首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The results of reciprocal DNA-DNA reassociation kinetics indicated that although the DNAs of human cytomegalovirus (CMV) strains Towne and AD169 shared approximately 90% of their nucleotide sequences, about 10% heterogeneity did exist. The implication was that, with respect to one another, the DNAs of CMV Towne and CMV AD169 contained unique nucleotide sequences. To obtain more direct evidence, 32P-labeled DNA of one virus strain was reassociated in the presence of excess unlabeled DNA of the heterologous virus strain. Those 32P-labeled DNA sequences remaining single stranded were separated from double-stranded DNA on hydroxyapatite columns and incubated with Southern blots containing XbaI restriction enzyme fragments of the homologous virus DNA. This approach not only enriched for nucleotide sequences unique to each strain of virus, but also provided for the identification of the restriction enzyme fragments in which the unique sequences were contained. The CMV Towne unique sequences were found in XbaI fragments A, C, G, L, N, and Q of CMV Towne DNA. The CMV AD169 unique sequences were found in XbaI fragments A, C, G, and J of CMV AD169 DNA. The possible significance of these data with respect to variation among other CMV isolates is discussed.  相似文献   

3.
Cloning of the complete human cytomegalovirus genome in cosmids   总被引:40,自引:0,他引:40  
Purified virion DNA (155 X 10(6) Mr) of human cytomegalovirus (CMV) strain Ad169 was partially cleaved with restriction endonucleases HindIII and EcoRI and cloned in the respective cleavage sites of cosmid pHC79. A complete gene library was established in a set of clones containing the viral DNA in long overlapping segments. Restriction maps for HindIII (29 fragments) and EcoRI (36 fragments) were constructed from the linkage of cosmid-cloned fragments, from double digestions of cloned DNA, and from blot hybridization of labeled cloned viral DNA with restriction fragments of virion DNA and singly or doubly cleaved cosmid clones.  相似文献   

4.
Nucleotide sequence comparisons were performed on a highly heterogeneous region of three human cytomegalovirus strains, Toledo, Towne, and AD169. The low-passage, virulent Toledo genome contained a DNA segment of approximately 13 kbp that was not found in the Towne genome and a segment of approximately 15 kbp that was not found in the AD169 genome. The Towne strain contained approximately 4.7 kbp of DNA that was absent from the AD169 genome, and only about half of this segment was present, arranged in an inverted orientation, in the Toledo genome. These additional sequences were located at the unique long (UL)/b' (IRL) boundary within the L component of the viral genome. A region representing nucleotides 175082 to 178221 of the AD169 genome was conserved in all three strains; however, substantial reduction in the size of the adjacent b' sequence was found. The additional DNA segment within the Toledo genome contained 19 open reading frames not present in the AD169 genome. The additional DNA segment within the Towne genome contained four new open reading frames, only one of which shared homology with the Toledo genome. This comparison was extended to five additional clinical isolates, and the additional Toledo sequence was conserved in all. These findings reveal a dramatic level of genome sequence complexity that may explain the differences that these strains exhibit in virulence and tissue tropism. Although the additional sequences have not altered the predicted size of the viral genome (230 to 235 kbp), a total of 22 new open reading frames (denoted UL133 to UL154), many of which have sequence characteristics of glycoproteins, are now defined as cytomegalovirus specific. Our work suggests that wild-type virus carries more than 220 genes, some of which are lost by large-scale deletion and rearrangement of the UL/b' region during laboratory passage.  相似文献   

5.
Physical mapping of the Mycoplasma pneumoniae genome.   总被引:22,自引:7,他引:15       下载免费PDF全文
In order to study the genome organization of Mycoplasma pneumoniae a cosmid library of M. pneumoniae DNA was established using a newly designed cosmid vector (pcosRW2). From this library 32 overlapping clones were isolated covering a contiguous 720 kbp DNA segment representing about 90% of the genome assuming a genome size of about 800 kbp.  相似文献   

6.
The genome of the multicapsid nuclear polyhedrosis virus of Orgyia pseudotsugata was mapped by examining overlapping HindIII fragments from cosmid clones which had been constructed from partial HindIII digests of viral DNA. Five OpMNPV cosmid clones containing fragments encompassing the entire OpMNPV genome were hydridized to blots of DNA from the multicapsid nuclear polyhedrosis virus of Autographa californica. The hybridization pattern indicated that the genomes of these viruses are similarly organized.  相似文献   

7.
Characterization of the DNA polymerase gene of human herpesvirus 6.   总被引:15,自引:5,他引:10       下载免费PDF全文
I A Teo  B E Griffin    M D Jones 《Journal of virology》1991,65(9):4670-4680
The construction of a recombinant bacteriophage lambda library containing overlapping clones covering 155 kbp of the 161-kbp genome of the Ugandan U1102 isolate of human herpesvirus 6 (HHV-6) is described. The use of degenerate-primer polymerase chain reaction allowed the isolation of a DNA probe for the DNA polymerase gene of HHV-6, which was subsequently used to isolate and position the pol gene on the physical map of the viral genome. A 4.4-kbp EcoRI DNA restriction fragment containing the pol gene was isolated and sequenced. The open reading frames flanking the pol gene code for the HHV-6 glycoprotein B gene and the human cytomegalovirus UL53 homolog. This arrangement is different from that seen in the alpha and gamma herpesvirus families, lending further support to the notion that HHV-6 is a member of the beta herpesvirus group.  相似文献   

8.
Among the Epstein-Barr virions (EBV) produced by the P3HR-1 (HR-1) cell line are a defective subpopulation with rearranged viral DNA designated heterogeneous DNA (het DNA). These defective virions are responsible for the capacity of HR-1 virus to induce early antigen in Raji c cells and for trans activation of latent EBV in X50-7 cells. Virions with het DNA are independent replicons which pass horizontally from cell to cell rather than being partitioned vertically. We analyzed the structure and defined several polypeptide products of het DNA to understand these remarkable biologic properties. A 36-kilobase-pair (kbp) stretch of het DNA was cloned (as two EcoRI fragments of 20 and 16 kbp) from virions released from a cellular subclone of HR-1 cells. The unusual aspect of the 20-kbp fragment was the linkage of sequences of BamHI-M and BamHI-B', which are not adjacent on the standard EBV genome. The 16-kbp fragment was a palindrome in which at least two additional recombinations on each side of the palindrome had linked regions of the standard EBV genome which are not normally contiguous. The 20-kbp het DNA fragment was attached to at least one and possibly both ends of the 16-kbp het DNA fragment. We identified antigenic polypeptides produced in COS-1 cells after gene transfer of various cloned het DNA fragments. The 20-kbp fragment encoded a cytoplasmic antigen of about 95 kilodaltons (kDa). The 16-kbp fragment encoded antigens located in the nucleus, nuclear membrane, and cytoplasm. These were represented by several polypeptides, the most prominent of which were about 55, 52, and 36 kDa. The 36-kDa polypeptide was localized to a 2.7-kbp BamHI fragment which had homology to standard BamHI-W and BamHI-Z. Another polypeptide of 50 kDa found in the nucleus was mapped to the 7.1-kbp BamHI het DNA fragment which spans the EcoRI site linking the 20- and 16-kbp fragments of het DNA. Thus, HR-1 het DNA encodes several discrete polypeptide products, one or more of which could be responsible for the unusual biologic properties of the virus. The composition, regulation, and ultimately the expression of some of these products relative to standard EBV is probably altered by the genomic rearrangements of het DNA.  相似文献   

9.
Epstein-Barr virus recombinants from overlapping cosmid fragments.   总被引:14,自引:12,他引:2       下载免费PDF全文
Five overlapping type 1 Epstein-Barr virus (EBV) DNA fragments constituting a complete replication- and transformation-competent genome were cloned into cosmids and transfected together into P3HR-1 cells, along with a plasmid encoding the Z immediate-early activator of EBV replication. P3HR-1 cells harbor a type 2 EBV which is unable to transform primary B lymphocytes because of a deletion of DNA encoding EBNA LP and EBNA 2, but the P3HR-1 EBV can provide replication functions in trans and can recombine with the transfected cosmids. EBV recombinants which have the type 1 EBNA LP and 2 genes from the transfected EcoRI-A cosmid DNA were selectively and clonally recovered by exploiting the unique ability of the recombinants to transform primary B lymphocytes into lymphoblastoid cell lines. PCR and immunoblot analyses for seven distinguishing markers of the type 1 transfected DNAs identified cell lines infected with EBV recombinants which had incorporated EBV DNA fragments beyond the transformation marker-rescuing EcoRI-A fragment. Approximately 10% of the transforming virus recombinants had markers mapping at 7, 46 to 52, 93 to 100, 108 to 110, 122, and 152 kbp from the 172-kbp transfected genome. These recombinants probably result from recombination among the transfected cosmid-cloned EBV DNA fragments. The one recombinant virus examined in detail by Southern blot analysis has all the polymorphisms characteristic of the transfected type 1 cosmid DNA and none characteristic of the type 2 P3HR-1 EBV DNA. This recombinant was wild type in primary B-lymphocyte infection, growth transformation, and lytic replication. Overall, the type 1 EBNA 3A gene was incorporated into 26% of the transformation marker-rescued recombinants, a frequency which was considerably higher than that observed in previous experiments with two-cosmid EBV DNA cotransfections into P3HR-1 cells (B. Tomkinson and E. Kieff, J. Virol. 66:780-789, 1992). Of the recombinants which had incorporated the marker-rescuing cosmid DNA fragment and the fragment encoding the type 1 EBNA 3A gene, most had incorporated markers from at least two other transfected cosmid DNA fragments, indicating a propensity for multiple homologous recombinations. The frequency of incorporation of the nonselected transfected type 1 EBNA 3C gene, which is near the end of two of the transfected cosmids, was 26% overall, versus 3% in previous experiments using transfections with two EBV DNA cosmids. In contrast, the frequency of incorporation of a 12-kb EBV DNA deletion which was near the end of two of the transfected cosmids was only 13%.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

10.
Cloning of heat-shock locus 93D from Drosophila melanogaster.   总被引:6,自引:1,他引:5       下载免费PDF全文
Using the microcloning approach a number of recombinant lambda phages carrying DNA from the 93D region have been isolated. Screening genomic libraries, cloned in phage lambda or cosmid vectors, with this isolated DNA yielded a series of overlapping DNA fragments from the region 93D6-7 as shown by in situ hybridization to polytene chromosomes. In vitro 32P-labelled nuclear RNA prepared from heat-shocked third instar larvae hybridized specifically to one fragment within 85 kb of cloned DNA. The region which is specifically transcribed after heat shock could be defined to a cluster of internally-repetitive DNA and its neighbouring proximal sequences. Over a sequence of 10-12 kb in length the DNA is cut into repeat units of approximately 280 nucleotides by the restriction endonuclease TaqI. The TaqI repeat sequences are unique in the Drosophila genome.  相似文献   

11.
The complete human nucleotide exicision repair gene ERCC5 was isolated as a functional gene on overlapping cosmids. ERCC5 corrects the excision repair deficiency of Chinese hamster ovary cell line UV135, of complementation group 5. Cosmids that contained human sequences were obtained from a UV-resistant cell line derived from UV135 cells transformed with human genomic DNA. Individually, none of the cosmids complemented the UV135 repair defect; cosmid groups were formed to represent putative human genomic regions, and specific pairs of cosmids that effectively transformed UV135 cells to UV resistance were identified. Analysis of transformants derived from the active cosmid pairs showed that the functional 32-kbp ERCC5 gene was reconstructed by homologous intercosmid recombination. The cloned human sequences exhibited 100% concordance with the locus designated genetically as ERCC5 located on human chromosome 13q. Cosmid-transformed UV135 host cells repaired cytotoxic damage to levels about 70% of normal and repaired UV-irradiated shuttle vector DNA to levels about 82% of normal.  相似文献   

12.
To allow the efficient construction of ordered clone libraries, we have been investigating the use of 'oligonucleotide fingerprinting' as an approach to identify overlapping clones, and ultimately restore the linear order of the clone set. To test the effectiveness of the procedure, we have constructed a cosmid library from the genome of the human DNA virus HSV-I and used hybridisation to multiple oligonucleotides selected from the nucleotide sequence to reconstruct the order of clones and oligonucleotides on the genome.  相似文献   

13.
14.
H J Breter  M T Knoop  H Kirchen 《Gene》1987,53(2-3):181-190
A series of vectors for cosmid cloning in yeast has been derived from cosmid pHC79. Vectors pMT4 through pMT6 contain two tandemly arranged cohesive end sites (cos) from the genome of bacteriophage lambda. Their design allows the rapid and simple preparation of cosmid arms by linearizing a vector at the unique PvuII-restriction site located between the two cos-sequences and then cutting the linearized molecule at one of its unique cloning sites for BamHI, ClaI, PvuI, SalI or ScaI. Cosmids generated with arms from the most advanced vector, pMT6, carry the origin of replication (ori) and the ApR gene from pBR322 and the TRP1/ARS1 and URA1 genes from Saccharomyces cerevisiae. A yeast genomic DNA library was established by packaging in vitro, into bacteriophage lambda preheads, of partially restricted yeast DNA fragments ligated to cosmid arms of vector pMT6. About 80% of the clones thus obtained comprise inserts of contiguous genomic DNA over 30 kb in length. Unique DNA probes for the yeast genes CDC10, CDC39, HIS4, LEU2, and PGK1 have successfully been applied when testing for completeness of this library by isolating a series of overlapping cosmid clones that carry the respective genes. The library will thus be useful for the selection of cosmid clones which carry CDC genes from yeast by complementing first, with the vectorial yeast gene URA1, the pyrimidine auxotrophy of most cdc-strains and then, with the respective CDC wild-type genes, of the temperature-sensitive mutant alleles. Most CDC clones thus obtained will provide unique DNA probes which serve as randomly distributed start sequences within the yeast genome for overlap hybridization screening in chromosome mapping studies.  相似文献   

15.
By using a low-resolution macrorestriction map as the foundation (R. Majumder et al., J. Bacteriol. 176:1105–1112, 1996), an ordered cloned DNA map of the 3.2-Mb chromosome of the hypertoxinogenic strain 569B of Vibrio cholerae has been constructed. A cosmid library the size of about 4,000 clones containing more than 120 Mb of V. cholerae genomic DNA (40-genome equivalent) was generated. By combining landmark analysis and chromosome walking, the cosmid clones were assembled into 13 contigs covering about 90% of the V. cholerae genome. A total of 92 cosmid clones were assigned to the genome and to regions defined by NotI, SfiI, and CeuI macrorestriction maps. Twenty-seven cloned genes, 9 rrn operons, and 10 copies of a repetitive DNA sequence (IS1004) have been positioned on the ordered cloned DNA map.  相似文献   

16.
The initial strategy of the Corynebacterium glutamicum genome project was to sequence overlapping inserts of an ordered cosmid library. High-density colony grids of approximately 28 genome equivalents were used for the identification of overlapping clones by Southern hybridization. Altogether 18 contiguous genomic segments comprising 95 overlapping cosmids were assembled. Systematic shotgun sequencing of the assembled cosmid set revealed that only 2.84 Mb (86.6%) of the C. glutamicum genome were represented by the cosmid library. To obtain a complete genome coverage, a bacterial artificial chromosome (BAC) library of the C. glutamicum chromosome was constructed in pBeloBAC11 and used for genome mapping. The BAC library consists of 3168 BACs and represents a theoretical 63-fold coverage of the C. glutamicum genome (3.28 Mb). Southern screening of 2304 BAC clones with PCR-amplified chromosomal markers and subsequent insert terminal sequencing allowed the identification of 119 BACs covering the entire chromosome of C. glutamicum. The minimal set representing a 100% genome coverage contains 44 unique BAC clones with an average overlap of 22 kb. A total of 21 BACs represented linking clones between previously sequenced cosmid contigs and provided a valuable tool for completing the genome sequence of C. glutamicum.  相似文献   

17.
B Ida  M Pierluigi  S Lucia  P Piergiorgio 《Genomics》1992,13(4):1353-1355
The assembly of a large physical map of genomes requires simultaneous analysis of many cosmid clones for overlapping regions. The search for overlapping regions may be achieved by various means. High-performance liquid chromatography (HPLC) provides an alternative to gel electrophoresis since microgram amounts of each DNA fragment may be collected into individual test tubes for further analysis. HPLC has been used to identify overlapping cosmid clones from a pool of cosmid DNA containing the terminal portion of the long arm of the human X chromosome (Xq24-qter). Among 400 cosmids analyzed, 3 were shown to overlap.  相似文献   

18.
Although herpes simplex virus (HSV) 1 and human cytomegalovirus (CMV) differ remarkably in their biological characteristics and do not share nucleotide sequence homology, they have in common a genome structure that undergoes sequence isomerization of the long (L) and short (S) components. We have demonstrated that the similarity in their genome structures extends to the existence of an alpha sequence in the CMV genome as previously defined for the HSV genome. As such, the alpha sequence is predicted to participate as a cis-replication signal in four viral functions: (i) inversion, (ii) circularization, (iii) amplification, and (iv) cleavage and packaging of progeny viral DNA. We have constructed a chimeric HSV-CMV amplicon (herpesvirus cis replication functions carried on an Escherichia coli plasmid vector) substituting CMV DNA sequences for the HSV cleavage/packaging signal in a test of the ability of this CMV L-S junction sequence to provide the cis signal for cleavage/packaging in HSV 1-infected cells. We demonstrate that the alpha sequence of CMV DNA functions as a cleavage/packaging signal for HSV defective genomes. We show the structure of this sequence and provide a functional demonstration of cross complementation in replication signals which have been preserved over evolutionary time in these two widely divergent human herpesviruses.  相似文献   

19.
Summary The complete physical map of the mitochondrial genome of the Owen cytoplasm of sugar beet has been determined from overlapping cosmid clones. The genome is 386 kb in size and has a multicircular organisation generated by homologous recombination across repeated DNA elements. The location of the rRNA genes and several polypeptide genes has been determined. In addition the mitochondrial genome was found to contain a sequence of chloroplast DNA including part of the 16 S rRNA gene.  相似文献   

20.
Restriction maps for the cottontail rabbit herpesvirus (CTHV) genome   总被引:1,自引:0,他引:1  
T Foulon  J Cebrian 《Gene》1989,78(2):371-376
The sites for restriction endonucleases ApaI, BamHI and PvuII in the genome of the cottontail rabbit herpesvirus were localized. The physical mapping of the 150-kb DNA was facilitated by peculiarities of the genome structure, namely the presence of repetitive DNA and of invertible segments, and by the analysis of overlapping cosmid clones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号