首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Helicobacter pylori, Gram-negative spiral-shaped bacteria, member of epsilon-Proteobacteria, colonizes the gastric mucosa of humans. H. pylori has been identified as the causative agent of chronic inflammation, chronic gastritis and peptic ulceration and is considered a risk factor for the development of mucosa-associated lymphoid tissue lymphoma and adenocarcinoma of the stomach. Although more than 50% of human population is infected with H. pylori only a subset develops disease. The completion of two H. pylori genome sequences revealed the enormous strain heterogeneity and permitted comparative proteome analysis. Immunoproteomics, a novel strategy combining standard proteomics with immunological screening, is currently method of choice for identification of new antigens of diagnostic and protective values. Highly specific antigens will be used as biomarkers of different pathology induced by H. pylori infection whereas novel highly immunogenic, conserved, abundant and surface-located proteins will facilitate efficient anti-Helicobacter vaccine construction.  相似文献   

2.
Background. Helicobacter pylori infection persists in the presence of potent serum and gastric mucosal anti-body responses against bacterial antigens. The aim of this article is to report on a study determine whether there is antibody deposition on H. pylori in vivo in the stomach of infected patients and whether gastric and cultured forms of H. pylori differ in their antibody reactivity.
Materials and Methods. Serum, gastric biopsies, and antral brushings were obtained from 10 patients having endoscopy. H. pylori was cultured from gastric biopsies. Bacterial samples were stained directly for immunoglobulin deposition and indirectly using rabbit antiurease serum or patient serum. Samples were examined by immunofluorescence microscopy and flow cytometry.
Results. Although spiral bacteria could be identified easily by acridine orange staining and antiurease staining of gastric brushings from H. pylori infected patients, gastric bacteria did not have detectable IgG or IgA present, and only one of five samples could be stained for IgG and IgA indirectly using patient serum. In contrast, cultured bacteria could be stained readily with homologous serum for IgG and IgA in the majority of cases. Low pH inhibited immunoglobulin reactivity with cultured H. pylori.
Conclusions. Gastric H. pylori may evade humoral defense owing to poor deposition of immunoglobulin in the gastric environment or failure to express surface antigens that are present on cultured forms of H. pylori.  相似文献   

3.
BACKGROUND: Both various virulence factors of Helicobacter pylori and host factors influence the clinical outcome of H. pylori infection. In animal experiments with Helicobacter felis, large variations in the severity of disease have been observed between different mouse strains infected with a single isolate of H. felis. C57BL/6 J mouse strain that lacks the expression of group IIA phospholipase A2 has been shown to develop more severe gastric inflammation than other mouse strains. Thus, group IIA phospholipase A2 has been suggested to play a role in regulating inflammation in gastric mucosa. The aim of this study was to examine the possible role of group IIA phospholipase A2 in experimental Helicobacter infection. MATERIALS AND METHODS: Transgenic mice expressing human group IIA phospholipase A2 and their group IIA phospholipase A2 deficient nontransgenic C57BL/6 J littermates were infected with H. felis. The mice were killed 3, 8, and 19 weeks after inoculation of bacteria to determine the histopathological changes in gastric mucosa. RESULTS: The infected mice developed chronic inflammation in gastric mucosa. We found no differences in the colonization of bacteria between transgenic and nontransgenic mice. At 3 and 8 weeks, no difference was found in the severity of inflammation between the two groups. Nineteen weeks after the administration of bacteria the inflammation was more marked in nontransgenic than transgenic mice. Group IIA phospholipase A2 was expressed by in situ hybridization in the neck cells of the glandular stomach in transgenic mice. CONCLUSIONS: The results of the present study suggest that the endogenous expression of group IIA phospholipase A2 diminishes chronic inflammation in gastric mucosa in experimental H. felis infection in mice.  相似文献   

4.
Helicobacter pylori can colonize the human stomach for prolonged periods of time, and this colonization uniformly leads to the development of chronic active gastritis. In a small percentage of individuals, gastric pathology progresses to peptic ulceration or more rarely certain gastric cancers. In addition to non-specific inflammation, specific systemic and local immunity develops in response to gastric colonization by this pathogen. However, these responses combined appear inadequate for eliminating H. pylori from the gastric mucosa. This is also the case in a mouse model of gastric colonization by H. pylori. In the present study, we attempted to determine whether the mammalian host response to infection with H. pylori exerts any overt antibacterial effects. To this end we examined H. pylori colonization in normal mice, and mice immunosuppressed by treatment with a corticosteroid. Despite obvious suppression of the immune response in the latter mice, H. pylori burdens remained similar in both groups after three months of colonization. This suggests that the murine host response, at least, exerts little obvious protection against H. pylori colonization.  相似文献   

5.
Invasiveness of Helicobacter pylori into Human Gastric Mucosa   总被引:2,自引:0,他引:2  
Background. Helicobacter pylori has generally been observed only in the gastric mucous layer or in the spaces between gastric mucus -s ecreting cells and not in the gastric epithelial cells or in the lamina propria. The purpose of this study is to determine whether H. pylori invades the gastric mucosa, using an immunoelectron microscopical examination of human gastric mucosa infected with H. pylori.
Materials and Methods. Five hundred gastric antral biopsy specimens were fixed in a periodate-lysin-paraformaldehyde solution, embedded in Lowicryl, sectioned, and examined with a light microscope. One hundred specimens moderately or severely infected with H. pylori were selected and were incubated with polyclonal rabbit anti– H. pylori antibody. The specimens were washed, incubated with 20 nm of colloidal gold–conjugated goat anti–rabbit IgG, stained with uranyl acetate and lead citrate, and observed with a transmission electron microscope.
Results. In one case, a bacterium was observed within the cytoplasm of a gastric mucus -s ecreting cell; in another case, a few bacteria were observed within the cytoplasm of a stromal cell in the lamina propria. The bacteria could be differentiated from degenerated intracellular organelles by gold particles attached to the bacteria.
Conclusion. H. pylori rarely invade the lamina propria and gastric cells.  相似文献   

6.
Host responses of guinea pigs infected with Helicobacter pylori were investigated. Passaged H. pylori colonised the stomach for up to 13 weeks after infection, but after 1 month the number of bacteria fell sharply. Specific antibodies, predominantly of the IgG2 subtype, were present from week 3 onwards. Antibodies to urease A and flagella were abundant. Severe inflammation of the gastric mucosa and damage to the stomach epithelium was seen. Infiltrates of mononuclear cells and eosinophils were found near the parietal glands. As infection progressed, inflammation and tissue damage became more localised and more variable between individual animals. These parameters can be used as markers for colonisation of the stomach by H. pylori.  相似文献   

7.
We recently reported that Helicobacter pylori-specific Abs impair the development of gastritis and down-regulate resistance against H. pylori infection. In this study, we asked whether IgA Abs specifically can have an impact on H. pylori colonization and gastric inflammation. To obtain a sensitive model for the study of inflammation we crossed IgA- and IL-10-deficient mice. We found that IL-10(-/-)/IgA(-/-) mice were significantly less colonized than IL-10(-/-)/IgA(+/+) mice, which in turn were less colonized than wild-type (WT) mice. The IL-10(-/-)/IgA(-/-) mice exhibited a 1.2-log reduction in bacterial counts compared with that in IL-10(-/-)/IgA(+/+) mice, suggesting that IgA Abs rather promoted than prevented infection. The reduced colonization in IL-10(-/-)/IgA(-/-) mice was associated with the most severe gastritis observed, albeit all IL-10(-/-) mice demonstrated more severe gastric inflammation than wild-type mice. The gastritis score and the infiltration of CD4(+) T cells into the gastric mucosa were significantly higher in IL-10(-/-)/IgA(-/-) mice than in IL-10(-/-)/IgA(+/+) mice, arguing that IgA Abs counteracted inflammation. Moreover, following oral immunization, IL-10(-/-)/IgA(-/-) mice were significantly better protected against colonization than IL-10(-/-)/IgA(+/+) mice. However, the stronger protection was associated with more severe postimmunization gastritis and gastric infiltration of CD4(+) T cells. There was also a clear increase in complement receptor-expressing cells in IL-10(-/-)/IgA(-/-) mice, though C3b-fragment deposition in the gastric mucosa was comparable between the two. Finally, specific T cell responses to recall Ag demonstrated higher levels of IFN-gamma production in IL-10(-/-)/IgA(-/-) as compared with IL-10(-/-)/IgA(+/+) mice. Thus, it appears that IgA and IL-10 help H. pylori bacteria evade host resistance against infection.  相似文献   

8.
Helicobacter pylori (H. pylori) is a bacteria that is well known as the principal cause of chronic gastritis and peptic ulcer disease in humans. Because no effective vaccine has yet been established, we designed a new biomolecule as a vaccination antigen capable of preventing the infection of H. pylori. The designed biomolecule involves a 138 stretch (aa 201-aa 338 of beta-subunit of H. pylori urease), which is the functionally important region for urease activity. The region was expressed as a recombinant protein, called UREB138. The therapeutic vaccination was performed using UREB138 in mice persistently infected with H. pylori. The subcutaneous administration of UREB138 remarkably reduced the number of bacteria in the mice stomach compared with the control. Immunization with UREB138 enhanced the urease-specific IgA and IgG1 in the serum. Immunohistochemical staining for IgA in gastric mucosa showed that the number of mice positively stained with IgA was significantly higher in UREB138-immunized mice than in control mice. Furthermore, the expression of interferon-gamma mRNA in the gastric tissues with eradicated bacteria was higher than in the non-eradicated group. The combination of Th1- and Th2-mediated immunity plays a role in reducing the colonization of bacterial numbers of H. pylori.  相似文献   

9.
胃内定植是引起幽门螺杆菌(Helicobacter pylori,H.pylori)感染的先决条件。H.pylori可穿过胃黏液层并与胃上皮细胞相互作用。这个定植过程主要受到H.pylori动力和尿素酶的影响。同时H.pylori形态、胃内pH、外膜蛋白及益生菌等也在其中扮演重要角色。该研究主要对H.pylori胃内定植过程中的相关影响因素进行综述。  相似文献   

10.
11.
我们检测10例普通猪的胄组织,有8例分离到螺杆菌样细菌(HLO)。其菌落、菌体形态和某些生化反应与幽门螺杆菌(HP)相似,但其尿素酶活性较低,HLO全菌蛋白的SDS一pAGE图谱也与HP的不同。本文就HP和HLO及其伴发的人、猪慢性胃炎的特点,作了比较和讨论。  相似文献   

12.
BACKGROUND: Helicobacter pylori mainly inhabit the mucus layer in the gastric mucosa. However, mechanisms involving H. pylori colonization and proliferation in gastric mucosa are not well established. This study focuses on elucidating the role of gastric mucosal cells on growth of H. pylori. MATERIALS AND METHODS: H. pylori was co-cultured with the murine gastric surface mucosal cells (GSM06), and the growth of H. pylori on the cells was assessed by enumerating the colony-forming units (CFU). The H. pylori growth factor in the culture media conditioned by GSM06 cell was purified by HPLC, and the chemical structure of the growth factor was identified by analyses of (1)H- and (13)C-NMR spectra. RESULTS: A marked increase in the number of CFU of H. pylori was observed in the GSM06 cells. The enhanced H. pylori growth was also observed when indirectly incubated with GSM06 cells through semi-permeable membrane. In addition, culture media conditioned by GSM06 cell stimulated H. pylori growth approximately one thousand-fold. By bioassay-guided purification, the H. pylori growth factor was isolated from the conditioned medium of GSM06 cells and identified as L-lactic acid. The H. pylori growth-enhancing activity under microaerobic condition was well correlated with L-lactic acid concentrations in the conditioned media. CONCLUSIONS: This study demonstrates that L-lactic acid secreted by gastric mucosal cells enhances the growth of H. pylori, and this L-lactic acid-dependent growth of H. pylori may be important to the long-term colonization of H. pylori in the stomach.  相似文献   

13.
In this theoretical article, the hypothesis is proposed that immunization against gastric helicobacter infection is mediated by CD4+ T-cell induced changes in mucus production. Vaccine development for the gastric pathogen Helicobacter pylori has encountered several problems. Resolving these problems is impeded by our lack of understanding of the mechanisms by which the immune response influences bacterial colonization. Protective immunity requires CD4+ T cells, but the majority of helicobacters are located in the mucus of the gastric lumen, away from the epithelial surface. Evidence suggests that this mechanism functions independently of antibodies, so how this is achieved is unknown. Clues to this mechanism may be provided by immune clearance of nematode infection. Similar to H. pylori, expulsion of the intestinal nematode, Nippostrongylus brasiliensis, in rodents is mediated by CD4+ T-cell changes in the numbers of goblet cells and the type of mucins secreted into the gut. Immune-mediated changes in secretion of gastric mucins could similarly be responsible for the reductions in helicobacter colonization seen in immunized animals. Helicobacter pylori are highly motile bacteria that have evolved to inhabit their specialized niche. Alterations in their mucus environment could influence their motility, such that the bacteria cannot remain efficiently within the mucus and are flushed away.  相似文献   

14.
Helicobacter pylori infection induces chronic inflammation in the gastric mucosa with a marked increase in the number of lymphoid follicles consisting of infiltrating B and T cells, neutrophils, dendritic cells (DC) and macrophages. It has been suggested that an accumulation of mature DC in the tissue, resulting from a failure of DC to migrate to lymph nodes, may contribute to this chronic inflammation. Migration of DC to lymph nodes is regulated by chemokine receptor CCR7, expressed on mature DC, and the CCR7 ligands CCL19 and CCL21. In this study we analysed the maturation, in vitro migration and cytokine production of human DC after stimulation with live H. pylori. For comparison, DC responses to non-pathogenic Escherichia coli bacteria were also evaluated. Stimulation with H. pylori induced maturation of DC, i.e. up-regulation of the chemokine receptors CCR7 and CXCR4 and the maturation markers HLA-DR, CD80 and CD86. The H. pylori-stimulated DC also induced CD4(+) T-cell proliferation. DC stimulated with H. pylori secreted significantly more interleukin (IL)-12 compared to DC stimulated with E. coli, while E. coli-stimulated DC secreted more IL-10. Despite low surface expression of CCR7 protein following stimulation with H. pylori compared to E. coli, the DC migrated equally well towards CCL19 after stimulation with both bacteria. Thus, we could not detect any failure in the migration of H. pylori stimulated DC in vitro that may contribute to chronic gastritis in vivo, and our results suggest that H. pylori induces maturation and migration of DC to lymph nodes where they promote T cell responses.  相似文献   

15.
Considerable knowledge has recently accumulated on the mechanism by which Helicobacter pylori (H. pylori) induces chronic gastritis. Although H. pylori is not an invasive bacterium, soluble surface constituents can provoke pepsinogen release from gastric chief cells or trigger local inflammation in the underlying tissue. Urease appears to be one of the prime chemoattractants for recruitment and activation of inflammatory cells. Release of cytokines, such as tumor necrosis factor alpha, interleukin 1 and 6, and oxygen radicals, leads to a further tissue inflammation accompanied by a potent systemic IgA and IgG type of immune response. Chronic inflammation and antigens on glandular epithelial cells lead to a progressive destruction with loss of the epithelial barrier function. Within the gastric mucosa, patches of intestinal metaplasia develop, which may be a risk factor for subsequent development of gastric carcinoma. Hyperacidity in duodenal ulcer patients induces gastric metaplasia in the duodenal bulb, which represents a target for H. pylori colonization and ulcer formation. H. pylori can be detected in the majority of patients with peptic ulcers and, compared to age-matched healthy people, it is also found more often in patients with dyspepsia and gastric carcinoma. Although H. pylori can be detected in healthy people, the marked reduction of the ulcer recurrence rate by eradication of H. pylori (80 percent versus 20 percent relapse within one year) suggests that H. pylori is a major risk factor for duodenal ulcer formation. The potential role of H. pylori in non-ulcer dyspepsia and carcinogenesis is under investigation. Current regimens aimed at eradicating H. pylori use a combination of several drugs that are potentially toxic. Since the risk of complications may exceed the potential benefit in most patients, eradication treatment should be limited to clinical trials and to patients with aggressive ulcer disease. New drug regimens, e.g., the combination of proton pump inhibitors with one antibiotic, may provide less toxic alternatives. Beyond ulcer treatment, effective and well-tolerated eradication regimens may have a place in prophylaxis of gastric carcinoma.  相似文献   

16.
Helicobacter pylori colonizes the mucus niche of the gastric mucosa and is a risk factor for gastritis, ulcers and cancer. The main components of the mucus layer are heavily glycosylated mucins, to which H. pylori can adhere. Mucin glycosylation differs between individuals and changes during disease. Here we have examined the H. pylori response to purified mucins from a range of tumor and normal human gastric tissue samples. Our results demonstrate that mucins from different individuals differ in how they modulate both proliferation and gene expression of H. pylori. The mucin effect on proliferation varied significantly between samples, and ranged from stimulatory to inhibitory, depending on the type of mucins and the ability of the mucins to bind to H. pylori. Tumor-derived mucins and mucins from the surface mucosa had potential to stimulate proliferation, while gland-derived mucins tended to inhibit proliferation and mucins from healthy uninfected individuals showed little effect. Artificial glycoconjugates containing H. pylori ligands also modulated H. pylori proliferation, albeit to a lesser degree than human mucins. Expression of genes important for the pathogenicity of H. pylori (babA, sabA, cagA, flaA and ureA) appeared co-regulated in response to mucins. The addition of mucins to co-cultures of H. pylori and gastric epithelial cells protected the viability of the cells and modulated the cytokine production in a manner that differed between individuals, was partially dependent of adhesion of H. pylori to the gastric cells, but also revealed that other mucin factors in addition to adhesion are important for H. pylori-induced host signaling. The combined data reveal host-specific effects on proliferation, gene expression and virulence of H. pylori due to the gastric mucin environment, demonstrating a dynamic interplay between the bacterium and its host.  相似文献   

17.
Unique mechanism of Helicobacter pylori for colonizing the gastric mucus   总被引:2,自引:0,他引:2  
Helicobacter pylori is a human gastric pathogen causing chronic infection. Urease and motility using flagella are essential factors for its colonization. Urease of H. pylori exists both on the surface and in the cytoplasm, and is involved in neutralizing gastric acid and in chemotactic motility. H. pylori senses the concentration gradients of urea in the gastric mucus layer, then moves toward the epithelial surface by chemotactic movement. The energy source for the flagella movement is the proton motive force. The hydrolysis of urea by the cytoplasmic urease possibly generates additional energy for the flagellar rotation in the mucus gel layer.  相似文献   

18.
19.
20.
In males with peptic ulcer of the stomach and the duodenum, associated with H. pylori, the population and subpopulation spectrum of peripheral blood lymphocytes was studied by the method of CD typing with the use of monoclonal antibodies manufactured by the Research Institute "Preparat" (Nizhny Novgorod, Russia). The study revealed the development of disturbances in the amount of populations and subpopulations of peripheral blood lymphocytes, accompanied by a decrease in the absolute number of T lymphocytes (CD3, CD7), T helpers (CD4), T cytotoxic lymphocytes (CD8), B lymphocytes (CD22) and the ratio of CD4/CD8 cells. A decrease in the amount of IgA, IgG, the key complement components C1, C3, C5 was established. In peptic ulcer the immunological characteristics of gastric juice were found to essentially differ from those of saliva by a lower content of mucin, IgA and a higher content of SIgA and IgM in gastric secretions, which may form prerequisites for the colonization of the gastric mucosa by H. pylori.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号