首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the fission yeast Schizosaccharomyces pombe, Wee1-dependent inhibitory phosphorylation of the highly conserved Cdc2/Cdk1 kinase determines the mitotic onset when cells have reached a defined size. The receptor of activated C kinase (RACK1) is a scaffolding protein strongly conserved among eukaryotes which binds to other proteins to regulate multiple processes in mammalian cells, including the modulation of cell cycle progression during G(1)/S transition. We have recently described that Cpc2, the fission yeast ortholog to RACK1, controls from the ribosome the activation of MAPK cascades and the cellular defense against oxidative stress by positively regulating the translation of specific genes whose products participate in the above processes. Intriguingly, mutants lacking Cpc2 display an increased cell size at division, suggesting the existence of a specific cell cycle defect at the G(2)/M transition. In this work we show that protein levels of Wee1 mitotic inhibitor are increased in cells devoid of Cpc2, whereas the levels of Cdr2, a Wee1 inhibitor, are down-regulated in the above mutant. On the contrary, the kinetics of G(1)/S transition was virtually identical both in control and Cpc2-less strains. Thus, our results suggest that in fission yeast Cpc2/RACK1 positively regulates from the ribosome the mitotic onset by modulating both the protein levels and the activity of Wee1. This novel mechanism of translational control of cell cycle progression might be conserved in higher eukaryotes.  相似文献   

2.
The novel phycoerythrin-containing Synechococcus strain CSIRNIO1 belonging to phylogenetic clade II was isolated from the coastal Arabian Sea. Chromophore characteristics of this isolate revealed the presence of phycoerythrin I (PEI), which allows it to utilize green light efficiently. The DNA distribution data indicate a bimodal slow growth model synchronized with the light/dark cycle. The duration of the cell cycle was regulated by spectral wavelength and nutrient concentration. Nitrate and phosphate enrichment shortened G1 phase duration when cells were exposed to equal doses of photosynthetically usable radiation (PUR) of different spectral wavelengths. G2 phase duration was influenced by spectral quality and phosphate concentration. S phase duration was not affected by the spectral wavelength. However, a shorter doubling time corresponding to shortened G1 and S phases was observed under nitrate enrichment. Phosphate enrichment resulted in shortening of all three phases (G1, S and G2). More efficient utilization of green and red light than blue light regulated the duration of the cell cycle as well as the doubling time, suggesting spectral selectivity in this strain. The effects of spectral wavelengths under varying nutrient concentrations will determine the proliferation of Synechococcus and its adaptation to different environmental conditions.  相似文献   

3.
TRP channels have been associated with cell proliferation and aggressiveness in several cancers. In particular, TRPC1 regulates cell proliferation and motility, two processes underlying cancer progression. We and others have described the mechanisms of TRPC1-dependent cell migration. However, the involvement of TRPC1 in cell proliferation remains unexplained. In this study, we show that siRNA-mediated TRPC1 depletion in non small cell lung carcinoma cell lines induced G(0)/G(1) cell cycle arrest resulting in dramatic decrease in cell growth. The expression of cyclins D1 and D3 was reduced after TRPC1 knockdown, pointing out the role of TRPC1 in G(1)/S transition. This was associated with a decreased phosphorylation and activation of EGFR and with a subsequent disruption of PI3K/Akt and MAPK downstream pathways. Stimulation of EGFR by its natural ligand, EGF, induced Ca(2+) release from the endoplasmic reticulum and Ca(2+) entry through TRPC1. Ca(2+) entry through TRPC1 conversely activated EGFR, suggesting that TRPC1 is a component of a Ca(2+)-dependent amplification of EGF-dependent cell proliferation.  相似文献   

4.
5.
There is significant evidence linking nucleocytoplasmic transport to cell cycle control. The budding yeast, Saccharomyces cerevisiae, serves as an ideal model system for studying transport events critical to cell cycle progression because the nuclear envelope remains intact throughout the cell cycle. Previous studies linked the classical nuclear localization signal (cNLS) receptor, importin-alpha/Srp1, to the G(2)/M transition of the cell cycle. Here, we utilize two engineered mutants of importin-alpha/Srp1 with specific molecular defects to explore how protein import affects cell cycle progression. One mutant, Srp1-E402Q, is defective in binding to cNLS cargoes that contain two clusters of basic residues termed a bipartite cNLS. The other mutant, Srp1-55, has defects in release of cNLS cargoes into the nucleus. Consistent with distinct in vivo functional consequences for each of the Srp1 mutants analyzed, we find that overexpression of different nuclear transport factors can suppress the temperature-sensitive growth defects of each mutant. Studies aimed at understanding how each of these mutants affects cell cycle progression reveal a profound defect at the G(1) to S phase transition in both srp1-E402Q and srp1-55 mutants as well as a modest G(1)/S defect in the temperature-sensitive srp1-31 mutant, which was previously implicated in G(2)/M. We take advantage of the characterized defects in the srp1-E402Q and srp1-55 mutants to predict candidate cargo proteins likely to be affected in these mutants and provide evidence that three of these cargoes, Cdc45, Yox1, and Mcm10, are not efficiently localized to the nucleus in importin-alpha mutants. These results reveal that the classical nuclear protein import pathway makes important contributions to the G(1)/S cell cycle transition.  相似文献   

6.
Cell cycle progression of Saccharomyces cerevisiae cells was monitored in continuous cultures limited for glucose or nitrogen. The G1 cell cycle phase, before initiation of DNA replication, did not exclusively expand when growth rate decreased. Especially during nitrogen limitation, non-G1 phases expanded almost as much as G1. In addition, cell size remained constant as a function of growth rate. These results contrast with current views that growth requirements are met before initiation of DNA replication, and suggest that distinct nutrient limitations differentially impinge on cell cycle progression.  相似文献   

7.
As an efficient reactive oxygen species–scavenging enzyme, superoxide dismutase (SOD) has been shown to inhibit tumor growth and interfere with motility and invasiveness of cancer cells. In this study, the molecular mechanisms of cell cycle arrest when S180 tumor cells were exposed to high levels of SOD were investigated. Here, both murine sarcoma S180 tumor cells and NIH‐3T3 mouse fibroblasts were respectively treated with varying concentrations of Cu/Zn‐SOD for 24, 48 and 72 h to determine optimal dose of SOD, which was a concentration of 800 U/ml SOD for 48 h. It is found that SOD induced S180 cell cycle arrest at G1‐phase with decreasing level of superoxide production, whereas SOD had less effect on proliferation of NIH‐3T3 cells. Moreover, the expression rate of Proliferating Cell Nuclear Antigen (PCNA) in S180 tumor cells was suppressed after SOD treatment, which indicated the inhibition of DNA synthesis in S180 cells. Besides, there were significant down‐regulations of cyclin‐E and Cdk‐2 in S180 cells after SOD treatment, which contributed to the blockage of G1/S transition in S180 cell cycle. Together, our data confirmed that SOD could notably inhibit proliferation of S180 tumor cell and induce cell cycle arrest at G1‐phase by down‐regulating expressions of cyclin‐E and Cdk‐2. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

8.
Arterial remodeling in response to pathological insult is a complex process that depends in part on the balance between vascular cell apoptosis and proliferation. Studies in experimental models suggest that HO-1 mediates neointimal formation while limiting lumen stenosing, indicating a differential effect on vascular endothelial (EC) and smooth muscle cells (SMC). We investigated the effect of HO-1 expression on cell cycle progression in EC and SMC. The addition of SnMP (10 microM), an inhibitor of HO activity, to EC or SMC for 24h, resulted in significant abnormalities in DNA distribution and cell cycle progression compared to cells treated with the HO-1 inducers, heme (10 microM) or SnCl(2) (10 microM). SnMP increased G(1) phase and decreased S and G(2)/M phases in EC while heme or SnCl(2) decreased G(1) phase, but increased S and G(2)/M phases (p<0.05). Opposite effects were obtained in SMC. SnMP decreased G(1) phase and increased S and G(2)/M phases while heme or SnCl(2) increased G(1) phase but decreased S and G(2)/M phases (p<0.05). Our data demonstrate that HO-1 regulates the cell cycle in a cell-specific manner; it increases EC but decreases SMC cycle progression. The mechanisms underlying the HO-1 cell-specific effect on cell cycle progression within the vascular wall are yet to be explored. Nevertheless, these findings suggest that cell-specific targeting of HO-1 expression may provide a novel therapeutic strategy for the treatment of cardiovascular diseases.  相似文献   

9.
10.
The chaperonin containing t-complex polypeptide 1 (CCT) is a heterooligomeric molecular chaperone assisting in the folding of actin, tubulin, and other cytosolic proteins. The expression levels of CCT subunits varied among seven mouse cell lines tested but showed a close correlation with growth rate. Both the CCT protein and mRNA levels in the human promyelolytic cell HL60 decreased concomitant with growth arrest during differentiation. More rapid decrease in CCT level occurred when the mouse interleukin (IL)-3-dependent myeloid DA3 cells were starved for IL-3. Readdition of IL-3 caused rapid resumption of CCT synthesis during synchronous growth: the maximum CCT protein and mRNA levels were observed at G(1)/S transition through early S phase. The turnover rate of CCT was nearly constant regardless of growth. Gel filtration and immunoprecipitation analyses indicated that CCT in vivo is associated with tubulin at early S phase, but not at G(0)/G(1) phase. These results demonstrated that CCT expression is strongly up-regulated during cell growth especially from G(1)/S transition to early S phase and is primarily controlled at the mRNA level. CCT appears to play important roles for cell growth by assisting in the folding of tubulin and other proteins.  相似文献   

11.
We have investigated the role of Rho GTPase in cell growth by generating stable cells that express the wild-type RhoA (RhoA(wt)) under the control of an inducible promoter. Induction of RhoA(wt) had a biphasic effect on the actin cytoskeleton. At low levels of expression, RhoA(wt) stimulated the assembly of actin stress fibers without affecting cell growth. At high levels, there was a paradoxical disruption of the actin cytoskeleton accompanied by a growth arrest. Cell cycle analysis revealed a dual block at the G(1)/S and G(2)/M checkpoints. The G(1)/S arrest correlated with the accumulation of p21(Cip1), resulting in the inhibition of cdk2 activity, whereas the G(2)/M block correlated with the loss of microtubules. The cyclin B level and the cdc2 kinase activity, however, were increased, suggesting that the progression through mitosis rather than entry into the G(2)/M is defective when RhoA(wt) is overexpressed. Similar cell cycle defects and the loss of microtubules were observed after a cytochalasin D treatment, indicating that the ability of RhoA to regulate the integrity of actin cytoskeleton may be critical for the cell cycle transition through both the G(1)/S and M phase checkpoints.  相似文献   

12.
In animal cloning, it is generally believed that the inactive diploid G(0)or G(1)stage of the cell cycle is beneficial to initiate cell-cycle coordination and reprogramming following transfer of the donor nucleus. Previous experiments have demonstrated that serum starvation results in quiescent cell stage. Some experiments show that the majority of cells in a fully confluent cell culture are also in an inactive G(1)stage.In order to provide more G(0)/G(1)stage cells for giant panda cloning, we carried out a flow cytometric analysis of the cell cycle of fibroblasts from the abdominal muscle of a giant panda at different passage numbers under different growth conditions, and after different periods of serum starvation. The percentage of G(0)+G(1)stage cells differed significantly under different growth conditions. Serum starvation effectively increased the percentage of G(0)+G(1)stage cells, and the cell cycle characteristics following serum starvation for varying periods of time differed with this and the initial confluency of the cultures. The data should help in choosing the optimal stage for preparing donor cells as well as increasing the potential cloning efficiency in our study of giant panda cloning.  相似文献   

13.
Keratins modulate hepatic cell adhesion, size and G1/S transition   总被引:2,自引:0,他引:2  
Keratins (Ks) are the intermediate filament (IF) proteins of epithelial cells. Hepatocyte IFs are made solely of keratins 8 and 18 (K8/K18), the hallmark of all simple epithelia. While K8/K18 are essential for maintaining structural integrity, there is accumulating evidence indicating that they also exert non-mechanical functions. We have reported recently that K8/K18-free hepatocytes from K8-null mice are more sensitive to Fas-mediated apoptosis, in line with an increased Fas density at the cell surface and an altered c-Flip regulation of the anti-apoptotic ERK1/2 signaling pathway. In the present study, we show that K8-null hepatocytes attach more rapidly but spread more slowly on a fibronectin substratum and undergo a more efficient G1/S transition than wild-type hepatocytes. Moreover, plectin, an IF associated protein, receptor for activated C kinase 1 (RACK1), a plectin partner, and vinculin, a key component of focal adhesions, distribute differently in spreading K8-null hepatocytes. Cell seeding leads to no differential activation of ERK1/2 in WT versus K8-null hepatocytes, whereas a stronger Akt activation is detected in K8-null hepatocytes. Insulin stimulation also leads to a differential Akt activation, implying altered Akt signaling capacity as a result of the K8/K18 loss. In addition, a delayed autophosphorylation of FAK, a target for integrin beta1 signaling, was obtained in seeding K8-null hepatocytes. These alterations in cell cycle-related events in hepatocytes in primary culture are also found in a K8-knockdown H4-II-E-C3 rat hepatoma cell line. Besides, K8/K18-free cells are smaller and exhibit a reduced rate of protein synthesis. In addition, a distinctive cyclin interplay is observed in these K8/K18-free hepatic cells, namely a more efficient cyclin A-dependent G1/S phase transition. Furthermore, K8 re-expression in these cells, following transfer of a human K8 cDNA, restores proper cell size, spreading and growth. Together, these results suggest new interrelated signaling roles of K8/18 with plectin/RACK1 in the modulation of cell attachment/spreading, size/protein synthesis and G1/S transition.  相似文献   

14.
The importance of microRNAs (miRNAs) in human malignancies has been well recognized. Here, we report that the expression of microRNA-210 (miR-210) is down-regulated in human esophageal squamous cell carcinoma and derived cell lines. Marked decreases in the level of miR-210 were observed especially in poorly differentiated carcinomas. We found that miR-210 inhibits cancer cell survival and proliferation by inducing cell death and cell cycle arrest in G(1)/G(0) and G(2)/M. Finally, we identified fibroblast growth factor receptor-like 1 (FGFRL1) as a target of miR-210 in esophageal squamous cell carcinoma and demonstrated that FGFRL1 accelerates cancer cell proliferation by preventing cell cycle arrest in G(1)/G(0). Taken together, our findings show an important role for miR-210 as a tumor-suppressive microRNA with effects on cancer cell proliferation.  相似文献   

15.
G1/S control of anchorage-independent growth in the fibroblast cell cycle   总被引:18,自引:4,他引:14  
We have developed methodology to identify the block to anchorage-independent growth and position it within the fibroblast cell cycle. Results with NRK fibroblasts show that mitogen stimulation of the G0/G1 transition and G1-associated increases in cell size are minimally affected by loss of cell anchorage. In contrast, the induction of G1/S cell cycle genes and DNA synthesis is markedly inhibited when anchorage is blocked. Moreover, we demonstrate that the anchorage-dependent transition maps to late G1 and shortly before activation of the G1/S p34cdc2-like kinase. The G1/S block was also detectable in NIH-3T3 cells. Our results: (a) distinguish control of cell cycle progression by growth factors and anchorage; (b) indicate that anchorage mediates G1/S control in fibroblasts; and (c) identify a physiologic circumstance in which the phenotype of mammalian cell cycle arrest would closely resemble Saccharomyces cerevisiae START. The close correlation between anchorage independence in vitro and tumorigenicity in vivo emphasizes the key regulatory role for G1/S control in mammalian cells.  相似文献   

16.
Mathematic models help interpret experimental results and accelerate tissue engineering developments. We develop in this paper a hybrid cellular automata model that combines the differential nutrient transport equation to investigate the nutrient limited cell construct development for cartilage tissue engineering. Individual cell behaviors of migration, contact inhibition and cell collision, coupled with the cell proliferation regulated by oxygen concentration were carefully studied. Simplified two-dimensional simulations were performed. Using this model, we investigated the influence of cell migration speed on the overall cell growth within in vitro cell scaffolds. It was found that intense cell motility can enhance initial cell growth rates. However, since cell growth is also significantly modulated by the nutrient contents, intense cell motility with conventional uniform cell seeding method may lead to declined cell growth in the final time because concentrated cell population has been growing around the scaffold periphery to block the nutrient transport from outside culture media. Therefore, homogeneous cell seeding may not be a good way of gaining large and uniform cell densities for the final results. We then compared cell growth in scaffolds with various seeding modes, and proposed a seeding mode with cells initially residing in the middle area of the scaffold that may efficiently reduce the nutrient blockage and result in a better cell amount and uniform cell distribution for tissue engineering construct developments.  相似文献   

17.
Much controversy regarding the relationship between nutrients and serum in regulation of cell growth can be reconciled by recognizing that serum contains multiple factors which regulate different events in the cell cycle. Serum was fractionated into a platelet-derived growth factor (PDGF), which induces cells to become competent to synthesize DNA, and plasma which allows competent cells to traverse G0/G1 and enter the S phase. Nutrients are not required for the cellular response to PDGF; however amino acids are required for plasma to promote the entry of PDGF-treated, competent cells into S phase. The nutrient independent, PDGF-modulated, growth regulatory event (competence) is located 12 hours prior to the G1/S phase boundary in quiescent, density-arrested Balb/c-3T3 cells. The nutrient dependent, plasma-modulated event is located six hours prior to the G1/S phase boundary and corresponds in concentration of amino acids required for DNA synthesis. Infection of density-arrested Balb/c3T3 cells with SV40 overrides both the nutrient independent and the nutrient dependent growth regulatory events.  相似文献   

18.
The current study investigated the relationship of the cell cycle phase (as G(0)/G(1), S, and G(2)/M) and cytotoxicity (as sub-G(1) DNA) to determine whether alterations in cell replication were associated with organophosphate (OP) compound induced cytotoxicity. Results demonstrated that, overall, OP compound--induced cell cycle changes were variable and depended on the OP compound, exposure concentration, and temporal relationship to cytotoxicity. Noncytotoxic OP compound treatments substantially decreased the percentage of cells in S phase of the cell cycle when compared to controls. A corresponding increase was seen in the percent of cells in G(0)/G(1) phase of the cell cycle. In the precytotoxic interval of exposure, most cytotoxic OP compound treatments substantially decreased the percentage of cells in G(2)/M phase of the cell cycle. Corresponding increases were seen primarily in G(0)/G(1) phase cells. Effects on cells in S stage of the cell cycle varied with the OP compound. In the during cytotoxic interval of exposure, most cytotoxic OP compound treatments substantially increased the percentage of cells in S phase of the cell cycle. A corresponding decrease in the percent of cells in G(0)/G(1) stage of the cell cycle was observed. Furthermore, treatments either increased or decreased the percentage of cells in G(2)/M phase of the cell cycle when compared to controls, with decreases more likely with the most cytotoxic OP compound exposures. Overall, the in vitro data suggest that exposure to OP compounds can alter the cell cycle status of SH-SY5Y neuroblastoma cells depending on compound, concentration, and interval from initial exposure. Changes in cell cycle, however, did not differentiate between OP compounds that are known for their ability to acutely inhibit acetylcholinesterase versus those inducing type I and type II delayed neurotoxicity.  相似文献   

19.
20.
We have developed a series of novel photosensitizers which have potential for anticancer photodynamic therapy (PDT). Photosensitizers include zinc phthalocyanine tetra-sulphonic acid and a family of derivatives with amino acid substituents of varying alkyl chain length and degree of branching. Subcellular localization of these photosensitizers at the phototoxic IC(50) concentration in human cervical carcinoma cells (SiHa Cells) was similar to that of the lysosomal dye Lucifer Yellow. Subsequent nuclear relocalization was observed following irradiation with 665nm laser light. The PDT response was characterized using the Sulforhodamine B cytotoxicity assay. Flow cytometry was used for both DNA cell cycle and dual Annexin V-FITC/propidium iodide analysis. Phototoxicity of the derivatives was of the same order of magnitude as for tetrasulphonated phthalocyanine but with an overall trend of increased phototoxicity with increasing amino acid chain length. Our results demonstrate cell death, inhibition of cell growth, and G(0)/G(1) cell cycle arrest during the phthalocyanine PDT-mediated response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号