首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Antibodies provide an excellent system to study the folding and assembly of all beta-sheet proteins and to elucidate the hierarchy of intra/inter chain disulfide bonds formation during the folding process of multimeric and multidomain proteins. Here, the folding process of the Fc fragment of the heavy chain of the antibody MAK33 was investigated. The Fc fragment consists of the C(H)3 and C(H)2 domains of the immunoglobulin heavy chain, both containing a single S-S bond. The folding process was investigated both in the absence and presence of the folding catalyst protein-disulfide isomerase (PDI), monitoring the evolution of intermediates by electrospray mass spectrometry. Moreover, the disulfide bonds present at different times in the folding mixture were identified by mass mapping to determine the hierarchy of disulfide bond formation. The analysis of the uncatalyzed folding showed that the species containing one intramolecular disulfide predominated throughout the entire process, whereas the fully oxidized Fc fragment never accumulated in significant amounts. This result suggests the presence of a kinetic trap during the Fc folding, preventing the one-disulfide-containing species (1S2H) to reach the fully oxidized protein (2S). The assignment of disulfide bonds revealed that 1S2H is a homogeneous species characterized by the presence of a single disulfide bond (Cys-130-Cys-188) belonging to the C(H)3 domain. When the folding experiments were carried out in the presence of PDI, the completely oxidized species accumulated and predominated at later stages of the process. This species contained the two native S-S bonds of the Fc protein. Our results indicate that the two domains of the Fc fragment fold independently, with a precise hierarchy of disulfide formation in which the disulfide bond, especially, of the C(H)2 domain requires catalysis by PDI.  相似文献   

2.
C H Hu  C L Tsou 《FEBS letters》1991,290(1-2):87-89
During the regeneration of native ribonuclease A (RNase) from the disulfide scrambled molecule by protein disulfide isomerase (PDI), the substrate forms a covalent intermediate with the enzyme through disulfide linkage(s). This has been shown by the appearance of a band at the molecular weight position expected in SDS-PAGE at the same time as the increase in RNase activity. The new band decreased when the regeneration of RNase activity approached completion and disappeared by treatment of the reaction mixture with excess dithiothreitol.  相似文献   

3.
Protein-disulfide isomerase (PDI) is an essential catalyst of disulfide formation and isomerization in the eukaryotic endoplasmic reticulum. PDI has two active sites at either end of the molecule, each containing two cysteines that facilitate thiol-disulfide exchange. In addition to its four catalytic cysteines, PDI possesses two non-active site cysteines whose location and separation distance varies by organism. In higher eukaryotes, the non-active site cysteines are located in the C-terminal half of the protein sequence and are separated by 30 amino acids. In contrast, the internal cysteines of PDI from lower eukaryotes are located near the N-terminal active site and are much closer together in sequence. The function of these cysteines and the significance of their unique location in yeast PDI have been unclear. Previous data (Xiao, R., Wilkinson, B., Solovyov, A., Winther, J. R., Holmgren, A., Lundstrom-Ljung, J., and Gilbert, H. F. (2004) J. Biol. Chem. 279, 49780-49786) suggest that the internal cysteines exist as a disulfide in the endoplasmic reticulum of Saccharomyces cerevisiae. By coupling mass spectrometry with a gel-shift technique that allows us to measure the redox potentials of the PDI active sites in the presence and absence of the non-active site cysteines, we find that the non-active site cysteines form a disulfide that is stable even in a very reducing environment and demonstrate that this disulfide exists to destabilize the N-terminal active site disulfide, making it a better oxidant by 18-fold. Consistent with this finding, we show that mutating the non-active site cysteines to alanines disrupts both the oxidase and isomerase activities of PDI in vitro.  相似文献   

4.
The folding assistant and chaperone protein-disulfide isomerase (PDI) catalyzes disulfide formation, reduction, and isomerization of misfolded proteins. PDI substrates are not restricted to misfolded proteins; PDI catalyzes the dithiothreitol (DTT)-dependent reduction of native ribonuclease A, microbial ribonuclease, and pancreatic trypsin inhibitor, suggesting that an ongoing surveillance by PDI can test even native disulfides for their ability to rearrange. The mechanism of reduction is consistent with an equilibrium unfolding of the substrate, attack by the nucleophilic cysteine of PDI followed by direct attack of DTT on a covalent intermediate between PDI and the substrate. For native proteins, the rate constants for PDI-catalyzed reduction correlate very well with the rate constants for uncatalyzed reduction by DTT. However, the rate is weakly correlated with disulfide stability, surface exposure, or local disorder in the crystal. Compared with native proteins, scrambled ribonuclease is a much better substrate for PDI than predicted from its reactivity with DTT; however, partially reduced bovine pancreatic trypsin inhibitor (des(14-38)) is not. An extensively unfolded polypeptide may be required by PDI to distinguish native from non-native disulfides.  相似文献   

5.
Native disulfide bond formation in eukaryotes is dependent on protein-disulfide isomerase (PDI) and its homologs, which contain varying combinations of catalytically active and inactive thioredoxin domains. However, the specific contribution of PDI to the formation of new disulfides versus reduction/rearrangement of non-native disulfides is poorly understood. We analyzed the role of individual PDI domains in disulfide bond formation in a reaction driven by their natural oxidant, Ero1p. We found that Ero1p oxidizes the isolated PDI catalytic thioredoxin domains, A and A' at the same rate. In contrast, we found that in the context of full-length PDI, there is an asymmetry in the rate of oxidation of the two active sites. This asymmetry is the result of a dual effect: an enhanced rate of oxidation of the second catalytic (A') domain and the substrate-mediated inhibition of oxidation of the first catalytic (A) domain. The specific order of thioredoxin domains in PDI is important in establishing the asymmetry in the rate of oxidation of the two active sites thus allowing A and A', two thioredoxin domains that are similar in sequence and structure, to serve opposing functional roles as a disulfide isomerase and disulfide oxidase, respectively. These findings reveal how native disulfide folding is accomplished in the endoplasmic reticulum and provide a context for understanding the proliferation of PDI homologs with combinatorial arrangements of thioredoxin domains.  相似文献   

6.
The oxidative refolding of hen lysozyme has been studied by a variety of time-resolved biophysical methods in conjunction with analysis of folding intermediates using reverse-phase HPLC. In order to achieve this, refolding conditions were designed to reduce aggregation during the early stages of the folding reaction. A complex ensemble of relatively unstructured intermediates with on average two disulfide bonds is formed rapidly from the fully reduced protein after initiation of folding. Following structural collapse, the majority of molecules slowly form the four-disulfide-containing fully native protein via rearrangement of a highly native-like, kinetically trapped intermediate, des-[76-94], although a significant population (approximately 30%) appears to fold more quickly via other three-disulfide intermediates. The folding catalyst PDI increases dramatically both yields and rates of lysozyme refolding, largely by facilitating the conversion of des-[76-94] to the native state. This suggests that acceleration of the folding rate may be an important factor in avoiding aggregation in the intracellular environment.  相似文献   

7.
Assembly and degradation of fibronectin-containing extracellular matrices are dynamic processes that are up-regulated during wound healing, embryogenesis, and metastasis. Although several of the early steps leading to fibronectin deposition have been identified, the mechanisms leading to the accumulation of fibronectin in disulfide-stabilized multimers are largely unknown. Disulfide-stabilized fibronectin multimers are thought to arise through intra- or intermolecular disulfide exchange. Several proteins involved in disulfide exchange reactions contain the sequence Cys-X-X-Cys in their active sites, including thioredoxin and protein-disulfide isomerase. The twelfth type I module of fibronectin (I12) contains a Cys-X-X-Cys motif, suggesting that fibronectin may have the intrinsic ability to catalyze disulfide bond rearrangement. Using an established protein refolding assay, we demonstrate here that fibronectin has protein-disulfide isomerase activity and that this activity is localized to the carboxyl-terminal type I module I12. I12 was as active on an equal molar basis as intact fibronectin, indicating that most of the protein-disulfide isomerase activity of fibronectin is localized to I12. Moreover, the protein-disulfide isomerase activity of fibronectin appears to be partially cryptic since limited proteolysis of I10-I12 increased its isomerase activity and dramatically enhanced the rate of RNase refolding. This is the first demonstration that fibronectin contains protein-disulfide isomerase activity and suggests that cross-linking of fibronectin in the extracellular matrix may be catalyzed by a disulfide isomerase activity contained within the fibronectin molecule.  相似文献   

8.
We previously reported that monoclonal antibodies to protein-disulfide isomerase (PDI) and other membrane-impermeant PDI inhibitors prevented HIV-1 infection. PDI is present at the surface of HIV-1 target cells and reduces disulfide bonds in a model peptide attached to the cell membrane. Here we show that soluble PDI cleaves disulfide bonds in recombinant envelope glycoprotein gp120 and that gp120 bound to the surface receptor CD4 undergoes a disulfide reduction that is prevented by PDI inhibitors. Concentrations of inhibitors that prevent this reduction and inhibit the cleavage of surface-bound disulfide conjugate prevent infection at the level of HIV-1 entry. The entry of HIV-1 strains differing in their coreceptor specificities is similarly inhibited, and so is the reduction of gp120 bound to CD4 of coreceptor-negative cells. PDI inhibitors also prevent HIV envelope-mediated cell-cell fusion but have no effect on the entry of HIV-1 pseudo-typed with murine leukemia virus envelope. Importantly, PDI coprecipitates with both soluble and cellular CD4. We propose that a PDI.CD4 association at the cell surface enables PDI to reach CD4-bound virus and to reduce disulfide bonds present in the domain of gp120 that binds to CD4. Conformational changes resulting from the opening of gp120-disulfide loops may drive the processes of virus-cell and cell-cell fusion. The biochemical events described identify new potential targets for anti-HIV agents.  相似文献   

9.
Glutaredoxin (Grx) and protein-disulfide isomerase (PDI) are members of the thioredoxin superfamily of thiol/disulfide exchange catalysts. Thermodynamically, rat PDI is a 600-fold better oxidizing agent than Grx1 from Escherichia coli. Despite that, Grx1 is a surprisingly good protein oxidase. It catalyzes protein disulfide formation in a redox buffer with an initial velocity that is 30-fold faster than PDI. Catalysis of protein and peptide oxidation by the individual catalytic domains of PDI and by a Grx1-PDI chimera show that differences in active site chemistry are fundamental to their oxidase activity. Mutations in the active site cysteines reveal that Grx1 needs only one cysteine to catalyze rapid substrate oxidation, whereas PDI requires both cysteines. Grx1 is a good oxidase because of the high reactivity of a Grx1-glutathione mixed disulfide, and PDI is a good oxidase because of the high reactivity of the disulfide between the two active site cysteines. As a protein disulfide reductase, Grx1 is also superior to PDI. It catalyzes the reduction of nonnative disulfides in scrambled ribonuclease and protein-glutathione mixed disulfides 30-180 times faster than PDI. A multidomain structure is necessary for PDI to catalyze effective protein reduction; however, placing Grx1 into the PDI multidomain structure does not enhance its already high reductase activity. Grx1 and PDI have both found mechanisms to enhance active site reactivity toward proteins, particularly in the kinetically difficult direction: Grx1 by providing a reactive glutathione mixed disulfide to supplement its oxidase activity and PDI by utilizing its multidomain structure to supplement its reductase activity.  相似文献   

10.
Protein disulfide isomerase (PDI) is an essential protein folding assistant of the eukaryotic endoplasmic reticulum that catalyzes both the formation of disulfides during protein folding (oxidase activity) and the isomerization of disulfides that may form incorrectly (isomerase activity). Catalysis of thiol-disulfide exchange by PDI is required for cell viability in Saccharomyces cerevisiae, but there has been some uncertainty as to whether the essential role of PDI in the cell is oxidase or isomerase. We have studied the ability of PDI constructs with high oxidase activity and very low isomerase activity to complement the chromosomal deletion of PDI1 in S. cerevisiae. A single catalytic domain of yeast PDI (PDIa') has 50% of the oxidase activity but only 5% of the isomerase activity of wild-type PDI in vitro. Titrating the expression of PDI using the inducible/repressible GAL1-10 promoter shows that the amount of wild-type PDI protein needed to sustain a normal growth rate is 60% or more of the amount normally expressed from the PDI1 chromosomal location. A single catalytic domain (PDIa') is needed in molar amounts that are approximately twice as high as those required for wild-type PDI, which contains two catalytic domains. This comparison suggests that high (>60%) PDI oxidase activity is critical to yeast growth and viability, whereas less than 6% of its isomerase activity is needed.  相似文献   

11.
Protein-disulfide isomerase (PDI), with domains arranged as abb'xa'c, is a key enzyme and chaperone localized in the endoplasmic reticulum (ER) catalyzing oxidative folding and preventing misfolding/aggregation of proteins. It has been controversial whether the chaperone activity of PDI is redox-regulated, and the molecular basis is unclear. Here, we show that both the chaperone activity and the overall conformation of human PDI are redox-regulated. We further demonstrate that the conformational changes are triggered by the active site of domain a', and the minimum redox-regulated cassette is located in b'xa'. The structure of the reduced bb'xa' reveals for the first time that domain a' packs tightly with both domain b' and linker x to form one compact structural module. Oxidation of domain a' releases the compact conformation and exposes the shielded hydrophobic areas to facilitate its high chaperone activity. Thus, the study unequivocally provides mechanistic insights into the redox-regulated chaperone activity of human PDI.  相似文献   

12.
In the endoplasmic reticulum (ER) of human cells, ERO1α and protein-disulfide isomerase (PDI) constitute one of the major electron flow pathways that catalyze oxidative folding of secretory proteins. Specific and limited PDI oxidation by ERO1α is essential to avoid ER hyperoxidation. To investigate how ERO1α oxidizes PDI selectively among more than 20 ER-resident PDI family member proteins, we performed docking simulations and systematic biochemical analyses. Our findings reveal that a protruding β-hairpin of ERO1α specifically interacts with the hydrophobic pocket present in the redox-inactive PDI b'-domain through the stacks between their aromatic residues, leading to preferred oxidation of the C-terminal PDI a'-domain. ERO1α associated preferentially with reduced PDI, explaining the stepwise disulfide shuttle mechanism, first from ERO1α to PDI and then from oxidized PDI to an unfolded polypeptide bound to its hydrophobic pocket. The interaction of ERO1α with ERp44, another PDI family member protein, was also analyzed. Notably, ERO1α-dependent PDI oxidation was inhibited by a hyperactive ERp44 mutant that lacks the C-terminal tail concealing the substrate-binding hydrophobic regions. The potential ability of ERp44 to inhibit ERO1α activity may suggest its physiological role in ER redox and protein homeostasis.  相似文献   

13.
Protein-disulfide isomerase (PDI) switches tissue factor (TF) from coagulation to signaling by targeting the allosteric Cys186-Cys209 disulfide. Here, we further characterize the interaction of purified PDI with TF. We find that PDI enhances factor VIIa-dependent substrate factor X activation 5-10-fold in the presence of wild-type, oxidized soluble TF but not TF mutants that contain an unpaired Cys186 or Cys209. PDI-accelerated factor Xa generation was blocked by bacitracin but not influenced by inhibition of vicinal thiols, reduction of PDI, changes in redox gradients, or covalent thiol modification of reduced PDI by N-ethylmaleimide or methyl-methanethiosulfonate, which abolished PDI oxidoreductase but not chaperone activity. PDI had no effect on fully active TF on either negatively charged phospholipids or in activating detergent, indicating that PDI selectively acts upon cryptic TF to facilitate ternary complex formation and macromolecular substrate turnover. PDI activation was reduced upon mutation of TF residues in proximity to the macromolecular substrate binding site, consistent with a primary interaction of PDI with TF. PDI enhanced TF coagulant activity on microvesicles shed from cells, suggesting that PDI plays a role as an activating chaperone for circulating cryptic TF.  相似文献   

14.
The formation of protein disulfide bonds in the Escherichia coli periplasm by the enzyme DsbA is an inaccurate process. Many eukaryotic proteins with nonconsecutive disulfide bonds expressed in E. coli require an additional protein for proper folding, the disulfide bond isomerase DsbC. Here we report studies on a native E. coli periplasmic acid phosphatase, phytase (AppA), which contains three consecutive and one nonconsecutive disulfide bonds. We show that AppA requires DsbC for its folding. However, the activity of an AppA mutant lacking its nonconsecutive disulfide bond is DsbC-independent. An AppA homolog, Agp, a periplasmic acid phosphatase with similar structure, lacks the nonconsecutive disulfide bond but has the three consecutive disulfide bonds found in AppA. The consecutively disulfide-bonded Agp is not dependent on DsbC but is rendered dependent by engineering into it the conserved nonconsecutive disulfide bond of AppA. Taken together, these results provide support for the proposal that proteins with nonconsecutive disulfide bonds require DsbC for full activity and that disulfide bonds are formed predominantly during translocation across the cytoplasmic membrane.  相似文献   

15.
X Lu  H F Gilbert  J W Harper 《Biochemistry》1992,31(17):4205-4210
Protein disulfide isomerase (PDI) catalyzes the oxidative folding of proteins containing disulfide bonds by increasing the rate of disulfide bond rearrangements which normally occur during the folding process. The amino acid sequences of the N- and C-terminal redox active sites (PWCGHCK) in PDI are completely conserved from yeast to man and display considerable identity with the redox-active center of thioredoxin (EWCGPCK). Available data indicate that the two thiol/disulfide centers of PDI can function independently in the isomerase reaction and that the cysteine residues in each active site are essential for catalysis. To evaluate the role of residues flanking the active-site cysteines of PDI in function, a variety of mutations were introduced into the N-terminal active site of PDI within the context of both a functional C-terminal active site and an inactive C-terminal active site in which serine residues replaced C379 and C382. Replacement of non-cysteine residues (W34 to Ser, G36 to Ala, and K39 to Arg) resulted in only a modest reduction in catalytic activity in both the oxidative refolding of RNase A and the reduction of insulin (10-27%), independent of the status of the C-terminal active site. A somewhat larger effect was observed with the H37P mutation where approximately 80% of the activity attributable to the N-terminal domain (approximately 40%) was lost. However, the H37P mutant N-terminal site expressed within the context of an inactive C-terminal domain exhibits 30% activity, approximately 70% of the activity of the N-terminal site alone.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
We examined the aggregation of insulin as a result of reduction of disulfide bonds catalyzed by protein disulfide isomerase (PDI) using various techniques. We demonstrated the kinetic correlation between PDI-catalyzed insulin reduction and the aggregate formation, the relationship between aggregation and amyloid formation, and the structural information on the secondary structure of the aggregates. The initial rate of PDI-catalyzed reduction of insulin, apparent rate constants of aggregate growth for sigmoidal features, and lag times were obtained by changing the PDI concentration, temperature, and insulin concentration. In situ kinetics were studied using the dyes; thioflavin T (ThT) and Congo red (CR) in addition to turbidimetry with the insulin reduction by PDI. The ThT and CR binding assay revealed sigmoidal kinetics, and the spectrum of binding CR showed a red shift against time, suggesting an orderly formation of insulin aggregates. The secondary structure of the PDI-promoted insulin aggregates showed antiparallel beta-sheet conformation by FT-IR measurement.  相似文献   

17.
Selective inhibition of protein disulfide isomerase by estrogens   总被引:4,自引:0,他引:4  
Protein disulfide isomerase (PDI) is a multifunctional microsomal enzyme that participates in the formation of protein disulfide bonds. PDI catalyzes the reduction of protein disulfide bonds in the presence of excess reduced glutathione and has been implicated in the reductive degradation of insulin; E. coli thioredoxin is homologous to two regions in PDI and can also degrade insulin. PDI activity, measured by 125I-insulin degradation or reactivation of randomly oxidized RNase in the presence of reduced glutathione, is non-competitively inhibited by estrogens; half-maximal inhibition was observed at approximately 100 nM estrogen. Other steroid hormones at 1 microM had little or no effect. PDI segment 120-163 (which corresponds to exon 3 of the PDI gene) and 182-230 have significant similarity with estrogen receptor segments 350-392 and 304-349, respectively, located in the estrogen binding domain but not with the steroid domains of the progesterone and glucocorticoid receptors or with thioredoxin, which is insensitive to estrogens. We propose the hypothesis that enzymes can acquire sensitivity to a hormone via exon shuffling to the enzyme gene from the DNA region coding for the hormone binding domain of the hormone's receptor.  相似文献   

18.
Protein-disulfide isomerase (PDI) catalyzes the formation of the correct pattern of disulfide bonds in secretory proteins. A low resolution crystal structure of yeast PDI described here reveals large scale conformational changes compared with the initially reported structure, indicating that PDI is a highly flexible molecule with its catalytic domains, a and a', representing two mobile arms connected to a more rigid core composed of the b and b' domains. Limited proteolysis revealed that the linker between the a domain and the core is more susceptible to degradation than that connecting the a' domain to the core. By restricting the two arms with inter-domain disulfide bonds, the molecular flexibility of PDI, especially that of its a domain, was demonstrated to be essential for the enzymatic activity in vitro and in vivo. The crystal structure also featured a PDI dimer, and a propensity to dimerize in solution and in the ER was confirmed by cross-linking experiments and the split green fluorescent protein system. Although sedimentation studies suggested that the self-association of PDI is weak, we hypothesize that PDI exists as an interconvertible mixture of monomers and dimers in the endoplasmic reticulum due to its high abundance in this compartment.  相似文献   

19.
Protein disulfide isomerase (PDI) and its degradation products were found in HepG2, COS-1, and CHO-K1 cells. Whether or not the products were formed through autodegradation of PDI was examined, since PDI contains the CGHC motif, which is the active center of proteolytic activity in ER-60 protease. Commercial bovine PDI was autodegraded to produce a trimmed PDI. In addition, human recombinant PDI also had autodegradation activity. Mutant recombinant PDIs with CGHC motifs of which cysteine residues were replaced with serine or alanine residues were prepared. However, they were not autodegraded, suggesting the cysteine residues of motifs are necessary for autodegradation.  相似文献   

20.
This communication reports a new design of peptide disulfide, RKCGCFF, for facilitating oxidative protein refolding. The new design mimics the properties of protein disulfide isomerase (PDI) by introducing hydrophobic and positively charged patches into the two terminals of disulfide CGC. RKCGCFF was found more effective than the traditional oxidant oxidized glutathione (GSSG) as well as its counterpart, RKCGC, in facilitating the oxidative refolding of lysozyme. More importantly, RKCGCFF could improve lysozyme refolding yield at a high concentration (0.7 mg/mL). The research proved that incorporation of hydrophobic and charged patches into the CGC disulfide made the oxidant more similar to PDI in structure and properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号