首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A kinetic investigation of ostrich thrombin specificity, its regulation and evolutionary development in comparison to those of other well-characterised species may contribute to the understanding of the structure-function relationships of thrombin. Antithrombin III (ATIII) was purified from ostrich plasma by heparin-Sepharose and Super Q-650S chromatography. It exhibited a M(r) of 59.2K and a pI in the range of 5.2-6.0. The ostrich N-terminal sequence was compared to those of other known species and showed the highest identity with rabbit ATIII (31%). Inhibition studies included the interaction of ostrich and human ATIII with bovine, human and ostrich thrombin. At a 2:1 molar ratio of ostrich ATIII to enzyme, 20 and 40% remaining activity was found for bovine and ostrich thrombin, respectively. Ostrich thrombin exhibited a pH and temperature optimum of 9.0 and 60 degrees C, respectively. Hydrolysis of seven peptide p-nitroanilide substrates by ostrich thrombin revealed D-Phe-Pip-Arg-pNA (k(cat)/K(m)=9.65 microM(-1)s(-1)) as the substrate with the highest catalytic efficiency. The effect of monovalent cations on ostrich thrombin catalysis revealed enhanced activity with Na(+). The calculated K(i) values for the complex formation between ostrich thrombin and ostrich (9.29 x 10(-11)M) and human (9.66 x 10(-11)M) ATIII are comparable to reported results. The results obtained from the present study confirmed that ostrich thrombin and ATIII are closely related to the corresponding molecules of other species in terms of physicochemical and kinetic properties.  相似文献   

2.
Calcium ions potentiated heparin-modulated antithrombin III inhibition of amidolysis catalysed by thrombin. Potentiation by calcium ions of heparin-independent antithrombin III inhibition of thrombin activity appeared to contribute to this effect. These results suggest a complex modulatory role for calcium ions in proteinase-catalysed reactions influenced by anti-proteinases and glycosaminoglycans.  相似文献   

3.
The interference of S protein with the heparin-catalyzed inhibition of thrombin by antithrombin III was studied in a purified system and in plasma. The effect of S protein to counteract heparin activity was documented by kinetic analysis of the initial phase of the inhibition reaction. Addition of S protein induced a concentration-dependent reduction of the inhibition rate, reflected in a decrease of the apparent pseudo-first-order rate constant by a factor of 5-8 in the presence of a twofold molar excess of S protein over antithrombin III. A non-competitive interaction of S protein with the thrombin--antithrombin-III--heparin inhibition reaction with Ki = 0.6 microM was found. While the association constant of thrombin--antithrombin III in the presence of 0.05 U/ml heparin amounted to 2.5 X 10(8) M-1, an approximately 200-fold decrease of this value was observed in the presence of S protein. The fast formation of the covalent complex between thrombin and antithrombin III in the presence of heparin was impaired as a result of the presence of S protein, as was shown by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. In the absence of heparin the inhibition of thrombin by antithrombin III alone was not influenced by S protein. The heparin-counteracting activity of S protein was found to be mainly expressed in the range of 0.01-0.1 U/ml heparin, thereby shifting the point of 50% inhibition of thrombin from 0.003 U/ml to 0.1 U/ml heparin with a second-order rate constant of k2 = 1.4 X 10(6) M-1. A direct interaction of S protein with heparin was demonstrated by crossed immunoelectrophoresis with purified proteins as well as in plasma and serum. The analysis of plasma and serum by crossed immunoelectrophoresis against rabbit anti-(human S protein) serum revealed an additional cathodal peak in the serum sample, resulting from the interaction of S protein with serum components. These findings not only indicate a direct interaction of S protein with heparin in the onset of the inhibition of thrombin by antithrombin-III--heparin, but also a contribution of S protein during enzyme-inhibitor complex formation.  相似文献   

4.
The effect of prothrombin fragment 2 on the inhibition of thrombin by antithrombin III has been studied. Fragment 2 was found to slow the rate of inhibition of thrombin by antithrombin III about 3-fold. The effect of prothrombin fragment 2 on antithrombin III inhibition was examined by comparing its action in the presence of either thrombin or meizothrombin (des fragment 1). The second order rate constants for antithrombin III inhibition of thrombin with saturating fragment 2 and antithrombin III inhibition of meizothrombin (des fragment 1) were the same. Prothrombin fragment 2 had no effect on either antithrombin III inhibition of meizothrombin (des fragment 1) or Factor Xa. The effect of the fragment on the reaction mechanism of thrombin inhibition was evaluated to see if the fragment altered binding of antithrombin III to thrombin or inhibited the formation of the covalent complex. The fragment was found to have no inhibitory effect on the rate of covalent complex formation, indicating that the protective effect of the fragment is by inhibiting binding of antithrombin III to thrombin. These data suggest that prothrombin fragment 2 may be an important factor in controlling the localization of clot formation by regulating the interaction between thrombin and antithrombin III.  相似文献   

5.
The ability of heparin fractions of different molecular weight to potentiate the action of antithrombin III against the coagulation factors thrombin and Xa has been examined in purified reaction mixtures and in plasma. Residual thrombin and Xa have been determined by their peptidase activities against the synthetic peptide substrates H-D-Phe-Pip-Arg-pNA and Bz-Ile-Gly-Arg-pNA. High molecular weight heparin fractions were found to have higher anticoagulant activities than low molecular weight heparin when studied with both thrombin and Xa incubation mixtures in purified mixtures and in plasma. The inhibition of thrombin by heparin fractions and antithrombin III was unaffected by other plasma components. However, normal human plasma contained a component that inhibited the heparin and antithrombin III inhibition of Xa particularly when the high molecular weight heparin fraction was used. Experiments using a purified preparation of platelet factor 4 suggested that the platelet-derived heparin-neutralizing protein was not responsible for the inhibition.  相似文献   

6.
The mechanism of the heparin-promoted reaction of thrombin with antithrombin III was investigated by using covalent complexes of antithrombin III with either high-affinity heparin (Mr = 15,000) or heparin fragments having an average of 16 and 12 monosaccharide units (Mr = 4,300 and 3,200). The complexes inhibit thrombin in the manner of active site-directed, irreversible inhibitors: (Formula: see text) That is, the inhibition rate of the enzyme is saturable with respect to concentration of complexes. The values determined for Ki = (k-1 + k2)/k1 are 7 nM, 100 nM, and 6 microM when the Mr of the heparin moieties are 15,000, 4,300, 3,200, respectively, whereas k2 (2 S-1) is independent of the heparin chain length. The bimolecular rate constant k2/Ki for intact heparin is 3 X 10(8) M-1 S-1 and the corresponding second order rate constant k1 is 6.7 X 10(8) M-1 S-1, a value greater than that expected for a diffusion-controlled bimolecular reaction. The bimolecular rate constants for the complexes with heparin of Mr = 4,300 and 3,200 are, respectively, 2 X 10(7) M-1 S-1 and 3 X 10(5) M-1 S-1. Active site-blocked thrombin is an antagonist of covalent antithrombin III-heparin complexes: the effect is monophasic and half-maximum at 4 nM of antagonist against the complex with intact heparin, whereas the effect is weaker against complexes with heparin fragments and not monophasic. We conclude that virtually all of the activity of high affinity, high molecular weight heparin depends on binding both thrombin and antithrombin III to heparin, and that the exceptionally high activity of heparin results in part from the capacity of thrombin bound nonspecifically to heparin to diffuse in the dimension of the heparin chain towards bound antithrombin III. Increasing the chain length of heparin results in an increased reaction rate because of a higher probability of interaction between thrombin and heparin in solution.  相似文献   

7.
The conformational aspects of the binding of antithrombin III to thrombin were investigated by difference spectroscopy, circular dichroism, and optical rotatory dispersion. The CD and ORD studies indicate an increase of 6--8% in alpha-helix content at the expense of the beta structure, while the results from difference spectroscopy showed an increased exposure of approximately seven tyrosine residues. In the presence of heparin there is a slightly greater increase in helicity which is accompanied by exposure of an average of two tryptophan and one tyrosine residues. These spectral results indicate that the thrombin-antithrombin III complex formed in the presence of heparin differs in its conformation from that produced in its absence.  相似文献   

8.
The relationship between thrombomodulin-associated O-linked glycosammoglycans (GAGs) and the exogenous GAGs heparin or dermatan sulfate was studied in the inhibition of thrombin by antithrombin III (AT III) or heparin cofactor II (HC II). Both rabbit thrombomodulin (TM) and two glycoforms (a high-Mr form containing GAGs and a low-Mr form lacking the majority of O-linked GAGs) of a recombinant human TM deletion mutant (rec-TM) were used. The rapid inactivation of thrombin by HC II in the presence of dermatan sulfate was prevented by both the high-Mr rec-TM and the rabbit TM. In contrast, both rabbit TM treated with chondroitin ABC lyase to remove O-linked GAGs and the low-Mr form of rec-TM had only weak protecting effects. In the absence of exogeneous dermatan sulfate, thrombin inhibition by a high concentration of HC II was slightly accelerated by the high-Mr form of rec-TM but protected by rabbit TM. When thrombin inhibition by AT III in the presence of heparin was studied, both high-Mr rec-TM and rabbit TM again invoked a similar reduction of inactivation rates, whereas in the absence of exogenous heparin, both high-Mr forms accelerated thrombin inhibition by AT III. The diverse reactivities of various forms of TM towards HC II and AT III were also observed during protein C activation by the thrombin-TM complex. These results suggest that thrombin activity at the vessel wall or in fluid phase may undergo major kinetic modulations depending on the type of protease inhibitor, the presence or absence of exogenous GAGs and the glycosylation phenotype of TM. The dependence of TM anticoagulant function on the presence of an intrinsic GAG moiety suggests that variant glycoforms of this endothelial cell cofactor may be expressed differently in a species-, organ-, or tissue-specific manner as a means to regulate TM function in diverse vasculatures.  相似文献   

9.
S-protein, the inhibitor in plasma of the membrane attack complex of complement, appears to have a second function in coagulation. S-protein during clotting enters into a trimolecular complex with thrombin and antithrombin III (ATIII). Functionally, S-protein in the presence of low concentrations of heparin, protects thrombin from inactivation by ATIII. Complex formation between S-protein and thrombin, and between S-protein, thrombin, and ATIII, was demonstrated by agarose gel electrophoresis and by two-dimensional immunoelectrophoresis of purified proteins and in recalcified, clotted plasma. Formation of the trimolecular S-thrombin-ATIII complex was strictly dependent on the presence of thrombin. No association was detectable between S-protein and ATIII or between S-protein and prothrombin. Heparin was not required for the formation of the bimolecular S-protein-thrombin complex or the trimolecular S-protein-ATIII complex. The protective effect of S-protein on inactivation of thrombin by ATIII was demonstrated in functional assays with purified proteins and in plasma only in the presence of low concentrations of heparin. Thus, S-protein may mediate its effect by scavenging heparin required for ATIII activation. It is suggested that the protection of thrombin by S-protein from inactivation by ATIII may be of physiological importance.  相似文献   

10.
Synthetic, low-molecular weight thrombin inhibitors may substitute for antithrombin III in inactivating thrombin in vitro and in vivo. They are superior to heparin as antithrombotic agents in antithrombin deficiency or consumption. Studies in experimental animals show the effectiveness of synthetic thrombin inhibitors in immunologic antithrombin depletion, thrombin-induced consumption and CCl4-induced liver failure.  相似文献   

11.
Studies were conducted to determine the effect of modifying specific functional groups of heparin on its antithrombin III-enhancing activity. The derivatives employed were heparin methyl ester, heparinylglycine and N-desulfated heparin. The carboxyl-modified derivatives increase the rate of inhibition of thrombin by antithrombin III, although not to the same extent as heparin. N-Desulfated heparin is devoid of any activity. Heparin methyl ester is more potent than heparinylglycine in activating antithrombin III, as exhibited by its immediate effect on the thrombin-fibrinogen reaction. However, heparinylglycine is the more effective of the two, in increasing the rate of thrombin deactivation by antithrombin III. The results indicate that although free carboxyl groups of heparin are not crucial for its binding to antithrombin III, they are important for the combination of the latter with thromobin. In contrast, N-sulfates are critical for the interaction of heparin with antithrombin III.  相似文献   

12.
13.
The kinetics of inhibition of human and bovine alpha-thrombin and human factor Xa by antithrombin III were examined under pseudo-first-order conditions as a function of the concentration of pentosan polysulphate [a fully sulphated (beta 1-4)-linked D-xylopyranose with a single laterally positioned 4-O-methyl-alpha-D-glucuronic acid]. Double-reciprocal plots of the observed first-order rate constant against concentration of pentosan polysulphate gave straight lines, intercepts on the axes giving values for maximum increase in second-order rate constant (by calculation) and apparent dissociation constant. These values were: for human alpha-thrombin 1.52 X 10(7) M-1 . min-1 and 3.6 microM respectively, for bovine alpha-thrombin 6.56 X 10(6) M-1 . min-1 and 0.16 microM and for factor Xa 6.86 X 106 M-1 . min-1 and 20 microM. In the presence of pentosan polysulphate the dissociation constant for the initial complex of antithrombin III and thrombin was shown to be reduced from approx. 2 X 10(-3) M to 61 X 10(-6) M without apparent change in the limiting rate constant of 750 min-1. An oligosaccharide (primarily 8-10 saccharide units) prepared from heparin and with high affinity for antithrombin III but low potency in the thrombin-antithrombin III interaction did not diminish the rate of interaction catalysed by pentosan polysulphate. The catalysis was shown to be due to a weak electrostatic interaction, since it was completely reversed by concentrations of NaCl greater than 0.3 M. It is concluded that the mechanism is independent of the heparin high-affinity binding site on antithrombin III and is probably due to binding of the high-charge-density polysaccharide to the proteinase. It is calculated that the acceleration in rate achieved, although lower than that of heparin, approaches that required to be of physiological significance and may be of importance in the anticoagulation role of antithrombin III at sites of high charge density which may occur in vivo.  相似文献   

14.
X-ray diffraction studies of human thrombin revealed that compared with trypsin, two insertions (B and C) potentially limit access to the active site groove. When amino acids Glu146, Thr147, and Trp148, adjacent to the C-insertion (autolysis loop), are deleted the resulting thrombin (des-ETW) has dramatically altered interaction with serine protease inhibitors. Whereas des-ETW resists antithrombin III inactivation with a rate constant (Kon) approximately 350-fold slower than for thrombin, des-ETW is remarkably sensitive to the Kunitz inhibitors, with inhibition constants (Ki) decreased from 2.6 microM to 34 nM for the soybean trypsin inhibitor and from 52 microM to 1.8 microM for the bovine pancreatic trypsin inhibitor. The affinity for hirudin (Ki = 5.6 pM) is weakened at least 30-fold compared with recombinant thrombin. The mutation affects the charge stabilizing system and the primary binding pocket of thrombin as depicted by a decrease in Kon for diisopropylfluorophosphate (9.5-fold) and for N alpha-p-tosyl-L-lysine-chloromethyl ketone (51-fold) and a 39-fold increase in the Ki for benzamidine. With peptidyl p-nitroanilide substrates, the des-ETW deletion results in changes in the Michaelis (Km) and/or catalytic (kcat) constants, worsened as much as 85-fold (Km) or 100-fold (kcat). The specific clotting activity of des-ETW is less than 5% that of thrombin and the kcat/Km for protein C activation in the absence of cofactor less than 2%. Thrombomodulin binds to des-ETW with a dissociation constant of approximately 2.5 nM and partially restores its ability to activate protein C since, in the presence of the cofactor, kcat/Km rises to 6.5% that of thrombin. This study suggests that the ETW motif of thrombin prevents (directly or indirectly) its interaction with the two Kunitz inhibitors and is not essential for the thrombomodulin-mediated enhancement of protein C activation.  相似文献   

15.
The effect of heparin on the conformation of antithrombin III (AT-III) was investigated. Solvent perturbation difference spectroscopy shows that the binding of heparin to AT-III results in exposure of two tyrosine residues and a partial burial of a tryptophan residue. The occurrence of a conformational change suggested by this study is also substantiated by circular dichroism (CD) findings in the aromatic and peptide regions. The data in the peptide region show that heparin produces a decrease in the β-structure of AT-III, with a compensatory increase in random coil.  相似文献   

16.
'Thrombin aptamers' are based on the 15-nucleotide consensus sequence of d(GGTTGGTGTGGTTGG) that binds specifically to thrombin's anion-binding exosite-I. The effect of aptamer-thrombin interactions during inhibition by the serine protease inhibitor (serpin) heparin cofactor II (HCII) and antithrombin (AT) has not been described. Thrombin inhibition by HCII without glycosaminoglycan was decreased approximately two-fold by the aptamer. In contrast, the aptamer dramatically reduced thrombin inhibition by >200-fold and 30-fold for HCII-heparin and HCII-dermatan sulfate, respectively. The aptamer had essentially no effect on thrombin inhibition by AT with or without heparin. These results add to our understanding of thrombin aptamer activity for potential clinical application, and they further demonstrate the importance of thrombin exosite-I during inhibition by HCII-glycosaminoglycans.  相似文献   

17.
The central enzyme involved in blood coagulation and activation of platelets is the serine proteinase thrombin. The principal inhibitor of this proteinase in plasma is antithrombin. The mechanism of regulation of the thrombin-antithrombin reaction remains unknown. Two polypeptides of 74 and 55 kDa present on the platelet surface and in plasma are known to specifically enhance the activity of thrombin on different substrates. This study was undertaken to assess the effects of these platelet proteins on thrombin-antithrombin interaction. Direct measurements of residual thrombin activity in mixtures of thrombin and antithrombin, in the presence or absence of the platelet proteins, were made utilizing a specific chromogenic substrate. Under these conditions, when 60% of thrombin activity was inhibited by antithrombin in controls, 100% of enzyme activity was retained in the presence of the platelet proteins. When heparin was used in these assays, the rate of inhibition of thrombin by antithrombin was much more rapid and 62% of thrombin activity remained after 1 min. Under these conditions, the platelet proteins continued to protect thrombin from inactivation with 98% activity remaining at 1 min and 85% activity at 5 min. In contrast, the inhibition of trypsin by antithrombin was not affected by the platelet proteins. Additional studies in platelet aggregation showed that the platelet polypeptides have two effects on thrombin: (i) protection of the enzyme inhibition by antithrombin and (ii) stabilization of thrombin from loss of activity due to aging. The results suggest a novel role for the platelet proteins in hemostasis - regulation of the inhibition of thrombin by antithrombin.  相似文献   

18.
The present study has shown that calcium inhibits the heparin-catalyzed antithrombin III/thrombin reaction. The initial rate of thrombin (4.0 nM) inhibition by antithrombin III (200 nM) in the presence of heparin (2.5 ng/ml) decreased from 3.6 nM/min (in the absence of calcium) to 0.12 nM/min in the presence of 10 mM calcium. In the absence of heparin, the initial rate of thrombin inhibition by antithrombin III was not affected by calcium. The heparin-catalyzed antithrombin III/thrombin reaction is described by the general rate equation for a random-order, bireactant, enzyme-catalyzed reaction (M. J. Griffith (1982) J. Biol. Chem. 257, 13899-13902). As such, the reaction is saturable with respect to both thrombin and antithrombin III. The apparent kinetic parameters for the heparin-catalyzed antithrombin III/thrombin reaction were determined in the presence and absence of calcium. The apparent heparin/antithrombin III dissociation constant values were not measurably different in the presence of 0, 1.0, and 3.0 mM calcium. The apparent heparin/thrombin dissociation constant value increased from 7.0 nM, in the absence of calcium, to 10 and 30 nM in the presence of 1.0 and 3.0 mM calcium, respectively. The maximum reaction velocity, at saturation with respect to both proteins, was not affected by calcium. It is concluded that calcium binds to functional groups within the heparin molecule which are required for thrombin binding.  相似文献   

19.
Corrected fluorescence excitation and emission spectra of human antithrombin III have been determined. The fluorescence observed originates almost entirely from tryptophan residues. Reduction of the disulfide bonds followed by carboxymethylation did not change the fluorometric properties of the protein. The binding of heparin to antithrombin III caused a marked fluorescence enhancement by about 30% of the intrinsic protein emission intensity. Various samples of heparin yielded different binding curves. Heparin fractionated by gel filtration seemed to be bound to two sites on antithrombin III with association constants of 0.6-10(6)m-1 and 0.2-10(6)M-1 respectively. Heparin, prepared by affinity chromatography on matrix-bound antithrombin III appeared to be bound to only one site with an association constant of 2.3-10(6)M-1. Under similar conditions heparin caused no increase of the intrinsic protein emission intensity when added to reduced and carboxymethylated antithrombin III. The implications of these findings are discussed.  相似文献   

20.
Heparin binding to rabbit histidine-rich glycoprotein (HRG) was studied in a purified system, allowing for determination of a heparin dissociation constant of approximately 5.5 X 10(-8) M for the interaction with HRG at pH 7.0. The strong interaction between heparin and HRG was demonstrated to be competitive with the binding of both antithrombin and thrombin to the heparin chain. HRG was further tested as a modulator of the anticoagulant activity of heparin by comparing rates of the heparin-catalyzed reaction between antithrombin and thrombin in the presence and absence of added HRG. The heparin-antithrombin-thrombin reaction was modeled using the formalism of a two-substrate enzyme-catalyzed reaction with heparin as the enzyme and HRG analyzed as an enzyme inhibitor. HRG was shown to compete with both antithrombin and thrombin for binding to heparin by this kinetic analysis. Thus, both the kinetic and heparin-binding data indicate that the mechanism by which HRG modulates heparin anticoagulant activity involves competition for heparin with both the inhibitor and the protease. Inhibition by HRG of the heparin-catalyzed reaction was found to be highly dependent on pH, with a sharp increase in inhibition from about 15% to greater than 90% observed as pH was lowered from 7.4 to 7.0. Since little change in the rate of the heparin-catalyzed inhibition of thrombin by antithrombin occurs in this pH region, the dramatic change in HRG inhibition seen upon pH titration may reflect increasing ionic interaction between heparin and HRG due to the protonation of histidine residues which occurs in this pH region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号