and the D-myo-inositol 1,4,5-trisphosphate antagonist heparin did not inhibit Ca2+ mobilization. In contrast, co-injection of the ryanodine receptor antagonist ruthenium red efficiently blocked NAADP induced Ca2+ signalling. This pharmacological approach was confirmed using T cell clones stably transfected with plasmids expressing antisense mRNA targeted specifically against ryanodine receptors. NAADP induced Ca2+ signaling was strongly reduced in these clones. In addition, inhibition of Ca2+ entry by SK&F 96365 resulted in a dramatically decreased Ca2+ signal upon NAADP injection. Gd3+, a known blocker of Ca2+ release activated Ca2+ entry, only partially inhibited NAADP mediated Ca2+ signaling. These data indicate that in T cells (i) ryanodine receptor are the major intracellular Ca2+ release channels involved in NAADP induced Ca2+ signals, and that (ii) such Ca2+ release events are largely amplified by Ca2+ entry. 相似文献
9.
Ozeki M Watanabe H Luo J Nakano T Takeuchi K Kureishi Y Ito M Nakano T Ohashi K Hayashi H 《Molecular and cellular biochemistry》2004,259(1-2):169-176
The protein kinase Akt participates in such important functions of endothelial cells as nitric oxide production and angiogenesis, activities that involve changes in cytosolic Ca2+ concentration. However, it is not known if activation of Akt is itself involved in the regulation of Ca2+ signals produced in these cells. The objective of this study was to examine if Akt is involved in the regulation of Ca2+ signaling in endothelial cells. Agonist-stimulated Ca2+ signals, assessed using fura-2, were compared in porcine aortic endothelial cells under control conditions or conditions in which Akt was blocked either by different inhibitors of phosphatidylinositol 3-kinase (PI3 kinase)/Akt or by transient expression of a dominant-negative form of Akt (dnAkt). We found that the release of intracellular Ca2+ stores stimulated by bradykinin or thapsigargin is not affected by the PI3 kinase inhibitors LY294002 and wortmannin, or by expression of dnAkt. LY294002 dose-dependently inhibits store-operated Ca2+ entry, an effect not seen with wortmannin. Expression of dnAkt has no effect on store-operated Ca2+ entry. We conclude that Akt is not involved in the regulation of agonist-stimulated Ca2+ signals in endothelial cells. The compound LY294002 inhibits store-operated Ca2+ entry in these cells by a mechanism independent of PI3 kinase/Akt inhibition. 相似文献
10.
Endogenous high-affinity Ca2+ buffering and its roles were investigated in mouse cerebellar Purkinje cells with the use of a low-affinity Ca2+ indicator and a high-affinity caged Ca2+ compound. Increases in the cytosolic Ca2+ concentration ([Ca2+]i) were markedly facilitated during repetitive depolarization, resulting in the generation of steep micromolar Ca2+ gradients along dendrites. Such supralinear Ca2+ responses were attributed to the saturation of a large concentration (0.36 mM) of a mobile, high-affinity (dissociation constant, 0.37 microM) Ca2+ buffer with cooperative Ca2+ binding sites, resembling calbindin-D28K, and to an immobile, low-affinity Ca2+ buffer. These data suggest that the high-affinity Ca2+ buffer operates as the neuronal computational element that enables efficient coincidence detection of the Ca2+ signal and that facilitates spatiotemporal integration of the Ca2+ signal at submicromolar [Ca2+]i. 相似文献
11.
The secretion of adrenocorticotrophin (ACTH) from corticotropes is a key component in the endocrine response to stress. The resting potential of corticotropes is set by the basal activities of TWIK-related K(+) (TREK)-1 channel. Corticotrophin-releasing hormone (CRH), the major ACTH secretagogue, closes the background TREK-1 channels via the cAMP-dependent pathway, resulting in depolarization and a sustained rise in cytosolic [Ca(2+)] ([Ca(2+)](i)). By contrast, arginine vasopressin and norepinephrine evoke Ca(2+) release from the inositol trisphosphate (IP(3))-sensitive store, resulting in the activation of small conductance Ca(2+)-activated K(+) channels and hyperpolarization. Following [Ca(2+)](i) rise, cytosolic Ca(2+) is taken into the mitochondria via the uniporter. Mitochondrial inhibition slows the decay of the Ca(2+) signal and enhances the depolarization-triggered exocytotic response. Both voltage-gated Ca(2+) channel activation and intracellular Ca(2+) release generate spatial Ca(2+) gradients near the exocytic sites such that the local [Ca(2+)] is ~3-fold higher than the average [Ca(2+)](i). The stimulation of mitochondrial metabolism during the agonist-induced Ca(2+) signal and the robust endocytosis following stimulated exocytosis enable corticotropes to maintain sustained secretion during the diurnal ACTH surge. Arachidonic acid (AA) which is generated during CRH stimulation activates TREK-1 channels and causes hyperpolarization. Thus, corticotropes may regulate ACTH release via an autocrine feedback mechanism. 相似文献
12.
13.
A number of recent reports have concluded that Ca2+ is not released by treatments which are usually thought to induce the depletion of Ca2+. Consequently, it was proposed that the Ca2+ demand was not related to a specific rôle for Ca2+ in Photosystem-II oxygen evolution. In this letter, we scrutinize the data behind these conclusions and argue that, based on these data, it is premature to question the view that intrinsic Ca2+ is actually being released. 相似文献
14.
Karl-W. Koch Teresa Duda Rameshwar K. Sharma 《Molecular and cellular biochemistry》2010,334(1-2):105-115
Vertebrate phototransduction depends on the reciprocal relationship between two-second messengers, cyclic GMP and Ca2+. The concentration of both is reciprocally regulated including the dynamic synthesis of cyclic GMP by a membrane bound guanylate cyclase. Different from hormone receptor guanylate cyclases, the cyclases operating in phototransduction are regulated by the intracellular Ca2+-concentration via small Ca2+-binding proteins. Based on the site of their expression and their Ca2+ modulation, this sub-branch of the cyclase family was named sensory guanylate cyclases, of which the retina specific forms are named ROS-GCs (rod outer segment guanylate cyclases). This review focuses on the structure and function of the ROS-GC subfamily present in the mammalian retinal neurons: photoreceptors and inner layers of the retinal neurons. Portions and excerpts of the review are from a previous chapter (Curr Top Biochem Res 6:111–144, 2004). 相似文献
15.
16.
Mikhaylova M Sharma Y Reissner C Nagel F Aravind P Rajini B Smalla KH Gundelfinger ED Kreutz MR 《Biochimica et biophysica acta》2006,1763(11):1229-1237
The calcium sensor protein caldendrin is abundantly expressed in neurons and is thought to play an important role in different aspects of synapto-dendritic Ca2+ signaling. Caldendrin is highly abundant in the postsynaptic density of a subset of excitatory synapses in brain and its distinct localization raises several decisive questions about its function. Previous work suggests that caldendrin is tightly associated with Ca2+ - and Ca2+ release channels and might be involved in different aspects of the organization of the postsynaptic scaffold as well as with synapse-to-nucleus communication. In this report we introduce two new EF-hand calcium sensor proteins termed calneurons that apart from calmodulin represent the closest homologues of caldendrin in brain. Calneurons have a different EF-hand organization than other calcium sensor proteins, are prominently expressed in neurons and will presumably bind Ca2+ with higher affinity than caldendrin. Despite some significant structural differences it is conceivable that they are involved in similar Ca2+ regulated processes like caldendrin and neuronal calcium sensor proteins. 相似文献
17.
Oscillatory Ca2+ signaling and its cellular function 总被引:2,自引:0,他引:2
Y Tsunoda 《The New biologist》1991,3(1):3-17
It is well known that in the cells of many higher eukaryotic organisms Ca2+ ions are used as a signal messenger in the regulation of cellular functions. From recent studies with single cells it was suggested that the intracellular Ca2+ signal comprises repetitive and periodic Ca2+ spikes in a variety of cells. The mechanism by which intracellular Ca2+ oscillates and the biological significance of this oscillation are not well understood. It also remains to be determined how the Ca2+ signaling system sends a message into the cell, intermittently, to amplify the functional response. This review describes and integrates some recent views of oscillatory Ca2+ signaling. 相似文献
18.
Antigen-induced Ca2+ signaling and desensitization in B cells 总被引:2,自引:0,他引:2
A H Lazarus G B Mills T L Delovitch 《Journal of immunology (Baltimore, Md. : 1950)》1990,144(11):4147-4155
Cross-linking of B cell surface Ig (sIg) by anti-Ig results in transmembrane signaling. However, the capacity of a thymus-dependent (TD) Ag to mediate B cell signal transduction has been less well documented. Therefore, we examined Ag-induced intracellular free calcium concentration [( Ca2+]) in B cells by using TD Ag that would be expected to either cross-link or not cross-link sIgM and/or induce the coupling of sIgM to FcR. Stimulation of mouse TA3 hybridoma B cell transfectants that express the SP6 anti-TNP specific sIgM with either TNP-OVA or anti-IgM antibodies resulted in a maximal fourfold increase in [Ca2+]i. The net increase in [Ca2+]i in response to TNP-OVA was dependent upon both the Ag dose and the TNP:OVA molar ratio. Because occupancy of several cell-surface receptor types leads to a loss of response to subsequent stimulation by ligand (homologous desensitization), we examined the ability of Ag to induce homologous desensitization of sIgM in these B cells. TNP1-OVA at all concentrations tested (up to 500 micrograms/ml) did not lead to any change in [Ca2+]i or desensitization. Cross-linking of TNP1-OVA (10 micrograms/ml) with F(ab')2 of anti-OVA antibody induced both a rise in [Ca2+]i and homologous desensitization of sIg, suggesting that cross-linking of sIgM by Ag is sufficient to induce both these processes. TNP6-OVA at a concentration of 10 micrograms/ml induced changes in [Ca2+]i and partially desensitized TNP-specific B cells to stimulation by anti-IgM. Interestingly, a high dose (180 micrograms/ml) of TNP6-OVA stimulated minimal changes in [Ca2+]i yet did not lead to desensitization. However, cross-linking of TNP6-OVA at this high dose with F(ab')2 of rabbit anti-OVA elevated [Ca2+]i and elicited partial desensitization. Complete desensitization of sIgM by Ag was achieved when intact (Fc-containing) anti-OVA antibody was used, suggesting that the FcR can play a role in desensitization. Ag- and antibody-mediated desensitization was not caused by steric hindrance of sIg. Thus, we have observed two forms of Ag-induced desensitization of sIgM, both of which involve sIg cross-linking and one of which is mediated by the physiologic coupling of sIg to FcR. 相似文献
19.
Ca2+ signaling, mitochondria and cell death 总被引:1,自引:0,他引:1
In the complex interplay that allows different signals to be decoded into activation of cell death, calcium (Ca2+) plays a significant role. In all eukaryotic cells, the cytosolic concentration of Ca2+ ions ([Ca2+]c) is tightly controlled by interactions among transporters, pumps, channels and binding proteins. Finely tuned changes in [Ca2+]c modulate a variety of intracellular functions ranging from muscular contraction to secretion, and disruption of Ca2+ handling leads to cell death. In this context, Ca2+ signals have been shown to affect important checkpoints of the cell death process, such as mitochondria, thus tuning the sensitivity of cells to various challenges. In this contribution, we will review (i) the evidence supporting the involvement of Ca2+ in the three major process of cell death: apoptosis, necrosis and autophagy (ii) the complex signaling interplay that allows cell death signals to be decoded into mitochondria as messages controlling cell fate. 相似文献