首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
柏祥  古小治 《广西植物》2018,38(3):332-340
与本地植物的种间竞争是影响外来植物能否成功入侵的关键因素之一,该研究通过受控模拟试验研究了本地植物芦苇(Phragmites australis)和外来入侵植物反枝苋(Amaranthus retroflexus)在淹水和干旱两种水分条件下混种密度(6∶2、4∶4和2∶6)对其种间竞争的影响。结果表明:(1)芦苇和反枝苋的相对产量与相对产量总和均小于1,即两种植物存在种间竞争。(2)种间竞争使芦苇和反枝苋的生长均受到了不同程度的抑制,表现在两者的株高和生物量均随着竞争者密度的增加而降低。(3)植株地上部分和地下部分的氮浓度表现出与株高和生物量相同的趋势,且在不同水分条件下存在差异。(4)芦苇和反枝苋分别在淹水和干旱环境下具有较强竞争力,但在各自较高混种密度下亦具有较强竞争力。可见,芦苇和反枝苋的种间竞争受到了水分和混种密度的影响。因此,在有反枝苋分布的湿地中,植物生长初期可通过增加土壤水分和/或增加芦苇等本地植物的种群密度以降低反枝苋的种群密度来限制其竞争能力,防止反枝苋在湿地中生长建群和扩散入侵。  相似文献   

2.
Identifying the mechanism underlying plant invasiveness is a fast-moving research topic in current ecology. Phenotypic plasticity has been pointed out as a trait that can contribute to plant invasiveness. This experiment examines the presence of rapid adaptive evolution favoring plastic biomass partitioning during the invasion process. With that aim, we tested differences in patterns of biomass allocation between populations of Carpobrotus edulis from South Africa (native area) and the Iberian Peninsula (invaded area) growing under different nutrient, water and light availabilities in a common garden experiment. Here we demonstrate that biomass partitioning in response to nutrient availability in C. edulis differs between populations from native and invaded ranges, indicating that this trait could be under selection during the invasion process. Thus, nutrient shortage significantly increased the proportional production of roots in populations from the invaded range, but not in populations from the native area. This plastic root-foraging response may contribute to the optimization of nutrient uptake by plants, and therefore could be considered as an adaptive strategy. Understanding the ecological implications of rapid evolution for plastic biomass partitioning is important in determining processes of plant adaptation to new environments, and contributes to disentangling the mechanisms underlying plant invasiveness.  相似文献   

3.
为了解乡土水生植物净化富营养化水体的效果,研究了广东地区5种乡土水生植物对2种富营养化水体总氮(TN)、总磷(TP)的净化效果和植物的生长状况。结果表明,与无植物空白相比,5种乡土植物使低、高浓度水体的TN去除率分别提高了3.8%~13.3%和13.2%~17.1%,TP去除率分别提高了15.2%~22.1%和11.3%~57.6%,其中野荸荠(Eleocharis plantagineiformis)适用于净化低氮水体;酸模叶蓼(Polygonumlapathifolium)适用于高氮水体;三白草(Saururuschinensis)适用于低磷水体;菱角(Trapa komarovii)适用于低氮或高磷水体;水龙(Ludwigia adscendens)对2种水体均有较好的净化效果,对高磷水体效果极佳。5种乡土植物在低、高浓度水体中均旺盛生长,水龙的生物量净增长率分别达375.5%和539.8%,表现最优,其次为菱角;水葫芦(Eichhorniacrassipes)则在高浓度水体中腐烂死亡,加重了水体污染。水龙、菱角对污染物的吸收作用较强,对P的吸收能力显著优于其他植物(P0.05)。因此,5种乡土植物均可作为广东地区富营养化水体修复的备选植物,其中水龙和菱角的开发潜力最大。  相似文献   

4.
Exotic plants can affect native plants indirectly through various biotic interactions. However, combinations of the multiple indirect effects of exotic plants on native plants have been rarely evaluated. Herbivory can either positively or negatively influence plant–pollinator interactions. Here, we addressed whether the pollinator-mediated plant interaction between exotic and native plants is altered through the introduction of exotic herbivores by conducting a 2-year common garden experiment. We compared the effects of pollinator-mediated indirect effects of an exotic plant, Solidago altissima, on the co-flowering native plant Aster microcephalus in geographically different populations reflecting differences in insect herbivore communities. We found a positive effect of co-flowering S. altissima on pollinator visitation of A. microcephalus, which varied between gardens and years. The co-flowering S. altissima did not significantly affect the seed set of A. microcephalus in the first year but had a negative effect in the second year. The facilitative effect of S. altissima on A. microcephalus pollination was suggested to be negatively affected by an exotic aphid, while it was not significantly affected by an exotic lace bug. Our study suggests that the phenology and feeding guilds of the herbivores may be critical for predicting the effect of exotic plants on native plants through herbivore–pollinator interactions. Integrated effects between plant interactions via multiple species interactions under different abiotic and biotic environments are necessary to understand the impact of exotic plants under complex interactions in nature.  相似文献   

5.
The Louisiana red swamp crayfish, Procambarus clarkii, has had a major impact on aquatic ecosystems in Europe and America where it has been introduced for human consumption. In Lake Naivasha, where it was introduced in 1970, it is suspected of causing the complete disappearance of native floating-leaved and submerged plants by 1982 and again by 1996; recovery of submerged plants occurred in between, concurrent with a decline in P. clarkii. Examination of the feeding of P. clarkii by microscopic analysis of gut contents collected from the lake confirmed information from both its native and exotic ranges; that it is an omnivore with green plants and insects the predominant items recognised. Feeding experiments confirmed this omnivory, with a preference from herbivory over carnivory. They further showed the importance of native plants as opposed to exotic water hyacinth Eichhornia crassipes. It is concluded that P. clarkii could well have accounted for the observed elimination of native plant species in Lake Naivasha; the cyclical nature of populations of submerged plant species and of P. clarkii in inverse proportion to each other lead us to hypothesise that P. clarkii is a `keystone' species in the lake ecosystem.  相似文献   

6.
Davies KW 《Oecologia》2011,167(2):481-491
Exotic plants are generally considered a serious problem in wildlands around the globe. However, some argue that the impacts of exotic plants have been exaggerated and that biodiversity and other important plant community characteristics are commonly improved with invasion. Thus, disagreement exists among ecologists as to the relationship of exotic plants with biodiversity and native plant communities. A better understanding of the relationships between exotic plants and native plant communities is needed to improve funding allocation and legislation regarding exotic plants, and justify and prioritize invasion management. To evaluate these relationships, 65 shrub–bunchgrass plant communities with varying densities of an exotic annual grass, Taeniatherum caput-medusae (L.) Nevski (medusahead), were sampled across 160,000 ha in southeastern Oregon, United States. Environmental factors were generally not correlated with plant community characteristics when exotic annual grass density was included in models. Plant diversity and species richness were negatively correlated with exotic annual grass density. Exotic annual grass density explained 62% of the variation in plant diversity. All native plant functional groups, except annual forbs, exhibited a negative relationship with T. caput-medusae. The results of this study suggest that T. caput-medusae invasions probably have substantial negative impacts on biodiversity and native plant communities. The strength of the relationships between plant community characteristics and T. caput-medusae density suggests that some exotic plants are a major force of change in plant communities and subsequently threaten ecosystem functions and processes. However, experimental studies are needed to fully substantiate that annual grass invasion is the cause of these observed correlations.  相似文献   

7.
Non-indigenous plant species have been frequently reported as successful invaders in island environments, changing plant community composition and structure. This is the case of the sweet pittosporum (Pittosporum undulatum), native from Australia, which is one of the most successful plant invaders in the Azores archipelago. Data extracted from recent forestry inventories were used to model and map the potential distribution of P. undulatum in São Miguel, the larger island of the Azores. Current distribution of P. undulatum is related to climate, altitude and some human activity effects. Further analysis of the areas under risk of invasion showed that protected areas are under potential threat, although only a few native forest remnants seem to be threatened due to future expansion of P. undulatum, since the current distribution of these native communities has been reduced due to clearing and competition with invasive plants. We discuss the threats that any further expansion of the species will represent for low-altitude native forests, as well as the utility of species distribution models in the assessment of the areas under risk of invasion.  相似文献   

8.

The Ghost Orchid, Dendrophylax lindenii (Lindl.) Benth x. Rolfe, is a rare and endangered epiphytic orchid native to south Florida and Cuba. The orchid is considered difficult to propagate under greenhouse conditions, requiring high humidity and low air movement. In contrast, the orchid’s native habitat seasonally dries out with decreased precipitation and humidity. This suggests some level of desiccation tolerance. Ghost Orchid plants were assessed for potential desiccation tolerance and ability to recover from desiccation stress under in vitro conditions. In vitro-derived plants were placed into sterile baby food jars and transferred to chambers maintained at 10% relative humidity, which is extremely low compared to relative humidity levels (40–100%) recorded under natural field conditions. Plants were removed every week for 4 wk and recovered on P723 medium supplemented with banana powder for 4 wk. Data were collected at the initiation of the experiment, after the desiccation periods, and after 4 wk in vitro recovery. Ghost Orchid plants demonstrated extremely high desiccation tolerance. Even after 4 wk desiccation, plant survival was observed at 79.2% after recovery. Desiccated plants exhibited significant decreases in tissue water potential (− 18.44 MPa), fresh weight (65.5% loss), and water content (14.2%); however, high plant survival was still observed under these conditions similar to poikilohydric plants. Overall, the Ghost Orchid demonstrated high desiccation tolerance, which should be considered for future greenhouse culture and for its application in the direct field establishment of in vitro-derived plants without greenhouse acclimatization.

  相似文献   

9.
陈家兴  王姝 《广西植物》2023,43(12):2280-2289
极端气候导致的干旱和水淹事件频发,影响了外来植物和本地植物的生长。为了解外来种和本地种植物对干旱和水淹事件发生顺序的响应,探讨草本植物适应水分时间异质性的策略,该文以美国蒙大拿州西部4种本地植物和4种外来植物为研究对象,将所有植物分别进行持续湿润(对照,CK)、水淹-干旱(I-D)和干旱-水淹(D-I)处理,并观测一系列形态和生物量特征的变化。结果表明:(1)与CK相比,D-I和I-D处理均显著降低了外来种的总生物量(P<0.05)。(2)D-I显著降低了本地种早期总生物量、后期地下生物量和根冠比,但显著提高了其后期的相对生长(P<0.05)。(3)D-I处理显著降低了所有植物的地下-地上生物量关系的异速指数,外来种异速指数显著高于本地种(P<0.05)。综上认为,极端事件(水淹和干旱)的发生顺序能改变外来植物和本地植物的生物量分配,早期干旱比后期干旱更容易减少植物生物量的积累,但能促进本地种后期的生长;本地种在环境胁迫下不被降低的总生物量表现说明维持表型稳定的能力较强;D-I处理下本地种和外来种地上和地下生物量关系的分配方式不同。  相似文献   

10.
11.
Researchers studying invasive plants often concentrate their efforts on predictive models thought to allow invasive plants to dominate native landscapes. However, if an invasive is already well established then experimental research is necessary to provide the information necessary to effectively manage the species. Prescribing appropriate management strategies without prior experimental research may not only be ineffective but also may squander limited resources or have the unintended consequence of furthering spread. Lespedeza cuneata(Dum. Cours.) G. Don. is a well-established invasive plant of old fields and tall-grass prairie in the US. Managers suspect this species shades-out native plants and this is proposed as its primary mechanism for dominance. Using field experiments we tested probable factors allowing the species to establish itself and, once established, interfere in old field plant communities. We also examined the effects of two common anthropogenic disturbances (mowing and nutrients) on L. cuneata growth and establishment. When L. cuneata was treated (clipping, herbicide and stem pull-back) there was a significant increase in species richness and native species cover. Stem density and canopy cover of L. cuneata increased significantly with mowing frequency but decreased with nutrient input. We suggest that mowing benefits L. cuneata while also hindering woody competition. Results also indicate L. cuneata is less prevalent on nutrient enriched soils than on unamended soil. Lespedeza cuneata appears to suppress native plants by shading them out and it can subsequently take over grassland communities. Since it has a varying response to human induced disturbances and may actually benefit from mowing, land managers should be cautious when utilizing this as a management tool.  相似文献   

12.
Disturbance is a well-recognized catalyst of exotic species invasion, depriving or releasing resources into communities and favoring the spread of some invaders. Hesperis matronalis (dame’s rocket) is widespread in North America and has potential to become a major problem in natural communities due to anthropogenic influences. We used a target-neighbor design in a greenhouse to grow H. matronalis and native seedlings (Campanula rotundifolia and Muhlenbergia montana) at various levels of neighbor density, nitrogen and water. H. matronalis clearly reduced C. rotundifolia and M. montana aboveground growth and maintained its competitive advantage across all treatments. We expected H. matronalis to maximize its growth and have the greatest negative effect on native species under high resource conditions because ruderal species are able to take advantage of excess resources. H. matronalis demonstrated a clearly negative effect on native species, but a particular ability to outcompete native species at high resource levels depended on resource and native species identity. We also expected that the native species would not exploit excess resources as well as H. matronalis, instead growing better under ambient or low resource conditions because of local adaptation. Rather, M. montana benefited from high water inputs, inconsistent with plant strategies characteristic of stress tolerators. Information on the effects of H. matronalis on native plants in a controlled setting may aid land managers to understand its potential effects in natural communities.  相似文献   

13.

Aim

Decreasing in the diversity and distribution of native submerged plants have been widely observed in recent decades. Global underwater darkening, which is mainly caused by radiation dimming and a decrease in transparency due to, e.g. eutrophication, has emerged as a general trend that strongly hampers the growth of submerged plants in lakes by decreasing the light available for photosynthesis. However, few studies have attempted to compare the responses of native and invasive submerged plants to underwater darkening. In this study, we aimed to compare the effects of light attenuation on the growth and photosynthesis traits of native and invasive submerged plants.

Location

East China.

Method

Through field investigations and a mesocosm experiment, the responses of functional traits of two representative native [water thyme (Hydrilla verticillata), Eurasian watermilfoil (Myriophyllum spicatum)] and one invasive [Carolina fanwort (Cabomba caroliniana)] plant species to various environmental factors, notably to underwater light attenuation, were studied.

Results

Underwater photosynthetically active radiation (PAR) exerted a substantial effect on the relative coverage and abundance of the three studied submerged plants in their natural freshwater habitats. Invasive C. caroliniana showed relatively superior growth (total biomass and relative growth rate) and photosynthesis traits (maximum quantum yield of photosystem II Fv/Fm, chlorophyll a content, chlorophyll b content and the ratio of Chl a and b contents) compared to the two native plants under low underwater PAR conditions. In contrast, under high underwater PAR conditions, C. caroliniana showed the opposite response.

Main Conclusions

Light attenuation inhibits the growth of native submerged plants but facilitates the growth of invasive plant species. Restoration of freshwater lakes by reducing deterioration from underwater darkening (for instance, by reducing of external nutrients loading) may therefore constrain the growth and spread of the invasive C. caroliniana.  相似文献   

14.
干旱条件下接种AM真菌对小马鞍羊蹄甲幼苗根系的影响   总被引:2,自引:0,他引:2  
张亚敏  马克明  曲来叶 《生态学报》2017,37(8):2611-2619
为了探讨岷江干旱河谷丛枝菌根真菌(AMF)对寄主植物幼苗根系的影响,通过接种购买的AMF摩西球囊霉菌(Funneliformis mosseae)到优势乡土灌木小马鞍羊蹄甲(Bauhinia faberi var.microphylla)幼苗,在重度、中度和轻度干旱条件下培养3个月,研究不同干旱条件下AMF对幼苗根系形态特征、结构特征、功能性状的影响。方差分析结果表明:(1)3种干旱胁迫条件下,接菌均显著增加了幼苗的根总长、根表面积、根分枝数、根尖数(P0.001),在中度胁迫和轻度胁迫下,接菌显著促进根鲜重、根体积的增加(P0.001),轻度胁迫条件下接菌幼苗的根鲜重、根总长、根表面积、根体积、根尖数最高并显著高于其它处理,但接菌与未接菌的根平均直径之间没有显著差异;(2)接菌幼苗根系趋向于叉状分支结构,在重度胁迫时,叉状分支趋势更显著(P0.001);(3)接菌幼苗的根比例都显著小于未接菌的,但幼苗比根长不存在显著差异。相关分析结果表明:菌根侵染率与根鲜重、根总长、根表面积、根体积、根分枝数、根尖数呈极显著正相关(P0.001),与拓扑指数、根比例呈极显著负相关(P0.001)。研究表明,在干旱条件下,AMF虽然没有提高生长初期的根系的吸收效率,但接种AMF显著影响幼苗根系形态特征和结构特征,更利于植物适应干旱环境,并且AMF对幼苗根系的促生作用随着干旱胁迫程度减轻而提高。  相似文献   

15.
基于2008—2012年对三峡水库奉节以东秭归和巫山段消落带固定样地不同海拔区段植物群落的5a定位监测,研究消落带植物群落的物种组成、优势植物、植物生活型和物种多样性的动态变化,结果表明:1)截止2012年,消落带海拔156—172 m区段共经历了4次水库水位涨落。经历首次后(2009年),消落带原生植物由55科147种减少到18科33种,经历4次后(2012年),减少到14科39种。与经历水库水位涨落前(2008年)比较,经历首次后的科数减少了67.3%,种数减少了77.6%;经历4次后的科数减少了74.5%,种数减少了73.5%。在消落带原生植物减少的同时,出现了许多"新"植物。经历首次后出现了49种,经历4次后出现了23种,分别占调查当年样地植物种类总数的59.8%和32.9%。海拔172—175 m区段共经历了2次水库水位涨落,消落带原生植物由40科91种(2008年)减少到了13科20种。与经历水库水位涨落前比较,科数减少了67.5%,种数减少了78.0%。出现"新"植物21种,约占调查当年样地植物种类总数的44.7%。通过对历次调查中消落带植物"消失"和"出现"的数量比较表明,消落带植物对经历首次水库水位涨落的反应最为敏感,此后,虽又经历过几次水库水位涨落,但其变化速率趋于减小。2)不同海拔区段、不同生态适应型植物的"消长"动态和优势种组成不完全相同。海拔156—172 m区段,经历4次水库水位涨落后,在消落带植物群落中占优势的草本植物种为菊科(Compositae)的鬼针草(Bidens pilosa)、禾本科(Gramineae)的狗牙根(Cynodon dactylon)、毛马唐(Digitaria chrysoblephara)、狗尾草(Setaria viridis)、莎草科(Cyperaceae)的碎米莎草(Cyperus iria),占优势的灌木树种为漆树科(Anacardiaceae)的盐肤木(Rhus chinensis)和大戟科(Euphorbiaceae)的算盘子(Glochidion puberum);在海拔172—175 m区段,除鬼针草、毛马唐仍为优势种外,还增加了大戟科的湖北算盘子(Glochidion wilsonii),马鞭草科(Verbenaceae)的黄荆(Vitex negundo),葡萄科(Vitaceae)的五叶地锦(Parthenocissus quniquefolia)等树种。3)消落带植物群落的优势生活型为一年生和多年生草本;物种多样性随着水库水位涨落次数的增加总体变化呈减少趋势。4)三峡水库水位周期性涨落导致消落带发生水陆环境交替变化,不同生态适应型植物对变化生境的适应能力有所不同,是消落带植物群落发生变化的主要驱动因素。  相似文献   

16.
Dominant plant species, or foundation species, are recognized to have a disproportionate control over resources in ecosystems, but few studies have evaluated their relationship to exotic invasions. Loss of foundation species could increase resource availability to the benefit of exotic plants, and could thereby facilitate invasion. The success of exotic plant invasions in sagebrush steppe was hypothesized to benefit from increased available soil water following removal of sagebrush (Artemisia tridentata), a foundation species. We examined the effects of sagebrush removal, with and without the extra soil water made available by exclusion of sagebrush, on abundance of exotic and native plants in the shrub steppe of southern Idaho, USA. We compared plant responses in three treatments: undisturbed sagebrush steppe; sagebrush removed; and sagebrush removed plus plots covered with “rainout” shelters that blocked winter-spring recharge of soil water. The third treatment allowed us to examine effects of sagebrush removal alone, without the associated increase in deep-soil water that is expected to accompany removal of sagebrush. Overall, exotic herbs (the grass Bromus tectorum and four forbs) were 3–4 times more abundant in shrub-removal and 2 times more abundant in shrub-removal + rainout-shelter treatments than in the control treatment, where sagebrush was undisturbed. Conversely, native forbs were only about half as abundant in shrub removal compared to control plots. These results indicate that removal of sagebrush facilitates invasion of exotic plants, and that increased soil water is one of the causes. Our findings suggest that sagebrush plays an important role in reducing invasions by exotic plants and maintaining native plant communities, in the cold desert we evaluated.  相似文献   

17.
Inter- and intraspecific competitive abilities are significant determinants of invasive success and the ecological impact of non-native plants. We tested two major hypotheses on the competitive ability of invasive species using invasive (Taraxacum officinale) and native (T. platycarpum) dandelions: differential interspecific competitive ability between invasive and native species and the kin recognition of invasive species. We collected seeds from two field sites where the two dandelion species occurred nearby. Plants were grown alone, with kin (plants from the same maternal genotype) or strangers (plants from different populations) of the same species, or with different species in a growth chamber, and the performance at the early developmental stage between species and treatments was compared. The invasive dandelions outcompeted the native dandelions when competing against each other, although no difference between species was detected without competition or with intraspecific competition. Populations of native species responded to interspecific competition differently. The effect of kinship on plant performance differed between the tested populations in both species. A population produced more biomass than the other populations when grown with a stranger, and this trend was manifested more in native species. Our results support the hypothesis that invasive plants have better competitive ability than native plants, which potentially contributes to the establishment and the range expansion of T. officinale in the introduced range. Although kin recognition is expected to evolve in invasive species, the competitive ability of populations rather than kinship seems to affect plant growth of invasive T. officinale under intraspecific competition.  相似文献   

18.
The plastic responses to environmental change by Lythrum salicaria (purple loosestrife) were compared between native plants derived from seeds collected in Europe and those introduced into North America. Plants from nine populations each were grown under two levels of water and nutrient conditions. At the end of the growing season, samples were evaluated for eight traits related to their life history, plant size/architecture, and reproduction. Genetic (G), environmental (E), and G × E interactions were assessed by restricted maximum likelihood (REML) analysis of covariance (ANCOVA) and multivariate analysis of covariance (MANCOVA). Both univariate and multivariate reaction norm analyses were used to test for differences in the magnitude and direction of phenotypic plasticity between introduced and native plants. Under high-nutrient conditions, introduced plants were taller and had more branches and greater aboveground biomass. They also exhibited significantly greater amounts of phenotypic plasticity for aboveground biomass than did the natives in response to changing nutrient levels in standing water. This difference in univariate plasticity contributed to the general contrast in multivariate plasticity between introduced and native plants. These results support the idea that introduced plants may successfully invade a habitat and grow better than native plants in response to increased resources.  相似文献   

19.
Invasive alien plant species threaten native biodiversity, disrupt ecosystem functions and can cause large economic damage. Plant invasions have been predicted to further increase under ongoing global environmental change. Numerous case studies have compared the performance of invasive and native plant species in response to global environmental change components (i.e. changes in mean levels of precipitation, temperature, atmospheric CO2 concentration or nitrogen deposition). Individually, these studies usually involve low numbers of species and therefore the results cannot be generalized. Therefore, we performed a phylogenetically controlled meta‐analysis to assess whether there is a general pattern of differences in invasive and native plant performance under each component of global environmental change. We compiled a database of studies that reported performance measures for 74 invasive alien plant species and 117 native plant species in response to one of the above‐mentioned global environmental change components. We found that elevated temperature and CO2 enrichment increased the performance of invasive alien plants more strongly than was the case for native plants. Invasive alien plants tended to also have a slightly stronger positive response to increased N deposition and increased precipitation than native plants, but these differences were not significant (N deposition: = 0.051; increased precipitation: = 0.679). Invasive alien plants tended to have a slightly stronger negative response to decreased precipitation than native plants, although this difference was also not significant (= 0.060). So while drought could potentially reduce plant invasion, increases in the four other components of global environmental change considered, particularly global warming and atmospheric CO2 enrichment, may further increase the spread of invasive plants in the future.  相似文献   

20.
Nurse plants offer microclimates that are favourable to plant growth of understory native vegetation, thus facilitating ecological restoration in degraded old fields. This study examined the impact of three nurse plants on vegetation diversity and soil physical properties in old fields located at Lapalala Wilderness, South Africa. Vegetation surveys in plots measuring 5 m x 5 m under and outside the canopy of nurse plants in both old field and natural sites were conducted. Top soils under and outside the nurse plants canopy were collected in all plots and quantified for soil moisture, soil penetration resistance and soil water repellency. Results indicate that species diversity was high under plant canopy compared to outside plant canopy for all nurse plants. Soils under nurse plants canopy showed improved soil moisture and soil penetration resistance compared to soils outside plant canopy, but no differences were reported for soil water repellency. The study concludes that the presence of native plants under nurse plants canopy points to a positive vegetation recovery trajectory. For vegetation and soil restoration to be effective in Lapalala Wilderness old fields, nurse plants should be protected and active restoration, e.g. seeding or seedling sowing under nurse plants canopy should be considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号