首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mesoheme IX complexes of sterically hindered ligands 2-methylimidazole, tert-butylamine and 2-methylpyridine in aqueous glycerol solutions are characterized by broad visible absorption spectra at ambient temperature exhibiting close similarities to high-spin ferrous hemeproteins. Spectrophotometric titrations of mesoheme IX with these ligands indicate well-defined equilibria for 2-methylimidazole and tert-butylamine corresponding to the formation of penta-coordinate strong-field ligand complexes. Variable temperature spectra of these complexes from ambient to 77 degrees K exhibit a change to hemochrome spectra characteristic of the low-spin unhindered ligand complexes. Corresponding changes in the visible spectra are not observed for the high-spin hemeproteins deoxymyoglobin, horse-radish peroxidase and cytochrome ?. The appropriate utilization of these hindered ligand heme complexes as model systems for high-spin ferrous hemeproteins has been discussed.  相似文献   

2.
Equilibrium constants for the binding of azide to the ferric heme c octapeptide in 50% ethylene glycol 50% buffer were measured spectrophotometrically. The equilibrium constant for azide binding at 20 degrees C and pH* 7.4 is 29.2, which is approximately 3 to 4 orders of magnitude lower than that observed for azide binding to various ferric hemeproteins. The equilibrium constant was indepent of pH* in the range from 7 to 8. Equilibrium constants at several temperatures exhibited an apparent van't Hoff relationship yielding thermodynamic values of delta H0 = -26,100 J/mol (-6240 cal/mol) and delta S0 = -61.5 J/0K mol (-14.7 e.u.). Comparison of these values to the values for the heme proteins enables one to explain the differences in equiliberium constants in terms of differences in the polarity of the heme environments. The results are consistent with the concept that the oxygen affinity of heme complexes increases with the polarity of the heme environment. The data also suggest that an increase in the polarity of the heme environment should result in a corresponding increase in the susceptibility of ferrous heme dioxygen complexes toward oxidation by the dioxygen.  相似文献   

3.
Electron paramagnetic resonance (EPR) and optical spectra are used as probes of the heme and its ligands in ferric and ferrous leghemoglobin. The proximal ligand to the heme iron atom of ferric soybean leghemoglobin is identified as imidazole by comparison of the EPR of leghemoglobin hydroxide, azide, and cyanide with the corresponding derivatives of human hemoglobin. Optical spectra show that ferric soybean leghemoglobin near room temperature is almost entirely in the high spin state. At 77 K the optical spectrum is that of a low spin compound, while at 1.6 K the EPR is that of a low spin form resembling bis-imidazole heme. Acetate binds to ferric leghemoglobin to form a high spin complex as judged from the optical spectrum. The EPR of this complex is that of high spin ferric heme in a nearly axial environment. The complexes of ferrous leghemoglobin with substituted pyridines exhibit optical absorption maxima near 685 nm, whose absorption maxima and extinctions are strongly dependent on the nature of the substitutents of the pyridine ring; electron withdrawing groups on the pyridine ring shift the absorption maxima to lower energy. A crystal field analysis of the EPR of nicotinate derivatives of ferric leghemoblobin demonstrates that the pyridine nitrogen is also bound to the heme iron in the ferric state. These findings lead us to picture leghemoglobin as a somewhat flexible molecule in which the transition region between the E and F helices may act as a hinge, opening a small amount at higher temperature to a stable configuration in which the protein is high spin and can accommodate exogenous ligand molecules and closing at low temperature to a second stable configuration in which the protein is low spin and in which close approach of the E helix permits the distal histidine to become the principal sixth ligand.  相似文献   

4.
A c-type monoheme cytochrome c554 (13 kDa) was isolated from cells of Achromobacter cycloclastes IAM 1013 grown anaerobically as a denitrifier. The visible absorption spectrum indicates the presence of a band at 695 nm characteristic of heme-methionine coordination (low-spin form) coexisting with a minor high-spin form as revealed by the contribution at 630 nm. Magnetic susceptibility measurements support the existence of a small contribution of a high-spin form at all pH values, attaining a minimum at intermediate pH values. The mid-point redox potential determined by visible spectroscopy at pH 7.2 is +150 mV. The pH-dependent spin equilibrum and other relevant structural features were studied by 300-MHz 1H-NMR spectroscopy. In the oxidized form, the 1H-NMR spectrum shows pH dependence with pKa values at 5.0 and 8.9. According to these pKa values, three forms designated as I, II and III can be attributed to cytochrome c554. Forms I and II predominate at low pH values, and the 1H-NMR spectra reveal heme methyl proton resonances between 40 ppm and 22 ppm. These forms have a methionyl residue as a sixth ligand, and C6 methyl group of the bound methionine was identified in the low-field region of the NMR spectra. Above pH 9.6, form III predominates and the 1H-NMR spectrum is characterized by down-field hyperfine-shifted heme methyl proton resonances between 29 ppm and 22 ppm. Two new resonances are observed at congruent to 66 ppm and 54 ppm, and are taken as indicative of a new type of heme coordination (probably a lysine residue). These pH-dependent features of the 1H-NMR spectra are discussed in terms of the heme environment structure. The chemical shifts of the methyl resonances at different pH values exhibit anti-Curie temperature dependence. In the ferrous state, the 1H-NMR spectrum shows a methyl proton resonance at -3.9 ppm characteristic of methionine axial ligation. The electron-transfer rate between ferric and ferrous forms has been estimated to be smaller than 2 x 10(4) M-1 s-1 at pH 5. EPR spectroscopy was also used to probe the ferric heme environment. A prominent signal at gmax congruent to 3.58 and the overall lineshape of the spectrum indicate an almost axial heme environment.  相似文献   

5.
A c-type monoheme ferricytochrome c550 (9.6 kDa) was isolated from cells of Bacillus halodenitrificans sp.nov., grown anaerobically as a denitrifier. The visible absorption spectrum indicates the presence of a band at 695 nm characteristic of heme-methionine coordination. The midpoint redox potential was determined at several pH values by visible spectroscopy. The redox potential at pH 7.6 is 138 mV. When studied by 1H-NMR spectroscopy as a function of pH, the spectrum shows a pH dependence with pKa values of 6.0 and 11.0. According to these pKa values, three forms designated as I, II and III can be attributed to cytochrome c550. The first pKa is probably associated with protonation of the propionate groups. The second pKa value introduces a larger effect in the 1H-NMR spectrum and is probably due to the ionisation of the axial histidine. Studies of temperature variation of the 1H-NMR spectra for both the ferrous and ferri forms of the cytochrome were performed. Heme meso protons, the heme methyl groups, the thioether protons, two protons from a propionate and the methylene protons from the axial methionine were identified in the reduced form. The heme methyl resonances of the ferri form were also assigned. EPR spectroscopy was also used to probe the ferric heme environment. A signal at gmax approximately 3.5 at pH 7.5 was observed indicating an almost axial heme environment. At higher pH values the signal at gmax approximately 3.5 converts mainly to a signal at g approximately 2.96. The pKa associated with this change is around 11.3. The N-terminal sequence of this cytochrome was determined and compared with known amino acid sequences of other cytochromes.  相似文献   

6.
Upon heating cytochrome c peroxidase (ferrocytochrome c: hydrogen-peroxide oxidoreductase, EC 1.11.1.5) at pH 4 and 5, the enzyme precipitates at 41 degrees C and 51 degrees C, respectively. Incubating the enzyme at lower temperatures causes a slow dissociation of the heme from the protein. The heme precipitates, while the apoprotein remains soluble. Between pH 6 and 8, the native enzyme is converted to a low-spin ferric form upon heating. The Soret maximum shifts from 408 to 414 nm. The midpoint of this transition is pH-dependent, with a value of 46 degrees C at pH 6 decreasing to 29 degrees C at pH 8. At high temperatures the 414 nm form is converted to a species which has a 'free heme' spectrum with low absorptivity and Soret maximum at 390 nm. The midpoint temperature of this latter transition is 62 degrees C and 57 degrees C at pH 7 and 8, respectively.  相似文献   

7.
Using fast flash photolysis, we have measured the binding of CO to carboxymethylated cytochrome c and to heme c octapeptide as a function of temperature (5 degrees-350 degreesK) over an extended time range (100 ns(-1) ks). Experiments used a microsecond dye laser (lambda = 540 nm), and a mode-locked frequency-doubled Nd-glass laser (lambda = 530 nm). At low temperatures (5 degrees-120 degreesK) the rebinding exhibits two components. The slower component (I) is nonexponential in time and has an optical spectrum corresponding to rebiding from an S = 2, CO-free deoxy state. The fast component (I*) is exponential in time with a lifetime shorter than 10 mus and an optical spectrum different from the slow component. In myoglobin and the separated alpha and beta chains of hemoglobin, only process I is visible. The optical absorption spectrum of I* and its time dependence suggest that it may correspond to recombination from an excited state in which the iron has not yet moved out of the heme plane. The temperature dependences of both processes have been measured. Both occur via quantum mechanical tunneling at the lowest temperatures and via over-the-barrier motion at higher temperatures.  相似文献   

8.
The UV-visible absorption and magnetic circular dichroism (MCD) spectra of the ferric, ferrous, CO-ligated forms and kinetic photolysis intermediates of the tetraheme electron-transfer protein cytochrome c3 (Cc3) are reported. Consistent with bis-histidinyl axial coordination of the hemes in this Class III c-type cytochrome, the Soret and visible region MCD spectra of ferric and ferrous Cc3 are very similar to those of other bis-histidine axially coordinated hemeproteins such as cytochrome b5. The MCD spectra indicate low spin state for both the ferric (S = 1/2) and ferrous (S = 0) oxidation states. CO replaces histidine as the axial sixth ligand at each heme site, forming a low-spin complex with an MCD spectrum similar to that of myoglobin-CO. Photodissociation of Cc3-CO (observed photolysis yield = 30%) produces a transient five-coordinate, high-spin (S = 2) species with an MCD spectrum similar to deoxymyoglobin. The recombination kinetics of CO with heme Fe are complex and appear to involve at least five first-order or pseudo first-order rate processes, corresponding to time constants of 5.7 microseconds, 62 microseconds, 425 microseconds, 2.9 ms, and a time constant greater than 1 s. The observed rate constants were insensitive to variation of the actinic photon flux, suggesting noncooperative heme-CO rebinding. The growing in of an MCD signal characteristic of bis-histidine axial ligation within tens of microseconds after photodissociation shows that, although heme-CO binding is thermodynamically favored at 1 atm CO, binding of histidine to the sixth axial site competes kinetically with CO rebinding.  相似文献   

9.
The oxidation-reduction potentials of the two c-type hemes of Pseudomonas aeruginosa cytochrome c peroxidase (ferrocytochrome c:hydrogen-peroxide oxidoreductase EC 1.11.1.5) have been determined and found to be widely different, about +320 and -330 mV, respectively. The EPR spectrum at temperatures below 77 K reveals only low-spin signals (gz 3.24 and 2.93), whereas optical spectra at room temperature indicate the presence of one high-spin and one low-spin heme in the enzyme. Optical absorption spectra of both resting and half-reduced enzyme at 77 K lack features of a high-spin compound. It is concluded that the heme ligand arrangement changes on cooling from 298 to 77 K with a concomitant change in the spin state. The active form of the peroxidase is the half-reduced enzyme, in which one heme is in the ferrous and the other in the ferric state (low-spin below 77 K with gz 2.84). Reaction of the half-reduced enzyme with hydrogen peroxide forms Compound I with the hemes predominantly in the ferric (gz 3.15) and the ferryl states. Compound I has a half-life of several seconds and is converted into Compound II apparently having a ferric-ferric structure, characterized by an EPR peak at g 3.6 with unusual temperature and relaxation behavior. Rapid-freeze experiments showed that Compound II is formed in a one-electron reduction of Compound I. The rates of formation of both compounds are consistent with the notion that they are involved in the catalytic cycle.  相似文献   

10.
The optical properties of Pseudomonas cytochrome oxidase (ferrocytochrome-c:oxygen oxidoreductase, EC 1.9.3.2) were monitored as a function of guanidine hydrochloride (Gdn X HCl) concentration to probe for differential stabilization of its prosthetic groups, heme d1 and heme c. The protein fluorescence intensity increased with the Gdn X HCl concentration, revealing two transitions, a sharp one between 1.3 and 1.5 M Gdn X HCl, and a second less well defined extending from 2.5 to 4.5 M. Only the transition at the lower Gdn X HCl concentrations was present in titrations followed using the emission maxima. The spectral maximum for native Pseudomonas cytochrome oxidase was at approx. 335 nm and shifted to approx. 350 nm above 2 M Gdn X HCl. The heme d1 absorbance at 638 nm decreased with increasing [Gdn X HCl], giving a transition at 1.3-1.5 M, and no transition up to 4 M Gdn X HCl when the heme c was monitored at 525 nm. Along with the decrease at 638 nm, an absorption band appeared at 681 nm, suggesting heme d1 release into solution. Fluorescence titration of heme d1-depleted enzyme, prepared by gel filtration, showed a single transition similar to the transition occurring in the intact enzyme at high Gdn X HCl concentrations. Circular dichroism spectra revealed clearly distinguishable transitions for the heme d1 and heme c near 1.5 and 3.0 M Gdn X HCl, respectively. These results suggest that the two hemes are in regions of the protein with different stabilities which may represent distinct structural domains.  相似文献   

11.
A tryptic resistant heme peptide has been prepared and purified from cardiac cytochrome c1. This purified peptide is not further hydrolyzed by reactions of other proteolytic enzymes, such as pronase. The peptide contains 2 residues each of serine, cysteine and valine, and 1 residue each of alanine, methionine, tyrosine, histidine, arginine, proline, glutamic acid (glutamine) and aspartic acid. The intensity of the absorption spectrum of the peptide has been found to be dependent upon, but the positions of the absorption maxima do not vary with, concentration. The heme peptide does not show multiple splitting of absorption peaks at liquid N2 temperatures as does the intact cytochrome C1. However, cyanide rapidly reacts with the peptide and causes significant spectral changes. CD spectra of the peptide exhibit a typical profile of a non-structured heme peptide with positive CD bands in the Soret region and around 250 nm, and a broad negative extreme of 320-360 nm. The similarities and differences between the tryptic resistant heme peptides from cytochromes c1 and c have been compared.  相似文献   

12.
The electronic absorption spectrum of solubilized beef heart cytochrome c oxidase was analyzed in the 400-500 nm region to identify the origin of doublet features appearing in the second derivative spectrum associated with ferrocytochrome a. This doublet, centered near 22,600 cm(-1), was observed in the direct absorption spectrum of the a(2+)a(3)(3+).HCOO(-) form of the enzyme at cryogenic temperatures. Since evidence for this doublet at room temperature is obtained only on the basis of the second derivative spectrum, a novel mathematical approach was developed to analyze the resolving power of second derivative spectroscopy as a function of parameterization of spectral data. Within the mathematical limits defined for resolving spectral features, it was demonstrated that the integrated intensity of the doublet feature near 450 nm associated with ferrocytochrome a is independent of the ligand and oxidation state of cytochrome a(3). Furthermore, the doublet features, also observed in cytochrome c oxidase from Paracoccus denitrificans, were similarly associated with the heme A component and were correspondingly independent of the ligand and oxidation state of the heme A(3) chromophore. The doublet features are attributed to lifting of the degeneracy of the x and y polarized components of the B state of the heme A chromophore associated with the Soret transition.  相似文献   

13.
The cell membrane of Micrococcus luteus (lysodeikticus) contains a respiratory chain composed of hemes a, b, and c, which contain 171, 457, and 407 pmol/mg protein, respectively. Cytochrome c oxidase, the heme a containing component, has been purified after solubilization in Triton X-100, by gel filtration on Sepharose 4B-CL ammonium sulfate precipitation and ion-exchange and affinity chromatographies on a yeast cytochrome c-Sepharose 4B column. The purified complex, which contains three polypeptides of apparent Mr 47,000, 31,000, and 19,000, has CN-sensitive ferrocytochrome c oxidase activity (Ki = 0.35 microM) and a characteristic absorption spectrum with maxima in the oxidized form at 595 and 426 nm and in the reduced form at 601 and 444 nm. The purified enzyme contains 17.4 nmol/mg protein and its copper content is 23.2 nmol/mg protein. The enzyme was purified about 100-fold with respect to its content in crude membranes. The total heme a yield, also with respect to crude membranes content, was 6.8%.  相似文献   

14.
Okuno T  Hirota S  Yamauchi O 《Biochemistry》2000,39(25):7538-7545
The protein folding character of cyt c was studied with the use of a photocleavable o-nitrobenzyl derivative of Met65 (NBz-Met65). For the NBz-Met65 cyt c, the Soret absorption band slightly blue shifted compared with the unlabeled cyt c, the 695 nm absorption band related to the Met80 sulfur ligation to the heme iron disappeared, and its resonance Raman spectrum was characteristic of a six-coordinate low-spin species, all characters demonstrating coordination of a non-native ligand, probably a histidine, instead of Met80 to the heme iron. The far-UV circular dichroism (CD) spectrum of cyt c was altered, and the transition midpoint concentration value of guanidine hydrochloride (GdnHCl) for unfolding the protein decreased by 0.9 M by the modification, which showed perturbation of the structure and decrease in protein stability, respectively. With irradiation of 308 nm laser pulses on the NBz-Met65 cyt c, the Soret absorption band slightly red shifted, the 695 nm absorption band appeared, and the CD spectrum shifted toward that of the native protein, which demonstrated recovery of the methionine heme coordination and the native protein structure, due to reconversion of NBz-Met65 to unlabeled methionine. A fast phase was detected as a change in Soret absorbance with a rate constant of 21 000 +/- 4000 s(-)(1) during refolding of cyt c initiated by irradiation of a 308 nm pulse on the NBz-Met65 cyt c in the presence of 2 M GdnHCl. The observed rate constant corresponded well with that reported by the tryptophan fluorescence study [Shastry, M. C. R. S., and Roder, H. (1998) Nat. Struct. Biol. 5, 385-392]. The intermediate decayed with a rate constant of 90 +/- 15, followed by another phase with a rate constant of 13 +/- 3 s(-)(1), and was not seen in the absence of GdnHCl.  相似文献   

15.
Electron paramagnetic resonance and electronic absorption spectral changes upon addition of sodium dodecyl sulfate (SDS) to ferric and ferrous cytochrome c have been measured at 77 degrees K and at room temperature. The spectral changes upon addition of SDS to ferric cytochrome c were performed, in two steps, from native low-spin to another low-spin spectrum and subsequently to high-spin-like spectrum. On the other hand, the spectral changes upon addition of SDS to ferrous cytochrome c proceeded, in one step, from native low-spin to high-spin spectrum. The high-spin-like spectrum of ferric cytochrome c and the high-spin spectrum of ferrous cytochrome c in the presence of high concentrations of SDS are, respectively, apparently similar to those of ferric and ferrous cytochrome c' at physiological pH in spectral features. These spectral similarities suggest the similarities in the heme stereochemistry and the ground state of heme iron. Further, the spectra of cytochrome c in the presence of SDS varied with the change of pH values. The ferric high-spin-like and ferrous high-spin spectra were stable at neutral pH and below it. Conformational changes of cytochrome c upon addition of SDS are also discussed.  相似文献   

16.
A c3 type cytochrome has been purified from the thermophilic, non-spore-forming, sulfate-reducing bacterium Thermodesulfobacterium commune. The purified protein was homogeneous as judged by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, gel filtration, and isoelectric focusing. A pI of 6.83 was observed. The molecular weight of the cytochrome was estimated to be ca. 13,000 from both gel filtration and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The hemoprotein exhibited absorption maxima at 530, 408.5, and 351 nm in the oxidized form and 551.5 (alpha band), 522.5 (beta band), and 418.5 nm (gamma band) in the reduced form. The extinction coefficients of T. commune cytochrome c3 were 130,000, 74,120, and 975,000 M-1 cm-1 at 551.5, 522.5, and 418.5 nm, respectively. It contains four hemes per molecule, on the basis of both the iron estimation and the extinction coefficient value of its pyridine hemochrome. The amino acid composition showed the presence of eight cysteine residues involved in heme binding. T. commune cytochrome c3 had low threonine, serine, and glycine contents and high glutamic acid and hydrophobic residue contents. The electrochemical study of T. commune cytochrome c3 by cyclic voltammetry and differential pulse polarography has shown that the cytochrome system behaves like a reversible system. Four redox potential values at Eh1 = -0.140 +/- 0.010 V, Eh2 = Eh3 = Eh4 = -0.280 +/- 0.010 V have been determined. T. commune cytochrome c3, which acts as the physiological electron carrier of hydrogenase, is similar in most respects to the multiheme low-potential cytochrome c3 which is characteristic of the genus Desulfovibrio.  相似文献   

17.
Elevated partial pressures of atmospheric carbon dioxide, similar to numerous causes of plant stress, may alter leaf pigmentation and structure and thus would be expected to alter leaf optical properties. Hypotheses that elevated CO(2) pressure and air temperature would alter leaf optical properties were tested for sugar maple (Acer saccharum) in the middle of its fourth growing season under treatment. The saplings had been growing since 1994 in open-top chambers and partial shade at Oak Ridge, Tennessee under the following treatments: (1) ambient CO(2) pressure and air temperature (control); (2) CO(2) pressure approximately 30 Pa above ambient; (3) air temperatures 3 degrees C above ambient; and (4) elevated CO(2) and air temperature. Under elevated CO(2) or temperature, spectral reflectance, transmittance and absorptance in the visible spectrum (400-720 nm) tended to change in patterns that generally are associated with chlorosis, with maximum differences from the control near 700 nm. However, these changes were not significant at P=0.05. Although reflectance, transmittance and absorptance at 700 nm correlated strongly with leaf chlorophyll concentration, variability in chlorophyll concentration was greater within than among treatments. The lack of treatment effects on pigmentation explained the non-significant change in optical properties in the visible spectrum. Optical properties in the near-infrared (721-850 nm) were similarly unresponsive to treatment with the exception of an increased absorptance throughout the 739-850 nm range in leaves that developed under elevated air temperature alone. This response might have resulted from effects of air temperature on leaf internal structure.  相似文献   

18.
We have characterized the ferric and ferrous forms of the heme-containing (1-56 residues) N-fragment of horse heart cytochrome c (cyt c) at different pH values and low ionic strength by UV-visible absorption and resonance Raman (RR) scattering. The results are compared with native cyt c in the same experimental conditions as this may provide a deeper insight into the cyt c unfolding-folding process. Folding of cyt c leads to a state having the heme iron coordinated to a histidine (His18) and a methionine (Met80) as axial ligands. At neutral pH the N-fragment (which lacks Met80) shows absorption and RR spectra that are consistent with the presence of a bis-His low spin heme, like several non-native forms of the parental protein. In particular, the optical spectra are identical to those of cyt c in the presence of a high concentration of denaturants; this renders the N-fragment a suitable model to study the heme pocket microenvironment of the misfolded (His-His) intermediate formed during folding of cyt c. Acid pH affects the ligation state in both cyt c and the N-fragment. Data obtained as a function of pH allow a correlation between the structural properties in the heme pocket of the N-fragment and those of non-native forms of cyt c. The results underline that the (57-104 residues) segment under native-like conditions imparts structural stability to the protein by impeding solvent access into the heme pocket.  相似文献   

19.
A detailed study is presented of the room-temperature absorption, natural and magnetic circulation-dichroism (c.d. and m.c.d.) spectra of cytochrome c oxidase and a number of its derivatives in the wavelength range 700-1900 nm. The spectra of the reduced enzyme show a strong negative c.d. band peaking at 1100nm arising from low-spin ferrous haem a and a positive m.c.d. peak at 780nm assigned to high-spin ferrous haem a3. Addition of cyanide ion doubles the intensity of the low-spin ferrous haem c.d. band and abolishes reduced carbonmonoxy derivative the haem a32+-CO group shows no c.d. or m.c.d. bands at wavelengths longer than 700nm. A comparison of the m.c.d. spectra of the oxidized and cyanide-bound oxidized forms enables bands characteristic of the high-spin ferric form of haem a33+ to be identified between 700 and 1300nm. At wavelengths longer than 1300nm a broad positive m.c.d. spectrum, peaking at 1600nm, is observed. By comparison with the m.c.d. spectrum of an extracted haem a-bis-imidazole complex this m.c.d. peak is assigned to one low-spin ferric haem, namely haem a3+. On binding of cyanide to the oxidized form of the enzyme a new, weak, m.c.d. signal appears, which is assigned to the low-spin ferric haem a33+-CN species. A reductive titration, with sodium dithionite, of the cyanide-bound form of the enzyme leads to a partially reduced state in which low-spin haem a2+ is detected by means of an intense negative c.d. peak at 1100 nm and low-spin ferric haem a33+-CN gives a sharp positive m.c.d. peak at 1550nm. The c.d. and m.c.d. characteristics of the 830nm absorption band in oxidized cytochrome c oxidase are not typical of type 1 blue cupric centres.  相似文献   

20.
Three complexes of NO with cytochrome c oxidase are described which are all photodissociable at low temperatures as measured by EPR. The EPR parameters of the cytochrome a2+(3)-NO complex are the same both in the fully reduced enzyme and in the mixed-valence enzyme. The kinetics of photodissociation of cytochrome a2+(3)-NO and recombination of NO with cytochrome a2+(3) (in the 30-70 K region) revealed no differences in structure between cytochrome a2+(3) in the fully reduced and the mixed-valence states. The action spectrum of the photodissociation of cytochrome a2+(3)-NO as measured by EPR has maxima at 595, 560 and 430 nm, and corresponds to the absorbance spectrum of cytochrome a2+(3)-NO. Photodissociation of cytochrome a2+(3)-NO in the mixed-valence enzyme changes the EPR intensity at g 3.03, due to electron transfer from cytochrome a2+(3) to cytochrome a3+. The extent of electron transfer was found to be temperature dependent. This suggests that a conformational change is coupled to this electron transfer. The complex of NO with oxidized cytochrome c oxidase shows a photodissociation reaction and recombination of NO (in the 20-40 K region) which differ completely from those observed in cytochrome a2+(3)-NO. The observed recombination occurs at a temperature 15 K lower than that found for the cytochrome a2+(3)-NO complex. The action spectrum of the oxidized complex shows a novel spectrum with maxima at 640 and below 400 nm; it is assigned to a Cu2+B-NO compound. The triplet species with delta ms = 2 EPR signals at g 4 and delta ms = 1 signals at g 2.69 and 1.67, that is observed in partially reduced cytochrome c oxidase treated with azide and NO, can also be photodissociated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号