首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
E N Chini 《Journal of applied physiology》2001,91(1):516-21; discussion 504-5
Volatile anesthetics have multiple actions on intracellular Ca(2+) homeostasis, including activation of the ryanodine channel (RyR) and sensitization of this channel to agonists such as caffeine and ryanodine. Recently it has been described that the nucleotide cADP-ribose (cADPR) is the endogenous regulator of the RyR in many mammalian cells, and cADPR has been proposed to be a second messenger in many signaling pathways. I investigated the effect of volatile anesthetics on the cADPR signaling system, using sea urchin egg homogenates as a model of intracellular Ca(2+) stores. Ca(2+) uptake and release were monitored in sea urchin egg homogenates by using the fluo-3 fluorescence technique. Activity of the ADP-ribosyl cyclase was monitored by using a fluorometric method using nicotinamide guanine dinucleotide as a substrate. Halothane in concentrations up to 800 microM did not induce Ca(2+) release by itself in sea urchin egg homogenates. However, halothane potentiates the Ca(2+) release mediated by agonists of the ryanodine channel, such as ryanodine. Furthermore, other volatile anesthetics such as isoflurane and sevoflurane had no effect. Halothane also potentiated the activation of the ryanodine channel mediated by the endogenous nucleotide cADPR. The half-maximal concentration for cADPR-induced Ca(2+) release was decreased about three times by addition of 800 microM halothane. The reverse was also true: addition of subthreshold concentrations of cADPR sensitized the homogenates to halothane. In contrast, all the volatile anesthetics used had no effect on the activity of the enzyme that synthesizes cADPR. I propose that the complex effect of volatile anesthetics on intracellular Ca(2+) homeostasis may involve modulation of the cADPR signaling system.  相似文献   

2.
We investigated the effect of glycolytic pathway intermediaries upon Ca(2+) release induced by cyclic ADP-ribose (cADPR), inositol 1',4', 5-trisphosphate (IP(3)), and nicotinate adenine dinucleotide phosphate (NAADP) in sea urchin egg homogenate. Fructose 1,6, -diphosphate (FDP), at concentrations up to 8 mM, did not induce Ca(2+) release by itself in sea urchin egg homogenate. However, FDP potentiates Ca(2+) release mediated by agonists of the ryanodine channel, such as ryanodine, caffeine, and palmitoyl-CoA. Furthermore, glucose 6-phosphate had similar effects. FDP also potentiates activation of the ryanodine channel mediated by the endogenous nucleotide cADPR. The half-maximal concentration for cADPR-induced Ca(2+) release was decreased approximately 3.5 times by addition of 4 mM FDP. The reverse was also true: addition of subthreshold concentrations of cADPR sensitized the homogenates to FDP. The Ca(2+) release mediated by FDP in the presence of subthreshold concentrations of cADPR was inhibited by antagonists of the ryanodine channel, such as ruthenium red, and by the cADPR inhibitor 8-Br-cADPR. However, inhibition of Ca(2+) release induced by IP(3) or NAADP had no effect upon Ca(2+) release induced by FDP in the presence of low concentrations of cADPR. Furthermore, FDP had inhibitory effects upon Ca(2+) release induced by both IP(3) and NAADP. We propose that the state of cellular intermediary metabolism may regulate cellular Ca(2+) homeostases by switching preferential effects from one intracellular Ca(2+) release channel to another.  相似文献   

3.
We have previously shown that a metabolite of NAD+ generated by an enzyme present in sea urchin eggs and mammalian tissues can mobilize intracellular Ca2+ in the eggs. Structural determination established it to be a cyclized ADP-ribose, and the name cyclic ADP-ribose (cADPR) has been proposed. In this study, Ca2+ mobilizations induced by cADPR and inositol trisphosphate (IP3) in sea urchin egg homogenates were monitored with Ca2+ indicators and Ca2(+)-specific electrodes. Both methods showed that cADPR can release Ca2+ from egg homogenates. Evidence indicated that it did not act as a nonspecific Ca2(+)-ionophore or as a blocker of the microsomal Ca2(+)-transport; instead, it was likely to be operating through a specific receptor system. This was supported by its half-maximal effective concentration of 18 nM, which was 7 times lower than that of IP3. The receptor for cADPR appeared to be different from that of IP3 because heparin, an inhibitor of IP3 binding, had no effect on the cADPR action. The Ca2+ releases induced by cADPR and IP3 were not additive and had an inverse relationship, indicating overlapping stores were mobilized. Microinjection of cADPR into intact eggs induced transient intracellular Ca2+ changes and activated the cortical reaction. The in vivo effectiveness of cADPR was directly comparable with IP3 and neither required external Ca2+. In addition, both were effective in activating the eggs to undergo multiple nuclear cycles and DNA synthesis. These results suggest that cADPR could function as a second messenger in sea urchin eggs.  相似文献   

4.
Nicotinic acid adenine dinucleotide phosphate (NAADP) is the most potent activator of Ca2+ release from intracellular stores described. It acts on a mechanism distinct from inositol trisphosphate and ryanodine receptors, the two major Ca2+ release channels characterised. NAADP-gated Ca2+ release channels do not appear to be regulated by Ca2+ and may be better suited for triggering Ca2+ signals rather than propagating them. They exhibit a remarkable pharmacology for a putative intracellular Ca2+ release channel in that they are selectively blocked by potassium and L-type Ca2+ channel antagonists. Furthermore, in contrast to microsomal Ca2+ stores expressing IP3Rs and RyRs, those sensitive to NAADP are thapsigargin-insensitive, suggesting that they may be expressed on a different part of the endoplasmic reticulum. Perhaps the most unusual feature of the NAADP-gated Ca2+ release mechanisms is its inactivation properties. Unlike the mechanisms regulated by IP3 and cADPR in sea urchin eggs which after induction of Ca2+ release appear to become refractory to subsequent activation, very low concentrations of NAADP are able to inactivate NAADP-induced Ca2+ release fully at concentrations well below those required to activate Ca2+ release. The mechanism and physiological significance of this most unusual desensitisation phenomenon are unclear. More recently, NAADP has been shown to mobilise Ca2+ in ascidian oocytes, brain microsomes and pancreatic acinar cells suggesting a more widespread role in Ca2+ signalling. A possible role for this novel Ca2+ release mechanism in sea urchin egg fertilisation is discussed.  相似文献   

5.
Mobilization of Ca2+ from intracellular stores is an important mechanism for generating cytoplasmic Ca2+ signals [1]. Two families of intracellular Ca(2+)-release channels - the inositol-1,4, 5-trisphosphate (IP3) receptors and the ryanodine receptors (RyRs) - have been described in mammalian tissues [2]. Recently, nicotinic acid adenine dinucleotide phosphate (NAADP), a molecule derived from NADP+, has been shown to trigger Ca2+ release from intracellular stores in invertebrate eggs [3] [4] [5] [6] and pancreatic acinar cells [7]. The nature of NAADP-induced Ca2+ release is unknown but it is clearly distinct from the IP3- and cyclic ADP ribose (cADPR)-sensitive mechanisms in eggs (reviewed in [8] [9]). Furthermore, mammalian cells can synthesize and degrade NAADP, suggesting that NAADP-induced Ca2+ release may be widespread and thus contribute to the complexity of Ca2+ signalling [10] [11]. Here, we show for the first time that NAADP evokes Ca2+ release from rat brain microsomes by a mechanism that is distinct from those sensitive to IP3 or cADPR, and has a remarkably similar pharmacology to the action of NAADP in sea urchin eggs [12]. Membranes prepared from the same rat brain tissues are able to support the synthesis and degradation of NAADP. We therefore suggest that NAADP-mediated Ca2+ signalling could play an important role in neuronal Ca2+ signalling.  相似文献   

6.
Novel mechanism of intracellular calcium release in pituitary cells   总被引:7,自引:0,他引:7  
In sea urchin eggs an enzymatic metabolite of beta-NAD+, called cyclic ADP-ribose (cADPR), is as potent and powerful a releaser of sequestered intracellular Ca2+ as is inositol 1,4,5-trisphosphate (IP3). The enzyme that synthesizes cADPR is present in several vertebrate animal tissues, but the Ca(2+)-releasing activity of cADPR has not been described in mammalian cells. We report here that incubation of beta-NAD+ with cell-free extracts of several rat tissues (including pituitary gland) generates a product which releases intracellular Ca2+ stores in permeabilized rat pituitary GH4C1 cells. This product has the biological characteristics of cADPR (it acts after depletion of the IP3 stores and after blockade of the IP3 receptor by heparin). The response is mimicked, in a concentration-dependent manner, by authentic cADPR and is desensitized by prior incubation with cADPR. We conclude that cADPR is not only synthesized by certain mammalian cells but also acts in such cells to release compartmentalized intracellular Ca2+ by a mechanism that differs from that used by IP3. Therefore, cADPR may serve, in addition to IP3, as a second messenger for intracellular Ca2+ mobilization in mammalian cells.  相似文献   

7.
NAADP (nicotinic acid-adenine dinucleotide phosphate)-induced Ca2+ release has been proposed to occur selectively from acidic stores in several cell types, including sea urchin eggs. Using fluorescence measurements, we have investigated whether NAADP-induced Ca2+ release alters the pH(L) (luminal pH) within these acidic stores in egg homogenates and observed their prompt, concentration-dependent alkalinization by NAADP (but not beta-NAD+ or NADP). Like Ca2+ release, the pH(L) change was desensitized by low concentrations of NAADP suggesting it was secondary to NAADP receptor activation. Moreover, this was a direct effect of NAADP upon the acidic stores and not secondary to increases in cytosolic Ca2+ as it was not mimicked by IP3 (inositol 1,4,5-trisphosphate), cADPR (cyclic adenine diphosphoribose), ionomycin, thapsigargin or by direct addition of Ca2+, and was not blocked by EGTA. The results of the present study further support acidic stores as targets for NAADP and for the first time reveal an adjunct role for NAADP in regulating the pH(L) of intracellular organelles.  相似文献   

8.
NAADP receptors   总被引:4,自引:0,他引:4  
Galione A  Ruas M 《Cell calcium》2005,38(3-4):273-280
Nicotinic acid adenine dinucleotide phosphate (NAADP) is a recently described Ca2+ mobilizing messenger. First described in the sea urchin egg, it has been shown to mobilize Ca2+ from intracellular stores. It is a remarkably potent molecule, and recent reports show that its cellular levels change in response to a variety of agonists confirming its role as a Ca2+ mobilizing messenger. In many cases NAADP interacts with other Ca2+ mobilizing messengers such as inositol 1,4,5 trisphosphate (IP3 and cyclic adenosine diphosphate ribose (cADPR) in shaping cytosolic Ca2+ signals. What is not clear is the molecular nature of the NAADP-sensitive Ca2+ release mechanism and its sub-cellular localization. In this review we focus on the recent progress made in sea urchin eggs, which indicates that NAADP activates a novel Ca2+ release channel distinct from the relatively well-characterized IP3 and ryanodine receptors. Furthermore, in the sea urchin egg, the NAADP-sensitive store appears to be separate from the endoplasmic reticulum (ER) and is most likely an acidic store. These findings have also been reinforced by similar findings by some in mammalian cells. Finally, we discuss ongoing strategies to characterise NAADP-binding proteins which will greatly enhance our understanding of NAADP-mediated Ca2+ signalling, and lead to the development of more selective tools to probe the role of this messenger.  相似文献   

9.
A transient rise in intracellular Ca2+ during fertilization is necessary for activation of the quiescent sea urchin egg. Several mechanisms contribute to the rise in Ca2+ including influx across the egg plasma membrane and release from intracellular stores. The egg contains both IP3-sensitive and -insensitive Ca2+ release mechanisms and in this study we have used single-cell spectrofluorimetry to examine the effects of caffeine and ryanodine on Ca2+ release in eggs preloaded with fura 2. Caffeine induced a small Ca2+ release that was insensitive to heparin or ruthenium red. Ca2+ liberation by caffeine could be augmented by prior treatment with thapsigargin, an inhibitor of endoplasmic reticulum Ca2+ ATPase. Variable Ca2+ releases were observed in response to microinjection of ryanodine. The action of ryanodine appeared to be enhanced by prior injection of heparin and partially inhibited by ruthenium red. The release of Ca2+ by caffeine or ryanodine was generally insufficient to trigger cortical granule exocytosis, thus these eggs could be fertilized and a second Ca2+ release during fertilization was measured. Unlike the caffeine- and ryanodine-sensitive Ca(2+)-induced Ca2+ release mechanism in somatic cells, the graded responses in eggs suggested this caffeine- and ryanodine-sensitive release mechanism is not sensitive to sudden changes in Ca2+. Thus we could examine the combined actions of caffeine and ryanodine on Ca2+ release, which were synergistic. Caffeine treatment of ryanodine-injected eggs or ryanodine injection of caffeine-treated eggs stimulated a Ca2+ release significantly larger than the release by either drug independently. The experiments presented here suggest that sea urchin eggs liberate Ca2+ in response to caffeine and ryanodine; however, the regulation of this release differs from that described for caffeine- and ryanodine-sensitive Ca(2+)-induced Ca2+ release of somatic cells.  相似文献   

10.
Volatileanesthetics have multiple actions on intracellular Ca2+homeostasis, including activation of the ryanodine channel (RyR) andsensitization of this channel to agonists such as caffeine andryanodine. Recently it has been described that the nucleotide cADP-ribose (cADPR) is the endogenous regulator of the RyR in manymammalian cells, and cADPR has been proposed to be a second messengerin many signaling pathways. I investigated the effect of volatileanesthetics on the cADPR signaling system, using sea urchin egghomogenates as a model of intracellular Ca2+ stores.Ca2+ uptake and release were monitored in sea urchin egghomogenates by using the fluo-3 fluorescence technique. Activity of theADP-ribosyl cyclase was monitored by using a fluorometricmethod using nicotinamide guanine dinucleotide as a substrate.Halothane in concentrations up to 800 µM did not induceCa2+ release by itself in sea urchin egg homogenates.However, halothane potentiates the Ca2+ release mediated byagonists of the ryanodine channel, such as ryanodine. Furthermore,other volatile anesthetics such as isoflurane and sevoflurane had noeffect. Halothane also potentiated the activation of the ryanodinechannel mediated by the endogenous nucleotide cADPR. The half-maximalconcentration for cADPR-induced Ca2+ release was decreasedabout three times by addition of 800 µM halothane. The reverse wasalso true: addition of subthreshold concentrations of cADPR sensitizedthe homogenates to halothane. In contrast, all the volatile anestheticsused had no effect on the activity of the enzyme that synthesizescADPR. I propose that the complex effect of volatile anesthetics onintracellular Ca2+ homeostasis may involve modulation ofthe cADPR signaling system.

  相似文献   

11.
Transient increases, or oscillations, of cytoplasmic free Ca(2+) concentration, [Ca(2+)](i), occur during fertilization of animal egg cells. In sea urchin eggs, the increased Ca(2+) is derived from intracellular stores, but the principal signaling and release system involved has not yet been agreed upon. Possible candidates are the inositol 1,4,5-trisphosphate receptor/channel (IP(3)R) and the ryanodine receptor/channel (RyR) which is activated by cGMP or cyclic ADP-ribose (cADPR). Thus, it seemed that direct measurements of the likely second messenger candidates during sea urchin fertilization would be essential to an understanding of the Ca(2+) signaling pathway. We therefore measured the cGMP, cADPR and inositol 1,4,5-trisphosphate (IP(3)) contents of sea urchin eggs during the early stages of fertilization and compared these with the [Ca(2+)](i) rise in the presence or absence of an inhibitor against soluble guanylate cyclase. We obtained three major experimental results: (1) cytosolic cGMP levels began to rise first, followed by cADPR and IP(3) levels, all almost doubling before the explosive increase of [Ca(2+)](i); (2) most of the rise in IP(3) occurred after the Ca(2+) peak; IP(3) production could also be induced by the artificial elevation of [Ca(2+)](i), suggesting the large increase in IP(3) is a consequence, rather than a cause, of the Ca(2+) transient; (3) the measured increase in cGMP was produced by the soluble guanylate cyclase of eggs, and inhibition of soluble guanylate cyclase of eggs diminished the production of both cADPR and IP(3) and the [Ca(2+)](i) increase without the delay of Ca(2+) transients. Taken together, these results suggest that the RyR pathway involving cGMP and cADPR is not solely responsible for the initiating event, but contributes to the Ca(2+) transients by stimulating IP(3) production during fertilization of sea urchin eggs.  相似文献   

12.
The effects of intracellular application of two novel Ca2+ releasing agents have been studied in cultured rat dorsal root ganglion (DRG) neurones by monitoring Ca(2+)-dependent currents as a physiological index of raised free cytosolic Ca2+ ([Ca2+]i). A protein based sperm factor (SF) extracted from mammalian sperm, has been found to trigger Ca2+ oscillations and to sensitize unfertilized mammalian eggs to calcium induced calcium release (CICR). In this study intracellular application of SF activated Ca(2+)-dependent currents in approximately two-thirds of DRG neurones. The SF induced activity was abolished by heat treatment, attenuated by increasing the intracellular Ca2+ buffering capacity of the cells and persisted when extracellular Ca2+ was replaced by Ba2+. In addition, activity could be triggered or potentiated by loading the cells with Ca2+ by activating a series of voltage-gated Ca2+ currents. Ca(2+)-activated inward current activity was also generated by intracellular application of cyclic ADP-ribose (cADPR), a metabolite of NAD+, which causes Ca2+ release in sea urchin eggs. This activity could also be enhanced by loading the cells with Ca2+. The cADPR induced activity, but not the SF induced activity, was abolished by depleting the caffeine sensitive Ca2+ store. Ruthenium red markedly attenuated SF induced activity but had little action on cADPR induced activity or caffeine induced activity. Our results indicate that both SF and cADPR release intracellular Ca2+ pools in DRG neurones and that they appear to act on subtly distinct stores or distinct intracellular Ca2+ release mechanisms, possibly by modulating CICR.  相似文献   

13.
Of the three intracellular Ca2+ signalling molecules (InsP3, cADPR and NAADP) sea urchin egg homogenate has been used in the identification and characterisation of two, cADPR and NAADP. Homogenate is prepared in a Na+/Cl- substitute of N-Methyl glucamine (NMG)/gluconate. To determine how media composition affects Ca2+ release we replaced NMG with various sugars or glycine and found a dramatic improvement in InsP3 mediated Ca2+ release. Conversely the response to cADPR was diminished, whilst NAADP was unaffected. Therefore modifying media composition may be an important consideration in using homogenate to study Ca2+ release for future studies.  相似文献   

14.
During fertilization of sea urchin eggs, the cytoplasmic Ca(2+) concentration ([Ca(2+)](i)) transiently increases (Ca(2+) transient). Increased [Ca(2+)](i) results from a rapid release from intracellular stores, mediated by one or both of two signaling pathways; inositol 1,4,5-trisphosphate (IP(3)) and IP(3) receptor (IP(3)R) or cyclic GMP (cGMP), cyclic ADP-ribose (cADPR) and ryanodine receptor (RyR). During fertilization, cGMP and cADPR increase preceding the Ca(2+) transient, suggesting their contribution to this. If the RyR pathway contributed to the Ca(2+) transient, its Ca(2+) releasing activity would develop in parallel with that of the IP(3) system during maturation of oocytes. Sea urchin oocytes were cultivated in vitro and Ca(2+) transients induced by photolysis of caged IP(3) or caged cADPR were measured during maturation. Oocytes spontaneously began to maturate in seawater. More than 50% of oocytes underwent germinal vesicle breakdown within 25 h and the second meiosis within 35 h, but it took more than 24 h until they became functionally identical to in vivo-matured eggs. Both IP(3) and cADPR induced Ca(2+) transients comparable to those of in vivo-matured eggs later than 24 h from the second meiosis. However, cADPR induced a small Ca(2+) transient even before meiosis, whereas IP(3) and sperm almost did not.  相似文献   

15.
Both the inositol 1,4,5-trisphosphate (InsP(3)) and ryanodine receptor pathways contribute to the Ca(2+) transient at fertilization in sea urchin eggs. To date, the precise contribution of each pathway has been difficult to ascertain. Evidence has accumulated to suggest that the InsP(3) receptor pathway has a primary role in causing Ca(2+) release and egg activation. However, this was recently called into question by a report implicating NO as the primary egg activator. In the present study we pursue the hypothesis that NO is a primary egg activator in sea urchin eggs and build on previous findings that an NO/cGMP/cyclic ADP-ribose (cADPR) pathway is active at fertilization in sea urchin eggs to define its role. Using a fluorescence indicator of NO levels, we have measured both NO and Ca(2+) at fertilization and establish that NO levels rise after, not before, the Ca(2+) wave is initiated and that this rise is Ca(2+)-dependent. By inhibiting the increase in NO at fertilization, we find not that the Ca(2+) transient is abolished but that the duration of the transient is significantly reduced. The latency and rise time of the transient are unaffected. This effect is mirrored by the inhibition of cGMP and cADPR signaling in sea urchin eggs at fertilization. We establish that cADPR is generated at fertilization, at a time comparable to the time of the rise in NO levels. We conclude that NO is unlikely to be a primary egg activator but, rather, acts after the initiation of the Ca(2+) wave to regulate the duration of the fertilization Ca(2+) transient.  相似文献   

16.
Nicotinic acid adenine dinucleotide phosphate (NAADP) has been shown to be a powerful Ca2+ release agent in numerous systems, including echinoderms, plants, and mammalian cells. NAADP has been shown to release Ca2+ via a separate mechanism to IP3 and ryanodine receptors, and specific binding sites have recently been characterised. However, functional studies have shown that there is a functional interplay between the NAADP-sensitive mechanism and the other two. In particular, it appears that activation of the NAADP receptor might act as a trigger to facilitate responses from IP3 and ryanodine receptors. To further characterise this interplay, we have investigated the effects of luminal and cytosolic Ca2+ on the NAADP receptor in sea urchin egg homogenates. We report that neither cytosolic nor luminal Ca2+ appears to influence NAADP binding. Conversely, emptying of stores significantly amplifies NAADP-induced fractional Ca2+-release, providing a mechanism of self-adjustment independent of store loading.  相似文献   

17.
Cyclic ADP-ribose (cADPR) is a metabolite of NAD+ that is as active as inositol trisphosphate (IP3) in mobilizing intracellular Ca2+ in sea urchin eggs. The activity of the enzyme responsible for synthesizing cADPR is found not only in sea urchin eggs but also in various mammalian tissue extracts, suggesting that cADPR may be a general messenger for Ca2+ mobilization in cells. An aqueous soluble enzyme, thought to be an NADase, has been purified recently from the ovotestis of Aplysia californica (Hellmich and Strumwasser, 1991). This paper shows that the Aplysia enzyme catalyzes the conversion of NAD+ to cADPR and nicotinamide. The Aplysia enzyme was purified by fractionating the soluble extract of Aplysia ovotestis on a Spectra/gel CM column. The purified enzyme appeared as a single band of approximately 29,000 Da on SDS-PAGE but could be further separated into multiple peaks by high-resolution, cation-exchange chromatography. All of the protein peaks had enzymatic activity, indicating that the enzyme had multiple forms differing by charge. Analysis of the reaction products of the enzyme by anion-exchange high-pressure liquid chromatography (HPLC) indicated no ADP-ribose was produced; instead, each mole of NAD+ was converted to equimolar of cADPR and nicotinamide. The identification of the product as cADPR was further substantiated by proton NMR and also by its Ca(2+)-mobilizing activity. Addition of the product to sea urchin egg homogenates induced Ca2+ release and desensitized the homogenate to authentic cADPR but not to IP3. Microinjection of the product into sea urchin eggs elicited Ca2+ transients as well as the cortical exocytosis reaction. Therefore, by the criteria of HPLC, NMR, and calcium-mobilizing activity, the product was identical to cADPR. To distinguish the Aplysia enzyme from the conventional NADases that produce ADP-ribose, we propose to name it ADP-ribosyl cyclase.  相似文献   

18.
Galione A  Churchill GC 《Cell calcium》2002,32(5-6):343-354
The discovery of cyclic adenosine diphosphate ribose (cADPR) and nicotinic acid adenine dinucleotide phosphate (NAADP) as Ca(2+) releasing messengers has provided additional insight into how complex Ca(2+) signalling patterns are generated. There is mounting evidence that these molecules along with the more established messenger, myo-inositol 1,4,5-trisphosphate (IP(3)), have a widespread messenger role in shaping Ca(2+) signals in many cell types. These molecules have distinct structures and act on specific Ca(2+) release mechanisms. Emerging principles are that cADPR enhances the Ca(2+) sensitivity of ryanodine receptors (RYRs) to produce prolonged Ca(2+) signals through Ca(2+)-induced Ca(2+) release (CICR), while NAADP acts on a novel Ca(2+) release mechanism to produce a local trigger Ca(2+) signal which can be amplified by CICR by recruiting other Ca(2+) release mechanisms. Whilst IP(3) and cADPR mobilise Ca(2+) from the endoplasmic reticulum (ER), recent evidence from the sea urchin egg suggests that the major NAADP-sensitive Ca(2+) stores are reserve granules, acidic lysosomal-related organelles.In this review we summarise the role of multiple Ca(2+) mobilising messengers, Ca(2+) release channels and Ca(2+) stores, and the interplay between them, in the generation of specific Ca(2+) signals. Focusing upon cADPR and NAADP, we discuss how cellular stimuli may draw upon different combinations of these messengers to produce distinct Ca(2+) signalling signatures.  相似文献   

19.
20.
Cyclic ADP-ribose (cADPR) is a metabolite of NAD+ which is as active as inositol trisphosphate (IP3) in mobilizing intracellular Ca2+ in sea urchin eggs. The enzyme responsible for synthesizing cADPR is found not only in sea urchin eggs but also in various mammalian tissue extracts, suggesting that it may be a general messenger for Ca2+ mobilization in cells. In this study I address questions of whether an intracellular receptor for cADPR exists and, if so, whether it is different from the IP3 receptor. A procedure employing nitrogen decompression was used to homogenize sea urchin eggs, and the Ca2(+)-storing microsomes were separated from mitochondria and other organelles by Percoll density centrifugation. Radioactive cADPR with high specific activity was produced by incubating [32P]NAD+ with the synthesizing enzyme and the product purified by high pressure liquid chromatography. The enzyme was membrane bound and was isolated from dog brain extracts by sucrose density gradient centrifugation. Partial purification of the enzyme was achieved by DEAE ion-exchange chromatography after solubilization with 3-[(cholamidopropyl)dimethylammonio]-1-propanesulfonate. Specific binding of 32P-labeled cADPR to a saturable site on the Ca2(+)-storing microsomes was detected by a filtration assay. Scatchard analysis indicated a binding affinity of about 17 nM and a capacity of about 25 fmol/mg protein. The binding was not affected by either NAD+ (the precursor) or ADP-ribose (the hydrolysis product) at 0.5 microM but was eliminated by 0.3 microM nonlabeled cADPR. The receptor for cADPR appeared to be different from that of IP3 since IP3 was not an effective competitor at a concentration as high as 3 microM. Similarly, heparin at a concentration that inhibits most of the IP3-induced calcium release from the microsomes did not affect the binding. The binding showed a prominent pH optimum at about 6.7. Calcium at 40 microM decreased the binding by about 50%. These dependencies of the binding on pH and Ca2+ are different from those reported for the IP3 receptor and provide further support that the intracellular receptors for cADPR and IP3 are different.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号