首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In the course of investigation of 8-alkylamino substituted adenosines, the title compounds were synthesized as potential partial agonists for adenosine receptors. The structure determination of these compounds was carried out with the X-ray crystallography study. Crystals of 8-(2-hydroxyethylamino)adenosine are monoclinic, space group P 2(1); a = 7.0422(2), b = 11.2635(3), c = 8.9215(2) A, beta = 92.261(1) degrees, V = 707.10(3) A3, Z = 2; R-factor is 0.0339. The nucleoside is characterized by the anti conformation; the ribose ring has the C(2')-endo conformation and gauche-gauche form across C(4')-C(5') bond. The molecular structure is stabilized by intramolecular hydrogen bond of N-HO type. Crystals of 8-(pyrrolidin-1-yl)adenosine are monoclinic, space group C 2; a = 19.271(1), b = 7.3572(4), c = 11.0465(7) A, beta = 103.254(2), V = 1524.4(2) degrees A3, Z = 4; R-factor is 0.0498. In this compound, there is syn conformation of the nucleoside; the ribose has the C(2')-endo conformation and gauche -gauche form across C(4')- C(5') bond. The molecular structure is stabilized by intramolecular hydrogen bond of O-HN type. For both compounds, the branching net of intermolecular hydrogen bonds occur in the crystal structures.  相似文献   

2.
(E)-5-(2-bromovinyl-2'-deoxyuridine) crystallizes in the space group P2(1) with a = 12.976(1), b = 4.800(1), c = 20.385(2) A, beta = 96.88(1) degrees, Z = (two molecules a and b in the asymmetric unit). The structure has been determined by the use of 2400 diffractometer reflexions and refined by least-squares to R of 0.053. Conformational features of both molecules a and b resemble those of thymidine. The ribofuranose rings assume the rare C(3')-exo form observed also in thymidine. Similarly, the torsion angles around the glycosidic bonds (mean = 40(1) and 56(1) degrees fall in the anti range. In each molecule the best plane of the 2-bromovinyl moiety is bent out of the least-squares plane of the pyrimidine base by 6 degrees, so that the positively charged C(8)-H(8) group can donate an intramolecular hydrogen bond to 0(4) atom. Eight strong and weak intermolecular hydrogen bridges are built up between the symmetry independent and related molecules forming a complicated three dimensional hydrogen bond network.  相似文献   

3.
The coordination chemistry of the new bidentate nitrogen ligands 8-(2-pyridyl)quinoline (8-PQ) and 8-(6-methyl-2-pyridyl)quinoline (Me-8-PQ) towards palladium and platinum has been studied. Several (NN)Pd(R)Cl and (NN)Pd(alkene) complexes have been synthesized. The complex (8-PQ)Pd(Me)Cl has been characterised by a single crystal X-ray determination (crystal data triclinic space group ). A fast CO insertion occurs into the palladium-carbon bond of the complexes (NN)Pd(Me)Cl providing the (NN)Pd(C(O)Me)Cl complexes. For (8-PQ)Pd(C(O)Me)Cl an X-ray structure determination has been carried out (crystal data: monoclinic space group P21/c with a=9.084(4), B=10.179(3), C=16.400(3) Å, β=95.59(2)°, V=1509.2(9) Å3, R=0.043, Z=4). Unexpected in both molecular structures is the large dihedral angle between the plane of the bidentate nitrogen ligand and the coordination plane of the palladium. Both bidentate coordinating ligands 8-PQ and Me-8-PQ show a relatively large bite angle. A monodentate coordination mode has been observed for the complexes (NN)M(PEt3)Cl2 (M=Pd, Pt), as the pyridyl group of the ligand is coordinated to the metal while the quinoline group is dissociated from the metal, which is shown in the X-ray structure determination for the complex (8-PQ)Pd(PEt3)Cl2 (crystal data: monoclinic space group P21/a with A=15.736(2), B=7.782(1), C=18.255(3) Å, β=102.98(1)°, V=2178.3(6) Å3, R=0.062, Z=4).  相似文献   

4.
A group of novel (Z)-1,2-diphenyl-1-(4-methanesulfonamidophenyl)alk-1-enes was designed for evaluation as selective cyclooxygenase-2 (COX-2) inhibitors. In vitro COX-1/COX-2 enzyme inhibition studies identified (Z)-1,2-diphenyl-1-(4-methanesulfonamidophenyl)oct-1-ene (8d) as a highly potent (IC50=0.03 microM), and an extremely selective [COX-2 SI (selectivity index)>3,333], COX-2 inhibitor that showed good anti-inflammatory (AI) activity (ID50=2.8 mg/kg). A molecular modeling (docking) study showed that the p-MeSO2NH group present in (Z)-8d inserts deep inside the 2 degrees-pocket of the COX-2 binding site, it undergoes a hydrophobic interaction with Ala516 and Gly519, and one of the O-atoms of the MeSO2 group participates in a weak hydrogen bonding interaction with the NH2 of Arg513 (distance= 3.85 angstroms). Similar in vitro COX-1/COX-2 enzyme inhibition studies showed that the azido compound 1-(4-azidophenyl)-1,2-diphenyloct-1-ene (9c) is also a potent and selective COX-2 inhibitor (COX-2 IC50=0.11 microM: SI>909) that exhibits good AI activity (ID50=5.0 mg/kg). A docking experiment to determine the orientation of (Z)-9c within the COX-2 binding site showed that the linear p-N3 group inserts into the COX-2 2 degrees-pocket, where it undergoes an ion-ion (electrostatic) interaction with Arg513. Structure-activity data acquired indicate that an olefin having either a C-1 p-MeSO2NH-phenyl, or a p-N3-phenyl, substituent, that is, cis to a C-2 unsubstituted phenyl substituent, in conjunction with C-1 unsubstituted phenyl and C-2 alkyl substituents, provides a novel template to design acyclic olefinic COX-2 inhibitors.  相似文献   

5.
The crystal structure of a synthetic analogue of valinomycin, cyclo[-(L-Val-L-Hyi-L-Val-D-Hyi)2-(D-Val-L-Hyi-L-Val-D -Hyi)-] ([L-Val1, L-Val5]meso-valinomycin), C60H102N6O18, has been determined. Crystals grown from petroleum ether are orthorhombic, space group P2(1)2(1)2(1), with cell parameters a = 16.41(1), b = 18.76(1), c = 25.86(1) A, and Z = 4. The atomic coordinates for nonhydrogen atoms, except those of terminal carbons on one side chain, were refined in the anisotropic thermal motion approximation. The coordinate parameters of the H atoms were incorporated into the structure factor calculations at geometrically expected positions. Values of the standard and weighted R factors after refinement are 0.074 and 0.083, respectively. The crystal structure of the molecule is asymmetric and adopts a conformation with four 4----1 type and one 6----1 type intramolecular hydrogen bonds between amide nitrogens and carbonyl oxygens. Valinomycin binds potassium more than 100 times strongly than the D,L stereoisomeric analogue, as a result of a different spatial orientation of potentially interacting carbonyl groups.  相似文献   

6.
A group of 1-(aminosulfonylphenyl and methylsulfonylphenyl)-2-(pyridyl)acetylene regioisomers were designed such that a COX-2 SO2NH2 pharmacophore was located at the para-position of the phenyl ring, or a SO2Me pharmacophore was placed at the ortho-, meta- or para-position of the phenyl ring, on an acetylene template (scaffold). The point of attachment of the pyridyl ring to the acetylene linker was simultaneously varied (2-pyridyl, 3-pyridyl, 4-pyridyl, 3-methyl-2-pyridyl) to determine the combined effects of positional, steric, and electronic substituent properties upon COX-1 and COX-2 inhibitory potency and COX isozyme selectivity. These target linear 1-(phenyl)-2-(pyridyl)acetylenes were synthesized via a palladium-catalyzed Sonogashira cross-coupling reaction. Structure-activity relationship (SAR) data (IC50 values) acquired by determination of the in vitro ability of the title compounds to inhibit the COX-1 and COX-2 isozymes showed that the position of the COX-2 SO2NH2 or SO2Me pharmacophore on the phenyl ring, and the point of attachment of the pyridyl ring to the acetylene linker, were either individual, or collective, determinants of COX-2 inhibitory potency and selectivity. A number of compounds discovered in this study, particularly 1-(4-aminosulfonylphenyl)-2-(3-methyl-2-pyridyl)acetylene (22), 1-(3-methanesulfonylphenyl)-2-(2-pyridyl)acetylene (27), 1-(3-methanesulfonylphenyl)-2-(4-pyridyl)acetylene (29), 1-(4-methanesulfonylphenyl)-2-(2-pyridyl)acetylene (30), and 1-(4-methanesulfonylphenyl)-2-(3-pyridyl)acetylene (31), exhibit potent (IC50 = 0.04-0.33 microM range) and selective (SI = 18 to >312 range) COX-2 inhibitory activities, that compare favorably with the reference drug celecoxib (COX-2 IC50 = 0.07 microM; COX-2 SI = 473). The sulfonamide (22), and methylsulfonyl (27 and 31), compounds exhibited anti-inflammatory activities (ID50 = 59.9-76.6 mg/kg range) that were intermediate in potency between the reference drugs aspirin (ID50 = 128.7 mg/kg) and celecoxib (ID50 = 10.8 mg/kg).  相似文献   

7.
Atherogenesis is a long-term process that involves inflammatory response coupled with metabolic dysfunction. Foam cell formation and macrophage inflammatory response are two key events in atherogenesis. Adipocyte enhancer-binding protein 1 (AEBP1) has been shown to impede macrophage cholesterol efflux, promoting foam cell formation, via peroxisome proliferator-activated receptor (PPAR)-γ1 and liver X receptor α (LXRα) downregulation. Moreover, AEBP1 has been shown to promote macrophage inflammatory responsiveness by inducing nuclear factor (NF)-κB activity via IκBα downregulation. Lipopolysaccharide (LPS)-induced suppression of pivotal macrophage cholesterol efflux mediators, leading to foam cell formation, has been shown to be mediated by AEBP1. Herein, we showed that AEBP1-transgenic mice (AEBP1(TG)) with macrophage-specific AEBP1 overexpression exhibit hyperlipidemia and develop atherosclerotic lesions in their proximal aortas. Consistently, ablation of AEBP1 results in significant attenuation of atherosclerosis (males: 3.2-fold, P = 0.001 [en face]), 2.7-fold, P = 0.0004 [aortic roots]; females: 2.1-fold, P = 0.0026 [en face], 1.7-fold, P = 0.0126 [aortic roots]) in the AEBP1(-/-)/low-density lipoprotein receptor (LDLR )(-/-) double-knockout (KO) mice. Bone marrow (BM) transplantation experiments further revealed that LDLR (-/-) mice reconstituted with AEBP1(-/-)/LDLR (-/-) BM cells (LDLR (-/-)/KO-BM chimera) display significant reduction of atherosclerosis lesions (en face: 2.0-fold, P = 0.0268; aortic roots: 1.7-fold, P = 0.05) compared with control mice reconstituted with AEBP1(+/+)/LDLR (-/-) BM cells (LDLR (-/-)/WT-BM chimera). Furthermore, transplantation of AEBP1(TG) BM cells with the normal apolipoprotein E (ApoE) gene into ApoE (-/-) mice (ApoE (-/-)/TG-BM chimera) leads to significant development of atherosclerosis (males: 2.5-fold, P = 0.0001 [en face], 4.7-fold, P = 0.0001 [aortic roots]; females: 1.8-fold, P = 0.0001 [en face], 3.0-fold, P = 0.0001 [aortic roots]) despite the restoration of ApoE expression. Macrophages from ApoE (-/-)/TG-BM chimeric mice express reduced levels of PPARγ1, LXRα, ATP-binding cassette A1 (ABCA1) and ATP-binding cassette G1 (ABCG1) and increased levels of the inflammatory mediators interleukin (IL)-6 and tumor necrosis factor (TNF)-α compared with macrophages of control chimeric mice (ApoE (-/-)/NT-BM ) that received AEBP1 nontransgenic (AEBP1(NT) ) BM cells. Our in vivo experimental data strongly suggest that macrophage AEBP1 plays critical regulatory roles in atherogenesis, and it may serve as a potential therapeutic target for the prevention or treatment of atherosclerosis.  相似文献   

8.
The compound Bi(cys)(3).H(2)O (cys=L-cysteine) has been obtained from the displacement reaction of [Bi(cit)](-) (cit=citrate) with cys in aqueous solution, and characterized by X-ray crystallography for the first time. It crystallizes in orthorhombic system with the space group P2(1)2(1)2(1), a=5.135(3)A, b=11.841(7)A, c=28.120(16)A, V=1709.8(17)A(3). The displacement reaction between bismuth citrate with cysteine in aqueous solution has been found to be pH-dependent and the complete displacement of the bound citrate with cysteine occurs at physiological pH value.  相似文献   

9.
(-)-6-[2-[4-(3-Fluorophenyl)-4-hydroxy-1-piperidinyl]-1-hydroxyethyl]-3,4-dihydro-2(1H)-quinolinone was identified as an orally active NR2B-subunit selective N-methyl-d-aspartate (NMDA) receptor antagonist. It has very high selectivity for NR2B subunits containing NMDA receptors versus the HERG-channel inhibition (therapeutic index=4200 vs NR2B binding IC(50)). This compound has improved pharmacokinetic properties compared to the prototype CP-101,606.  相似文献   

10.
(2S)-2-(3-Chlorophenyl)-1-[N-(methyl)-N-(phenylsulfonyl)amino]-4-[spiro(2,3-dihydrobenzthiophene-3,4'-piperidin-1'-yl)]butane S-oxide (1b) has been identified as a potent CCR5 antagonist having an IC50=10 nM. Herein, structure-activity relationship studies of non-spiro piperidines are described, which led to the discovery of 4-(N-(alkyl)-N-(benzyloxycarbonyl)amino)piperidine derivatives (3-5) as potent CCR5 antagonists.  相似文献   

11.
A novel series of compounds derived from the high-affinity nicotinic acetylcholine receptor (nAChR) ligand, 5-(2-(4-pyridinyl)vinyl)-6-chloro-3-((1-methyl-2-(S)-pyrrolidinyl)methoxy)pyridine (Me-p-PVC), originally developed by Abbott Laboratories, was characterized in vitro in nAChR binding assays at 37 degrees C to show K(i) values in the range of 9-611 pm. Several compounds of this series were radiolabeled with (11)C and evaluated in vivo in mice and monkeys as potential candidates for PET imaging of nAChRs. [(11)C]Me-p-PVC (K(i) =56 pm at 37 degrees C; logD = 1.6) was identified as a radioligand suitable for the in vivo imaging of the alpha 4 beta 2* nAChR subtype. Compared with 2-[(18)F]FA, a PET radioligand that has been successfully used in humans and is characterized by a slow kinetic of brain distribution, [(11)C]Me-p-PVC is more lipophilic. As a result, [(11)C]Me-p-PVC accumulated in the brain more rapidly than 2-[(18)F]FA. Pharmacological evaluation of Me-p-PVC in mice demonstrated that the toxicity of this compound was comparable with or lower than that of 2-FA. Taken together, these results suggest that [(11)C]Me-p-PVC is a promising PET radioligand for studying nAChR occupancy by endogenous and exogenous ligands in the brain in vivo.  相似文献   

12.
Apoconalbumin binds Mn(II) at two sites with association constants of K1 = 7 (+/- 1) X 10(4) and K2 = 0.4 (+/- 0.25) X 10(4) M-1. The binding is tighter in the presence of excess bicarbonate resulting in K1 = 1.8 (+/- 0.2) X 10(5) and K2 = 3 (+/- 2) X 10(4) M-1. The electron paramagnetic resonance spectrum (at both 9 and 35 GHz) of Mn(II) bound at the tight site reveals a rhombic distortion (lambda = E/D approximately equal to 0.25-0.31) in the protein ligand environment of the mental ion. An evaluation of the 1/pT1p, paramagnetic contribution to the longitudinal relaxation rate of solvent protons with Mn(II)-, Mn(III)-, and Fe(III)-derivatives of conalbumin revealed that the mental ion in each site of conalbumin is accessible to one water molecule. For Mn(II)-conalbumin and Mn(III)-conalbumin species, inner coordination sphere protons are rapidly exchanging with the bulk solvent, while slow exchange conditions prevail for Fe(III)-conalbumin.  相似文献   

13.
The synthesis and characterization of three complexes with a potent nonsteroidal anti-inflammatory drug niflumic acid {2-[3-(trifluoromethyl)phenyl]aminonicotinic acid} with formula [Cu(niflumato)2L] (L = H2O, DMSO = dimethylsulfoxide, DMF = N,N-dimethylformamide) were investigated. The crystal and molecular structure of the {Cu(niflumato)2(DMSO)}2 was reported. Crystallographic data are as follows: monoclinic system, space group P2(1)/n, Z = 2, a = 11.1318(8), b = 17.513(2), c = 15.336(1) A, beta = 103.316(8) degrees, V = 2909.4(4) A3. The structure was refined to R = 0.030 and wR = 0.037 for 3702 reflections with I > sigma (I). It consists of centrosymmetric binuclear units with the Cu-Cui (symmetry code i: 1-x, -y, 1-z) distance between two centrosymmetrically related ions of 2.6272(5) A. Each Cu(II) ion in [Cu2(DMSO)2(mu-niflumato)4] is coordinated to an apical dimethylsulfoxide O atom on the one hand and to the equatorial carbonyl and carboxylic O atoms of two crystallographically independent niflumate moieties and their centrosymmetric counterparts on the other hand. In spite of the low-temperature (190 K) crystal measurements, one L-CF3 grouping exhibits some disorder. The biological activities of these complexes were compared to that of niflumic acid. Niflumic acid and its various copper complexes significantly inhibited polymorphonuclear leukocyte (PMNL) oxidative metabolism, as assessed by chemiluminescence and O2- generation measurement. This effect was dose-dependent. All copper complexes exerted a similar inhibiting effect which was always significantly higher than that exerted by the parent drug.  相似文献   

14.
The reaction between [PtCl(dmso)(en)]Cl (dmso=dimethyl sulfoxide, en=ethylenediamine) and N-(3-pyridyl)-2-(4-(trifluoromethyl)phenyl)diazenecarboxamide (L) was studied using multinuclear NMR spectroscopy. The water-soluble complexes [PtCl(en)(L-N1)](+) (1) and [Pt(en)(L-N1)(2)](2+) (2) were isolated and their reactions with glutathione (GSH) were investigated to assess the oxidation properties of coordinated L. Both species 1 and 2 oxidized GSH to GSSG, while the reduced form of L (semicarbazide, SL) remained coordinated to Pt(2+). In complex 1 the labile chloride ion was substituted by the thiol moiety of GSH, which gave rise to the release of en in excess GSH over a period of 7 days. Complexes [PtCl(dmso)(en)]Cl, 1, 2 and ligand L were tested against T24 bladder carcinoma cells. Ligand L and complexes 1 and 2 showed higher cytotoxicity than [PtCl(dmso)(en)]Cl.  相似文献   

15.
3-(9-Acridinylamino)-5-(hydroxymethyl)aniline (AHMA) is an anti-cancer agent with significant efficacy against murine leukemia and solid tumors. As a DNA topoisomerase inhibitor, AHMA is proposed to form a ternary complex with DNA and topoisomerase and bind to DNA in an intercalative manner. In order to understand the interactions between AHMA and DNA and study the structure-function relationship of amsacrine analogue, the AHMA-d(CGTACG)(2) complex was crystallized using the sitting-drop vapor-diffusion method. The native crystals diffract to 2.9-A resolution and belong to space group P3(1)21 or P3(2)21 with unit-cell parameters a=b=57.52, c=122.17 A when analyzed using Cu Kalpha radiation. Patterson map indicates that in the crystal, the directions of the DNA base stacking are nearly perpendicular to the c-axis of the crystal unit cell.  相似文献   

16.
A group of regioisomeric 1-(methylsulfonylphenyl)-2-phenylacetylenes possessing a COX-2 SO(2)Me pharmacophore at the para-, meta- or ortho-position of the C-1 phenyl ring, in conjunction with a C-2 phenyl or substituted-phenyl ring substituent (3-F, 3-OMe, 3-OH, 3-OAc, 4-Me), were designed for evaluation as selective cyclooxygenase-2 (COX-2) inhibitors. These target linear 1,2-diarylacetylenes were synthesized via a palladium-catalyzed Sonogashira cross-coupling reaction followed by oxidation of the respective 1-(methylthiophenyl)-2-phenylacetylene intermediate. In vitro COX-1/COX-2 isozyme inhibition structure-activity studies identified 1-(3-methylsulfonylphenyl)-2-(4-methylphenyl)acetylene (12d) as a potent COX-2 inhibitor (IC(50) = 0.32 microM) with a high COX-2 selectivity index (SI > 320) comparable to the reference compound rofecoxib (COX-2 IC(50) = 0.50 microM; COX-2 SI > 200). A molecular modeling study where (12d) was docked in the binding site of COX-2 showed that the MeSO(2) COX-2 pharmacophore was positioned in the vicinity of the secondary COX-2 binding site near Val(523). The 1-(4-methylsulfonylphenyl)-2-(3-acetoxyphenyl)acetylene (11f, COX-1 IC(50) = 1.00 microM; COX-2 IC(50) = 0.06 microM; COX-2 SI = 16.7) and 1-(3-methylsulfonylphenyl)-2-(3-acetoxyphenyl)acetylene (12f, COX-1 IC(50) = 6.5 microM; COX-2 IC(50) = 0.05 microM; COX-2 SI = 130) regioisomers exhibited comparable COX-2 inhibition, and moderately lower selective COX-2 selectivity, relative to the reference drug celecoxib (COX-1 IC(50) = 33.1 microM; COX-2 IC(50) = 0.07 microM; COX-2 SI = 472). The most potent anti-inflammatory agent 1-(3-methylsulfonylphenyl)-2-(4-methylphenyl)acetylene (12d) exhibited moderate oral anti-inflammatory activity (ED(50)= 129 mg/kg) at 3 h postdrug administration relative to the reference drug celecoxib (ED(50) = 10.8 mg/kg) in a carrageenan-induced rat paw edema assay. The structure-activity data acquired indicate that the acetylene moiety constitutes a suitable scaffold (template) to design novel acyclic 1,2-diarylacetylenes with selective COX-2, or dual COX-1/COX-2, inhibitory activities.  相似文献   

17.
Kavana M  Moran GR 《Biochemistry》2003,42(34):10238-10245
(4-Hydroxyphenyl)pyruvate dioxygenase (HPPD) is a non-heme Fe(II) enzyme that catalyzes the conversion of (4-hydroxyphenyl)pyruvate (HPP) to homogentisate as part of the tyrosine catabolism pathway. Inhibition of HPPD by the triketone 2-[2-nitro-4-(trifluoromethyl)benzoyl]-1,3-cyclohexanedione (NTBC) is used to treat type I tyrosinemia, a rare but fatal defect in tyrosine catabolism. Although triketones have been used for many years as HPPD inhibitors for both medical and herbicidal purposes, the mechanism of inhibition is not well understood. The following work provides mechanistic insight into NTBC binding. The tautomeric population of NTBC in aqueous solution is dominated by a single enol as determined by NMR spectroscopy. NTBC preferentially binds to the complex of HPPD and FeII [HPPD.Fe(II)] as evidenced by a visible absorbance feature centered at 450 nm. The binding of NTBC to HPPD.Fe(II) was observed using a rapid mixing method and was shown to occur in two phases and comprise three steps. A hyperbolic dependence of the first observable process with NTBC concentration indicates a pre-equilibrium binding step followed by a limiting rate (K(1) = 1.25 +/- 0.08 mM, k(2) = 8.2 +/- 0.2 s(-1)), while the second phase (k(3) = 0.76 +/- 0.02 s(-1)) had no dependence on NTBC concentration. Neither K(1),k(2), nor k(3) was influenced by pH in the range of 6.0-8.0. Isotope effects on both k(2) and k(3) were observed when D(2)O is used as the solvent (for k(2), k(h)/k(d) = 1.3; for k(3), k(h)/k(d) = 3.2). It is therefore proposed that the bidentate association of NTBC with the active site metal ion (k(2)) precedes the Lewis acid-assisted conversion of the bound enol to the enolate (k(3)). Although the native enzyme without substrate reacts with molecular oxygen to form the oxidized holoenzyme, the HPPD.Fe(II).NTBC complex does not. When the complex is exposed to atmospheric oxygen, the absorbance feature associated with NTBC binding does not diminish over the course of 2 days. This means not only that the HPPD.Fe(II).NTBC complex does not oxidize but also that the dissociation rate constant for NTBC is essentially zero because any HPPD.Fe(II) that formed would readily oxidize in the presence of dioxygen. Consistent with this observation, EPR spectroscopy has shown that only 2% of the HPPD.Fe(II).NTBC complex forms an NO complex as compared to the holoenzyme.  相似文献   

18.
R A Glennon 《Life sciences》1986,39(9):825-830
Using a two-lever drug discrimination procedure, six rats were trained to discriminate 0.5 mg/kg of racemic 1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane (DOI) from saline. Once trained, the animals demonstrated a dose-related decrease in discriminative performance upon administration of lower doses of DOI (ED50 = 0.16 mg/kg). DOI-stimulus generalization occurred with the putative 5-HT2 agonist DOM (ED50 = 0.49 mg/kg), but not with the 5-HT1A agonist 8-OH DPAT, or the 5-HT1B agonist TFMPP. Furthermore, the DOI stimulus could be antagonized by pretreatment of the animals with the 5-HT2 antagonist ketanserin. The present results, coupled with the prior demonstration that DOI possesses a significant affinity and selectivity for 5-HT2 binding sites, suggest that the discriminative stimulus effects of DOI may be 5-HT2-mediated.  相似文献   

19.
A number of 6-(2-furyl)-9-(p-methoxybenzyl)purines carrying a variety of substituents in the 2- or 8-position have been synthesized and their ability to inhibit growth of Mycobacterium tuberculosis in vitro has been determined. It is demonstrated that sterical hindrance in the purine 8-position reduces activity and that C-8 should be unsubstituted. In the purine 2-position small, hydrophobic substituents are beneficial. The electronic properties of the 2-substituents appear to have only a minor influence on bioactivity. The compounds studied exhibit low toxicity toward mammalian cells (VERO cells) and are essentially inactive toward Staphylococcus aureus and Escherichia coli. The most active and selective antimycobacterial in the series detected to date is the novel 2-methyl-6-furyl-9-(p-methoxybenzyl)purine with MIC=0.20 microg/mL against M. tuberculosis and IC(50) against VERO cells >62.5 microg/mL. Also the novel 2-fluoro analog and the previously known 2-chloro compound, both with MIC=0.39 microg/mL, are highly interesting drug candidates.  相似文献   

20.
We have previously shown that whereas (RS)-2-amino-3-(3-hydroxy-5-phenylisoxazol-4-yl)propionic acid (APPA) shows the characteristics of a partial agonist at (RS)-2-amino-3-(3-hydroxy-5-methylisoxazol-4-yl)propionic acid (AMPA) receptors, (S)-APPA is a full AMPA receptor agonist and (R)-APPA a weak competitive AMPA receptor antagonist. This observation led us to introduce the new pharmacological concept, functional partial agonism. Recently we have shown that the 2-pyridyl analogue of APPA, (RS)-2-amino-3-[3-hydroxy-5-(2-pyridyl)isoxazol-4-yl]propionic acid (2-Py-AMPA), is a potent and apparently full AMPA receptor agonist, and this compound has now been resolved into (+)- and (-)-2-Py-AMPA (ee ≥ 99.0%) by chiral HPLC using a Chirobiotic T column. The absolute stereochemistry of the enantiomers of APPA has previously been established by X-ray analysis, and on the basis of comparative studies of the circular dichroism spectra of the enantiomers of APPA and 2-Py-AMPA, (+)- and (-)-2-Py-AMPA were assigned the (S)- and (R)-configuration, respectively. In a series of receptor binding studies, neither enantiomer of 2-Py-AMPA showed detectable affinity for kainic acid receptor sites or different sites at the N-methyl-D-aspartic acid (NMDA) receptor complex. (+)-(S)-2-Py-AMPA was an effective inhibitor of [3H]AMPA binding (IC50 = 0.19 ± 0.06 μM) and a potent AMPA receptor agonist in the rat cortical wedge preparation (EC50 = 4.5 ± 0.3 μM) comparable with AMPA (IC50 = 0.040 ± 0.01 μM; EC50 = 3.5 ± 0.2 μM), but much more potent than (+)-(S)-APPA (IC50 = 5.5 ± 2.2 μM; EC50 = 230 ± 12 μM). Like (-)-(R)-APPA (IC50 > 100 μM), (-)-(R)-2-Py-AMPA (IC50 > 100 μM) did not significantly affect [3H]AMPA binding, and both compounds were week AMPA receptor antagonists (Ki = 270 ± 50 and 290 ± 20 μM, respectively). Chirality 9:274–280, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号