首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Yeast (Saccharomyces cerevisiae) alcohol dehydrogenase I (SceADH) binds NAD+ and NADH less tightly and turns over substrates more rapidly than does horse (Equus caballus) liver alcohol dehydrogenase E isoenzyme (EcaADH), and neither enzyme uses NADP efficiently. Amino acid residues in the proposed adenylate binding pocket of SceADH were substituted in attempts to improve affinity for coenzymes or reactivity with NADP. Substitutions in SceADH (Gly202Ile or Ser246Ile) with the corresponding residues in the adenine binding site of the homologous EcaADH have modest effects on coenzyme binding and other kinetic constants, but the Ser246Ile substitution decreases turnover numbers by 350-fold. The Ser176Phe substitution (also near adenine site) significantly decreases affinity for coenzymes and turnover numbers. In the consensus nucleotide-binding betaalphabeta fold sequence, SceADH has two alanine residues (177-GAAGGLG-183) instead of the Leu200 in EcaADH (199-GLGGVG-204); the Ala178-Ala179 to Leu substitution significantly decreases affinity for coenzymes and turnover numbers. Some NADP-dependent enzymes have an Ala corresponding to Gly183 in SceADH; the Gly183Ala substitution significantly decreases affinity for coenzymes and turnover numbers. NADP-dependent enzymes usually have a neutral residue instead of the Asp (Asp201 in SceADH) that interacts with the hydroxyl groups of the adenosine ribose, along with a basic residue (at position 202 or 203) to stabilize the 2'-phosphate of NADP. The Gly203Arg change in SceADH does not significantly affect the kinetics. The Gly183Ala or Gly203Arg substitutions do not enable SceADH to use NADP+ as coenzyme. SceADH with the single Asp201Gly or double Asp201Gly:Gly203Arg substitutions have similar, low activity with NADP+. The results suggest that several of the amino acid residues participate in coenzyme binding and that conversion of specificity for coenzyme requires multiple substitutions.  相似文献   

2.
R M Gould  B V Plapp 《Biochemistry》1990,29(23):5463-5468
Molecular modeling of alcohol dehydrogenase suggests that His-47 in the yeast enzyme (His-44 in the protein sequence, corresponding to Arg-47 in the horse liver enzyme) binds the pyrophosphate of the NAD coenzyme. His-47 in the Saccharomyces cerevisiae isoenzyme I was substituted with an arginine by a directed mutation. Steady-state kinetic results at pH 7.3 and 30 degrees C of the mutant and wild-type enzymes were consistent with an ordered Bi-Bi mechanism. The substitution decreased dissociation constants by 4-fold for NAD+ and 2-fold for NADH while turnover numbers were decreased by 4-fold for ethanol oxidation and 6-fold for acetaldehyde reduction. The magnitudes of these effects are smaller than those found for the same mutation in the human liver beta enzyme, suggesting that other amino acid residues in the active site modulate the effects of the substitution. The pH dependencies of dissociation constants and other kinetic constants were similar in the two yeast enzymes. Thus, it appears that His-47 is not solely responsible for a pK value near 7 that controls activity and coenzyme binding rates in the wild-type enzyme. The small substrate deuterium isotope effect above pH 7 and the single exponential phase of NADH production during the transient oxidation of ethanol by the Arg-47 enzyme suggest that the mutation makes an isomerization of the enzyme-NAD+ complex limiting for turnover with ethanol.  相似文献   

3.
Yeast alcohol dehydrogenase and nicotinamide adenine dinucleotide (NAD) were coimmobilized, with covalent attachment, to the interior surface of a nylon tube. The NAD was attahed at the N(6) group of the adenine moiety; an NAD derivative was prepared and attached to free carboxyl groups at a partially hydrolyzed nylon surface. The enzyme was attached, through glutaraldehyde residues, to free amino groups on the surface. Kinetic studies were carried out in which the reduced NAD was recycled by means of phenazine ethosulfate and 2,6-dichlorophenol indophenol. The reaction was studied over a range of flow rates and ethanol concentrations. The variation of rate with flow rate suggested that there was little diffusion control with respect to ethanol and that there was no observable inhibition by the reaction products. These conclusions were confirmed by evidence based on dimensionless parameters for the reaction and by direct inhibition experiments. The apparent Michaelis constant was lower than when only the enzyme was immobilized, suggesting that the immobilized enzyme-coenzyme system is of high efficiency. Overall rates of reaction were lower than when there was saturation with NAD. The tube showed no measurable loss of catalytic activity over a period of one month.  相似文献   

4.
Corrected fluorescence properties of yeast alcohol dehydrogenase and its coenzyme complexes have been investigated as a function of temperature. Dissociation constants have been obtained for binary and ternary complexes of NAD and NADH by following the enhancement of NADH fluorescence or the quenching of the protein fluorescence. It is found that the presence of pyrazole increases the affinity of NAD to the enzyme approximately 100-fold. The formation of the ternary enzyme - NAD - pyrazole complex is accompanied by a large change in the ultraviolet absorption properties, with a new band in the 290-nm region. Significant optical changes also accompany the formation of the ternary enzyme-NADH-acetamide complex. The possible origin for the quenching of the protein fluorescence upon coenzyme binding is discussed, and it is suggested that a coenzyme-induced conformational change can cause it. Thermodynamic parameters associated with NAD and NADH binding have been evaluated on the basis of the change of the dissociation constants with temperature. Optical and thermodynamic properties of binary and ternary complexes of yeast alcohol dehydrogenase are compared with the analogous properties of horse liver alcohol dehydrogenase.  相似文献   

5.
α-Amylases have been found to convert starch and glycogen, in part, to products other than hemiacetal-bearing entities (maltose, maltodextrins, etc.)—hitherto, the only products obtained from natural α-glucans by α-amylolysis. Glycosides of maltosaccharides were synthesized by purified α-amylases acting on starch or bacterial glycogen in the presence of p-nitrophenyl α- or β-d-glucoside. From a digest with crystallized B. subtilis var. amyloliquefaciens α-amylase, containing 4 mg/ml of [14C]glycogen and 40 mmp-NP β-d-glucoside, three pairs of correspondingly labeled glycosides and sugars were recovered: p-NP α-d-[14C]glucopyranosyl (1 → 4) β-d-glucopyranoside, and [14C]glucose; p-NP α-[14C]maltosyl (1 → 4) β-d-glucopyranoside, and [14C]maltose; p-NP α-[14C]maltotriosyl (1 → 4) β-d-glucopyranoside, and [14C]maltotriose. The three glycosides accounted for 11.4% of the [14C]glycogen donor substrate; the three comparable sugars, for 30.4%; higher maltodextrins, for 58.2%. Calculations based on the molar yields of all reaction products show that [14C]glycosyl moieties were transferred from donor to p-NP β-d-glucoside with a frequency of 0.234 relative to all transfers to water. This is a very high value considering the minute molar ratio (0.0007) of β-d-glucoside-to-water concentration. Less striking but similar findings were obtained with cryst. hog pancreatic and Aspergillus oryzae α-amylases. The results extend earlier findings (Hehre et al., Advan. Chem. Ser. (1973) 117, 309) in showing that α-amylases have a substantial capacity to utilize the C4-carbinols of certain d-glucosyl compounds as acceptor sites.  相似文献   

6.
1. Inactivation of yeast alcohol dehydrogenase for diethyl pyrocarbonate indicates that one histidine residue per enzyme subunit is necessary for enzymic activity. The inactivated enzyme regains its activity over a period of days. 2. Enzyme modified by diethyl pyrocarbonate can form the binary enzyme - NADH complex with the same maximum NADH-binding capacity as that of native enzyme. Modified enzyme cannot form normal ternary complexes of the type enzyme - NADH - acetamide and enzyme - NAD+ - pyrazole, which are characteristic of native enzyme. 3. The rate constant for the reaction of enzyme with diethyl pyrocarbonate has been determined over the pH range 5.5--9. The histidine residue involved has approximately the same pKa as free histidine, but is 10-fold more reactive than free histidine.  相似文献   

7.
Gastric tissues from amphibian Rana perezi express the only vertebrate alcohol dehydrogenase (ADH8) that is specific for NADP(H) instead of NAD(H). In the crystallographic ADH8-NADP+ complex, a binding pocket for the extra phosphate group of coenzyme is formed by ADH8-specific residues Gly223-Thr224-His225, and the highly conserved Leu200 and Lys228. To investigate the minimal structural determinants for coenzyme specificity, several ADH8 mutants involving residues 223 to 225 were engineered and kinetically characterized. Computer-assisted modeling of the docked coenzymes was also performed with the mutant enzymes and compared with the wild-type crystallographic binary complex. The G223D mutant, having a negative charge in the phosphate-binding site, still preferred NADP(H) over NAD(H), as did the T224I and H225N mutants. Catalytic efficiency with NADP(H) dropped dramatically in the double mutants, G223D/T224I and T224I/H225N, and in the triple mutant, G223D/T224I/H225N (kcat/KmNADPH = 760 mm-1 min-1), as compared with the wild-type enzyme (kcat/KmNADPH = 133330 mm-1 min-1). This was associated with a lower binding affinity for NADP+ and a change in the rate-limiting step. Conversely, in the triple mutant, catalytic efficiency with NAD(H) increased, reaching values (kcat/KmNADH = 155000 mm-1 min-1) similar to those of the wild-type enzyme with NADP(H). The complete reversal of ADH8 coenzyme specificity was therefore attained by the substitution of only three consecutive residues in the phosphate-binding site, an unprecedented achievement within the ADH family.  相似文献   

8.
1. Yeast alcohol dehydrogenase (EC 1.1.1.1) is inhibited by stoicheiometric concentrations of diethyl pyrocarbonate. The inhibition is due to the acylation of a single histidine residue/monomer (mol.wt. 36000). 2. Alcohol dehydrogenase is also inhibited by stoicheiometric amounts of 5,5'-dithiobis-(2-nitrobenzoate), owing to the modification of a single cysteine residue/monomer. 3. Native alcohol dehydrogenase binds two molecules of reduced coenzyme/molecule of enzyme (mol.wt. 144000). 4. Modification of a single histidine residue/monomer by treatment with diethyl pyrocarbonate prevents the binding of acetamide in the ternary complex, enzyme-NADH-acetamede, but does not prevent the binding of NADH to the enzyme. 5. Modification of a single cysteine residue/monomer does not prevent the binding of acetamide to the ternary complex. After the modification of two thiol groups/monomer by treatment with 5,5'-dithiobis-(2-nitrobenzoate), the capacity of enzyme to bind coenzyme in the ternary complex was virtually abolished. 6. From the results presented in this paper we conclude that at least one histidine and one cysteine residue are closely associated in the substrate-binding site of alcohol dehydrogenase.  相似文献   

9.
10.
Human neutrophil elastase (NE) is a key host defense protease that cleaves virulence factors of Gram-negative bacteria. NE and cathepsin G (CG) are chymotrypsin-like serine proteases with sequence and structural similarities, and both are abundant in neutrophil granules. Unlike NE, CG does not cleave virulence factors of enteric bacteria. Through structure-function analysis, we identified regions in NE that are essential for cleaving Shigella virulence proteins. NE residues at eight different positions were replaced with analogous amino acids in CG or with alanine. Functional analysis of recombinant mutant proteins showed that a single residue at position 98 and multiple amino acid stretches in the three different regions 58A-61, 163-181, and 216-224 determine NE specificity. These NE mutants cleaved the CG-specific, but not the NE-specific, synthetic peptide substrate and did not degrade Shigella virulence factors. Interestingly, exchanging the amino acid at position 98 in CG for the NE equivalent enabled this CG mutant to cleave Shigella virulence factors. Analysis of the NE proteolytic products of the Shigella virulence factor IpaB shows that NE has specific cleavage sites. These results indicate that Shigella virulence factor specificity maps to a distinct region close to NE's active site.  相似文献   

11.
A three-dimensional model of yeast alcohol dehydrogenase, based on the homologous horse liver enzyme, was used to compare the substrate binding pockets of the three isozymes (I, II, and III) from Saccharomyces cerevisiae and the enzyme from Schizosaccharomyces pombe. Isozyme I and the S. pombe enzyme have methionine at position 294 (numbered as in the liver enzyme, corresponding to 270 in yeast), whereas isozymes II and III have leucine. Otherwise the active sites of the S. cerevisiae enzymes are the same. All four wild-type enzymes were produced from the cloned genes. In addition, oligonucleotide-directed mutagenesis was used to change Met-294 in alcohol dehydrogenase I to leucine. The mechanisms for all five enzymes were predominantly ordered with ethanol (but partially random with butanol) at pH 7.3 and 30 degrees C. The wild-type alcohol dehydrogenases and the leucine mutant had similar kinetic constants, except that isozyme II had 10-20-fold smaller Michaelis and inhibition constants for ethanol. Thus, residue 294 is not responsible for this difference. Apparently, substitutions outside of the substrate binding pocket indirectly affect the interactions of the alcohol dehydrogenases with ethanol. Nevertheless, the substitution of methionine with leucine in the substrate binding site of alcohol dehydrogenase I produced a 7-10-fold increase in reactivity (V/Km) with butanol, pentanol, and hexanol. The higher activity is due to tighter binding of the longer chain alcohols and to more rapid hydrogen transfer.  相似文献   

12.
Heterotropic cooperativity effects in the binding of alcohols and NAD+ or NADH to liver alcohol dehydrogenase have been examined by equilibrium measurements and stopped-flow kinetic studies. Equilibrium data are reported for benzyl alcohol, 2-chloroethanol, 2,2-dichloroethanol, and trifluoroethanol binding to free enzyme over the pH range 6-10. Binary-complex formation between enzyme and alcohols leads to inner-sphere coordination of the alcohol to catalytic zinc and shows a pH dependence reflecting the ionization states of zinc-bound water and the zinc-bound alcohol. The affinity of the binding protonation state of the enzyme for unionized alcohols increases approximately by a factor of 10 on complex formation between enzyme and NAD+ or NADH. The rate and kinetic cooperativity with coenzyme binding of the alcohol association step indicates that enzyme-bound alcohols participate in hydrogen bonding interactions which affect the rates of alcohol and coenzyme equilibration with the enzyme without providing any pronounced contribution to the net energetics of alcohol binding. The pKa values determined for alcohol deprotonation at the binary-complex level are linearly dependent on those of the free alcohols, and can be readily reconciled with the pKa values attributed to ionization of zinc-bound water. Alcohol coordination to catalytic zinc provides a major contribution to the pKa shift which ensures that the substrate is bound predominantly as an alcoholate ion in the catalytically productive ternary complex at physiological pH. The additional pKa shift contributed by NAD+ binding is less pronounced, but may be of particular mechanistic interest since it increases the acidity of zinc-bound alcohols relatively to that of zinc-bound water.  相似文献   

13.
14.
To elucidate the structural basis for the alteration of coenzyme specificity from NADH toward NADPH in a malate dehydrogenase mutant EX7 from Thermus flavus, we determined the crystal structures at 2.0 A resolution of EX7 complexed with NADPH and NADH, respectively. In the EX7-NADPH complex, Ser42 and Ser45 form hydrogen bonds with the 2'-phosphate group of the adenine ribose of NADPH, although the adenine moiety is not seen in the electron density map. In contrast, although Ser42 and Ser45 occupy a similar position in the EX7-NADH complex structure, both the adenine and adenine ribose moieties of NADH are missing in the map. These results and kinetic analysis of site-directed mutant enzymes indicate (1) that the preference of EX7 for NADPH over NADH is ascribed to the recognition of the 2'-phosphate group by two Ser and Arg44, and (2) that the adenine moiety of NADPH is not recognized in this mutant.  相似文献   

15.
16.
Extracts of seventeen plant tissues show alcohol dehydrogenase activity in the presence of both NADH and NADPH. Using extracts of melon fruits, attempts have been made to separate these two activities by applying a range of chromatographic and electrophoretic techniques but these proved unsuccessful. Evidence from kinetic measurements involving assays of equimolar concentrations of the two co-factors suggests that in the enzyme from the melon there is but a single catalytic site which will accept either co-factor.  相似文献   

17.
The steady-state kinetics of the yeast and liver alcohol dehydrogenase catalyzed reduction of aldehydes were examined in solvent mixtures of increased viscosity. This was done to investigate the effects of diffusion control on the fast association of NADH with the enzymes. Both glycerol and sucrose were unsatisfactory as viscosogens, as they inhibited the enzyme, but poly(ethylene glycol)/water mixtures were satisfactory. The 5-fold faster reaction of yeast alcohol dehydrogenase with NADH is partly diffusion controlled, whereas the slower liver alcohol dehydrogenase reaction showed no diffusion effects. These results are consistent with a yeast alcohol dehydrogenase active site that has relatively little steric hindrance to NADH binding. It is estimated that contributions to this association reaction from diffusion control and chemical activation control are equal at a solvent viscosity of 10 cP. Thus, under physiological conditions of increased viscocity the NADH association may be significantly affected by diffusion effects. In order to estimate accurately the maximum diffusion-controlled rate constant from diffusion theory, the diffusion coefficients of NADH were measured in poly(ethylene glycol)/water mixtures and were found to vary inversely as the solvent viscosity raised to the power of 0.5. The non-Stokesian behaviour of molecules as large as NADH in polymer/water mixtures may be a serious limitation to the routine use of poly(ethylene glycol) as a viscosogen for diffusion studies.  相似文献   

18.
Short-chain dehydrogenase Gox2181 from Gluconobacter oxydans catalyzes the reduction of 2,3-pentanedione by using NADH as the physiological electron donor. To realize its synthetic biological application for coenzyme recycling use, computational design and site-directed mutagenesis have been used to engineer Gox2181 to utilize not only NADH but also NADPH as the electron donor. Single and double mutations at residues Q20 and D43 were made in a recombinant expression system that corresponded to Gox2181-D43Q and Gox2181-Q20R&D43Q, respectively. The design of mutant Q20R not only resolved the hydrogen bond interaction and electrostatic interaction between R and 2′-phosphate of NADPH, but also could enhance the binding with 2′-phophated of NADPH by combining with D43Q. Molecular dynamics simulation has been carried out to testify the hydrogen bond interactions between mutation sites and 2′-phosphate of NADPH. Steady-state turnover measurement results indicated that Gox2181-D43Q could use both NADH and NADPH as its coenzyme, and so could Gox2181-Q20R&D43Q. Meanwhile, compared to the wild-type enzyme, Gox2181-D43Q exhibited dramatically reduced enzymatic activity while Gox2181-Q20R&D43Q successfully retained the majority of enzymatic activity.  相似文献   

19.
B Foucaud  J F Biellmann 《Biochimie》1982,64(10):941-947
Yeast alcohol dehydrogenase is very rapidly and irreversibly inactivated by 3-chloroacetyl pyridine adenine dinucleotide, a reactive NAD+-analogue (Biellmann et al., 1974, FEBS Lett. 40, 29-32). Kinetic investigations with this compound, and structurally related compounds, show that this inactivation, against which NAD+ provides a complete protection, corresponds to an affinity label. The incorporation of the coenzyme analogue correlates linearly with the enzyme inactivation, the total inactivation corresponding to one mole of inactivator per coenzyme binding site. The pH-dependence of the inactivation rates of the enzyme by this coenzyme analogue and by its reduced form reflects exactly the pH variation of their respective dissociation constants. In spite of a good stability of the label in the non denatured inactivated enzyme, no modified amino-acid residue could be identified. Considering the affinity of this analogue for yeast alcohol dehydrogenase and the strict steric requirements of this enzyme towards its ligands, the nature of the inactivation reaction as well as different possibilities of the loss of the label in the inactivated enzyme are discussed.  相似文献   

20.
Making use of the unusual stability of yeast alcohol dehydrogenase in the presence of ethanol, a simple, rapid procedure for isolating this enzyme in high yield is presented. Once-crystallized enzyme is obtained within 5 h of commencing the procedure; this is undegraded and substantially free of proteolytic activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号