首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Simian virus 40 (SV40)-infected CV1 cells exposed to hypoxia show an inhibition of viral replication. Reoxygenation after several hours of hypoxia results in new initiations followed by a nearly synchronous round of SV40 replication. In this communication, we examined the effect of glucose on inhibition of viral DNA replication under hypoxia. We found that glucose stimulated SV40 DNA replication under hypoxia in two different ways. First, the rate of DNA synthesis, i.e. the fork propagation rate, increased. This effect seemed to be mediated by inhibition of mitochondrial respiration by glucose (Crabtree effect). Inhibition of mitochondrial respiration probably resulted in a higher intracellular oxygen concentration and an activation of oxygen-dependent ribonucleotide reductase, which provides the precursors for DNA synthesis. This glucose effect was consequently strongly dependent on the strength of hypoxia and the extent of intracellular respiration; hypoxic gassing with 10 ppm instead of 200-400 ppm O(2) or treatment of hypoxic cells with a mitochondrial uncoupler (carbonyl cyanide m-chlorophenylhydrazone) reduced the glucose effect on replication, whereas antimycin A, an inhibitor of respiration, increased it. The second effect of glucose concerned initiation, i.e. stimulation of unwinding of the viral origin. This effect was not influenced by the strength of hypoxia or the extent of cellular respiration and seemed, therefore, not to be mediated through a Crabtree effect. No evidence for a direct correlation between the cellular ATP concentration and the extent of SV40 replication under hypoxia was found. The effect of glucose on replication under hypoxia was not restricted to SV40-infected CV1 cells but was also detectable in HeLa cells. This suggests it to be a mechanism of more general validity.  相似文献   

2.
In vivo-labeled SV40 replicating DNA molecules can be converted into covalently closed superhelical SV40 DNA (SV40(I) using a lysate of sv40-infected monkey cells containing intact nuclei. Replication in vitro occurred at one-third the in vivo rate for 30 min at 30 degrees. After 1 hour of incubation, about 54% of the replicating molecules had been converted to SV40(I), 5% to nicked, circular molecules (SV40(II), 5% to covalently closed dimers; the remainder failed to complete replication although 75% of the prelabeled daughter strands had been elongated to one-genome length. Density labeling in vitro showed that all replicating molecules had participated during DNA synthesis in vitro. Velocity and equilibrium sedimentation analysis of pulse-chased and labeled DNA using radioactive and density labels suggested that SV40 DNA synthesis in vitro was a continuation of normal ongoing DNA synthesis. Initiation of new rounds of SV40 DNA replication was not detectable.  相似文献   

3.
A cell-free simian virus 40 (SV40) DNA replication system served to study the role of RNA in the initiation of nascent DNA chains of less than 200 nucleotides (Okazaki pieces). RNA-DNA covalent linkages were found to copurify with SV40 replicating DNA. These linkages were identified by transfer of a fraction of the 32P from the 5′ position of a deoxyribonucleotide to 2′(3′)rNMPs upon either alkaline hydrolysis or RNAase T2 digestion of SV40 replicating [32P]DNA. Alkaline hydrolysis also exposed 5′ terminal hydroxyl groups in the nascent DNA which were detected as nucleosides after digestion with P1 nuclease. The RNA-DNA covalent linkages resulted from a population of Okazaki pieces containing uniquely sized oligoribonucleotides covalently attached to their 5′ termini (RNA primers). The density of a portion of the Okazaki pieces in potassium iodide gradients corresponded to a content of 90% DNA and 10% RNA, while the remaining Okazaki pieces appeared to contain only DNA. Incubation of Okazaki pieces with a defined length in the presence of either RNAase T2 or potassium hydroxide converted about one-third to one-half of them intto a second well defined group of DNA chains of greater electrophoretic mobili y in polyacrylamide gels. The increased mobility corresponded to the removalof at least seven-residues. Since alkaline hydrolysis of similar Okazaki pieces revealed that one-third to one-half of them contained rN-32P-dN linkages, the oligoribonucleotides must be covalently attached to the 5′ ends of nascent DNA chains. Although the significance of two populations of Okazaki pieces, one with and one without RNA primers, is imperfectly understood, a sizable fraction of nascent DNA chains clearly contained RNA primers.Neither the length of the RNA primer nor the number of RNA primers per DNA chain changed significantly with increasing length of Okazaki pieces. Since the frequency of RNA-DNA junctions found in nascent DNA chains greater than 400 nucleotides was similar to that of Okazaki pieces, the complete excision of RNA primers appears to occur after Okazaki pieces are joined to the 5′ end of growing daughter strands.32P-label transfer analysis of Okazaki pieces recovered from hybrids with isolated HindII + III restriction fragments of SV40 DNA revealed a uniform distribution of rN-P-dN sequences around the replicating DNA molecule. Therefore, most, if not all, RNA primers serve to initiate Okazaki pieces rather than to initiate DNA replication at the origin of the genome. Moreover, the positions of RNA primers are not determined by a specific set of nucleotide sequences.  相似文献   

4.
Irradiation of simian virus 40 (SV40)-infected cells with low fluences of UV light (20 to 60 J/m2, inducing one to three pyrimidine dimers per SV40 genome) causes a dramatic inhibition of viral DNA replication. However, treatment of cells with UV radiation (20 J/m2) before infection with SV40 virus enhances the replication of UV-damaged viral DNA. To investigate the mechanism of this enhancement of replication, we analyzed the kinetics of synthesis and interconversion of viral replicative intermediates synthesized after UV irradiation of SV40-infected cells that had been pretreated with UV radiation. This enhancement did not appear to be due to an expansion of the size of the pool of replicative intermediates after irradiation of pretreated infected cells; the kinetics of incorporation of labeled thymidine into replicative intermediates were very similar after irradiation of infected control and pretreated cells. The major products of replication of SV40 DNA after UV irradiation at the low UV fluences used here were form II molecules with single-stranded gaps (relaxed circular intermediates). There did not appear to be a change in the proportion of these molecules synthesized when cells were pretreated with UV radiation. Thus, it is unlikely that a substantial amount of DNA synthesis occurs past pyrimidine dimers without leaving gaps. This conclusion is supported by the observation that the proportion of newly synthesized SV40 form I molecules that contain pyrimidine dimers was not increased in pretreated cells. Pulse-chase experiments suggested that there is a more efficient conversion of replicative intermediates into form I molecules in pretreated cells. This could be due to more efficient gap filling in relaxed circular intermediate molecules or to the release of blocked replication forks. Alternatively, the enhanced replication observed here may be due to an increase in the excision repair capacity of the pretreated cells.  相似文献   

5.
Simian virus 40 large T antigen untwists DNA at the origin of DNA replication.   总被引:18,自引:0,他引:18  
Simian virus 40 large tumor antigen (SV40 T antigen) untwists DNA at the SV40 replication origin. In the presence of ATP, T antigen shifted the average linking number of an SV40 origin-containing plasmid topoisomer distribution. The loss of up to two helical turns was detected. The reaction required the presence of the 64-base pair core origin of replication containing T antigen DNA binding site II; binding site I had no effect on the untwisting reaction. The presence of human single-stranded DNA binding protein (SSB) slightly reduced the degree of untwisting in the presence of ATP. ATP hydrolysis was not required since untwisting occurred in the presence of nonhydrolyzable analogs of ATP. However, in the presence of a nonhydrolyzable analog of ATP, the requirement for the SV40 origin sequence was lost. The origin requirement for DNA untwisting was also lost in the absence of dithiothreitol. The origin-specific untwisting activity of T antigen is distinct from its DNA helicase activity, since helicase activity does not require the SV40 origin but does require ATP hydrolysis. The lack of a requirement for SSB or ATP hydrolysis and the reduction in the pitch of the DNA helix by just a few turns at the replication origin distinguishes this reaction from the T antigen-mediated DNA unwinding reaction, which results in the formation of a highly underwound DNA molecule. Untwisting occurred without a lag after the start of the reaction, whereas unwound DNA was first detected after a lag of 10 min. It is proposed that the formation of a multimeric T antigen complex containing untwisted DNA at the SV40 origin is a prerequisite for the initiation of DNA unwinding and replication.  相似文献   

6.
Hypoxia interrupts the initiation of simian virus 40 (SV40) replication in vivo at a stage situated before unwinding of the origin region. After re-oxygenation, unwinding followed by a synchronous round of viral replication takes place. To further characterize the hypoxia-induced inhibition of unwinding, we analysed the binding of several replication proteins to the viral minichromosome before and after re-oxygenation. T antigen, the 34-kDa subunit of replication protein A (RPA), topoisomerase I, the 48-kDa subunit of primase, the 125-kDa subunit of polymerase delta, and the 37-kDa subunit of replication factor C (RFC) were present at the viral chromatin already under hypoxia. The 70-kDa subunit of RPA, the 180-kDa subunit of polymerase alpha, and proliferating cell nuclear antigen (PCNA) were barely detectable at the SV40 chromatin under hypoxia and significantly increased after re-oxygenation. Immunoprecipitation of minichromosomes with T antigen-specific antibody and subsequent digestion with micrococcus nuclease revealed that most of the minichromosome-bound T antigen was associated with the viral origin in hypoxic and in re-oxygenated cells. T antigen-catalysed unwinding of the SV40 origin occurred, however, only after re-oxygenation as indicated by (a) increased sensitivity of re-oxygenated minichromosomes against digestion with single-stranded DNA-specific nuclease P1; (b) stabilization of RPA-34 binding at the SV40 minichromosome; and (c) additional phosphorylations of RPA-34 after re-oxygenation, probably catalysed by DNA-dependent protein kinase. The results presented suggest that the subunits of the proteins necessary for unwinding, primer synthesis and primer elongation first assemble at the SV40 origin in form of stable, active complexes directly before they start to work.  相似文献   

7.
Infectious deoxyribonucleic acid (DNA) was extracted from green monkey kidney (CV-1) cultures at various times after the cultures were infected with simian virus 40 (SV40) at input multiplicities of 0.01 and 0.1 plaque-forming unit (PFU) per cell. A pronounced decrease in infectious DNA was observed from 3 to 16 hr after virus infection, suggesting that structurally altered intracellular forms may have been generated early in infection. Evidence is also presented that SV40 DNA synthesis requires concurrent protein synthesis. DNA replication was studied in the presence and absence of cycloheximide in: (i) SV40-infected and uninfected cultures of CV-1 cells; (ii) cultures synchronized with 1-β-d-arabinofuranosylcytosine (ara-C) for 24 to 30 hr prior to the addition of cycloheximide; and (iii) in heterokaryons of SV40-transformed hamster and susceptible monkey kidney cells. DNA synthesis was determined by pulse-labeling the cultures with 3H-thymidine at various times from 24 to 46 hr after infection. In addition, the total infectious SV40 DNA was measured. Addition of cycloheximide, even after early proteins had been induced, grossly inhibited both SV40 and cellular DNA syntheses. The activities of thymidine kinase, DNA polymerase, deoxycytidylate deaminase, and thymidylate kinase were measured; these enzyme activities remained high for at least 9 hr in the presence of cycloheximide. SV40 DNA prelabeled with 3H-thymidine before the addition of cycloheximide was also relatively stable during the time required for cycloheximide to inhibit further DNA replication.  相似文献   

8.
Cell-free extracts of simian virus 40 (SV40)-infected CV-1 cells can initiate large tumor antigen dependent bidirectional replication in circular DNA molecules containing a functional SV40 origin of replication (ori). To determine whether or not DNA replication under these conditions involves RNA-primed DNA synthesis, replication was carried out in the presence of 5-mercuri-deoxycytidine triphosphate to label nascent DNA chains. Newly synthesized mercurated DNA was isolated by its affinity for thiol-agarose, and the 5'-ends of the isolated chains were radiolabeled to allow identification of RNA primers. At least 50% of the isolated chains contained 4 to 7 ribonucleotides covalently linked to their 5'-end; 80% of the oligoribonucleotides began with adenosine and 19% began with guanosine. About 60% of the nascent DNA chains annealed to the SV40 ori region, and about 80% of these chains were synthesized in the same direction as early mRNA. These results are consistent with the properties of SV40 DNA replication in vivo and support a model for initiation of SV40 DNA replication in which DNA primase initiates DNA synthesis on that strand of ori that encodes early mRNA.  相似文献   

9.
Simian virus 40 (SV40) and cellular DNA replication rely on host ATM and ATR DNA damage signaling kinases to facilitate DNA repair and elicit cell cycle arrest following DNA damage. During SV40 DNA replication, ATM kinase activity prevents concatemerization of the viral genome whereas ATR activity prevents accumulation of aberrant genomes resulting from breakage of a moving replication fork as it converges with a stalled fork. However, the repair pathways that ATM and ATR orchestrate to prevent these aberrant SV40 DNA replication products are unclear. Using two-dimensional gel electrophoresis and Southern blotting, we show that ATR kinase activity, but not DNA-PKcs kinase activity, facilitates some aspects of double strand break (DSB) repair when ATM is inhibited during SV40 infection. To clarify which repair factors associate with viral DNA replication centers, we examined the localization of DSB repair proteins in response to SV40 infection. Under normal conditions, viral replication centers exclusively associate with homology-directed repair (HDR) and do not colocalize with non-homologous end joining (NHEJ) factors. Following ATM inhibition, but not ATR inhibition, activated DNA-PKcs and KU70/80 accumulate at the viral replication centers while CtIP and BLM, proteins that initiate 5′ to 3′ end resection during HDR, become undetectable. Similar to what has been observed during cellular DSB repair in S phase, these data suggest that ATM kinase influences DSB repair pathway choice by preventing the recruitment of NHEJ factors to replicating viral DNA. These data may explain how ATM prevents concatemerization of the viral genome and promotes viral propagation. We suggest that inhibitors of DNA damage signaling and DNA repair could be used during infection to disrupt productive viral DNA replication.  相似文献   

10.
The replication of DNA containing either the polyoma or SV40 origin has been done in vitro. Each system requires its cognate large-tumour antigen (T antigen) and extracts from cells that support its replication in vivo. The host-cell source of DNA polymerase alpha - primase complex plays an important role in discriminating between polyoma T antigen and SV40 T antigen-dependent replication of their homologous DNA. The SV40 origin- and T antigen-dependent DNA replication has been reconstituted in vitro with purified protein components isolated from HeLa cells. In addition to SV40 T antigen, HeLa DNA polymerase alpha - primase complex, eukaryotic topoisomerase I and a single-strand DNA binding protein from HeLa cells are required. The latter activity, isolated solely by its ability to support SV40 DNA replication, sediments and copurifies with two major protein species of 72 and 76 kDa. Although crude fractions yielded closed circular monomer products, the purified system does not. However, the addition of crude fractions to the purified system resulted in the formation of replicative form I (RFI) products. We have separated the replication reaction with purified components into multiple steps. In an early step, T antigen in conjunction with a eukaryotic topoisomerase (or DNA gyrase) and a DNA binding protein, catalyses the conversion of a circular duplex DNA molecule containing the SV40 origin to a highly underwound covalently closed circle. This reaction requires the action of a helicase activity and the SV40 T antigen preparation contains such an activity. The T antigen associated ability to unwind DNA copurified with other activities intrinsic to T antigen (ability to support replication of SV40 DNA containing the SV40 origin, poly dT-stimulated ATPase activity and DNA helicase).  相似文献   

11.
Studies of simian virus 40 (SV40) DNA replication in vitro have identified a small (approximately 30-nucleotide) RNA-DNA hybrid species termed primer-DNA. Initial experiments indicated that T antigen and the polymerase alpha-primase complex are required to form primer-DNA. Proliferating cell nuclear antigen, and presumably proliferating cell nuclear antigen-dependent polymerases, is not needed to form this species. Herein, we present an investigation of the stages at which primer-DNA functions during SV40 DNA replication in vitro. Hybridization studies indicate that primer-DNA is initially formed in the origin region and is subsequently synthesized in regions distal to the origin. At all time points, primer-DNA is synthesized from templates for lagging-strand DNA replication. These studies indicate that primer-DNA functions during both initiation and elongation stages of SV40 DNA synthesis. Results of additional experiments suggesting a precursor-product relationship between formation of primer-DNA and Okazaki fragments are presented.  相似文献   

12.
The contributions of DNA polymerases alpha, delta, and epsilon to SV40 and nuclear DNA syntheses were evaluated. Proteins were UV-crosslinked to nascent DNA within replicating chromosomes and the photolabelled polymerases were immunopurified. Only DNA polymerases alpha and delta were detectably photolabelled by nascent SV40 DNA, whether synthesized in soluble viral chromatin or within nuclei isolated from SV40-infected cells. In contrast, all three enzymes were photolabelled by the nascent cellular DNA. Mitogenic stimulation enhanced the photolabelling of the polymerases in the alpha>delta>epsilon order of preference. The data agree with the notion that DNA polymerases alpha and delta catalyse the principal DNA polymerisation reactions at the replication fork of SV40 and, perhaps, also of nuclear chromosomes. DNA polymerase epsilon, implicated by others as a cell-cycle checkpoint regulator sensing DNA replication lesions, may be dispensable for replication of the small, fast propagating virus that subverts cell cycle controls.  相似文献   

13.
Five viable deletion mutants of simian virus 40 (SV40) were prepared and characterized. These mutants lack 15 to 60 base pairs between map positions 0.198 and 0.218, near the 3′ end of the early region of SV40 and extend further into the body of the A gene, encoding the large T antigen, than previously described deletion mutants. These mutants were isolated after transfection of monkey kidney CV-1p cells with full-sized linear DNA prepared by partial digestion of form I SV40 DNA with restriction endonucleases HinfI or MboII, followed by removal of approximately 25 base pairs of DNA from the 5′ termini using λ-5′-exonuclease and purification of the DNA in agarose gels. Based on camparisons of the DNA sequence of SV40 and polyoma virus, these mutations map in the 19% of the SV40 A gene that shares no homology with the A gene of polyoma virus. The mutations exist in two different genetic backgrounds: the original set of mutants (dl2401 through dl2405) was prepared, using as a parent SV40 mutant dl862, which has a deletion at the single HpaII site (0.725 map unit). A second set (dl2491 through dl2495) contains the same deletions in a wild-type SV40 (strain SV-S) background. Relative to wild-type SV40, the original mutants showed reduced rates of growth, lower yields of progeny virus and viral DNA, and smaller plaque size; in these properties the mutants resembled parental dl862, although mutant progeny yields were usually lower than yields of dl862, suggesting a possible interaction between the two deletions. The second set of mutants had growth properties and progeny yields similar to those of wild-type SV40; however, Southern blotting experiments indicated that viral DNA replication proceeds at a slightly reduced rate. All of the mutants transformed mouse NIH/3T3 cells and mouse embryo fibroblasts at the same frequency as wild-type SV40. Mutants dl2402, dl2492, and dl2405 consistently produced denser and larger foci in both types of cells. All mutants directed the synthesis of shortened large T antigens. Adenovirus helper function was retained by all mutants.  相似文献   

14.
Initiation of simian virus 40 DNA replication in vitro.   总被引:28,自引:3,他引:25       下载免费PDF全文
Exogenously added simian virus 40 (SV40) DNA can be replicated semiconservatively in vitro by a mixture of a soluble extract of HeLa cell nuclei and the cytoplasm from SV40-infected CosI cells. When cloned DNA was used as a template, the clone containing the SV40 origin of DNA replication was active, but a clone lacking the SV40 origin was inactive. The major products of the in vitro reaction were form I and form II SV40 DNAs and a small amount of form III. DNA synthesis in extracts began at or near the in vivo origin of SV40 DNA synthesis and proceeded bidirectionally. The reaction was inhibited by the addition of anti-large T hamster serum, aphidicolin, or RNase but not by ddNTP. Furthermore, this system was partially reconstituted between HeLa nuclear extract and the semipurified SV40 T antigen instead of the CosI cytoplasm. It is clear from these two systems that the proteins containing SV40 T antigen change the nonspecific repair reaction performed by HeLa nuclear extract alone to the specific semiconservative DNA replication reaction. These results show that these in vitro systems closely resemble SV40 DNA replication in vivo and provide an assay that should be useful for the purification and subsequent characterization of viral and cellular proteins involved in DNA replication.  相似文献   

15.
Five nondefective adenovirus 2 (Ad2)-simian virus 40 (SV40) hybrid viruses have been isolated and found to contain segments of SV40 DNA covalently linked to Ad2 DNA. The quantity of SV40 DNA present is a stable characteristic of each hybrid virus, and varies from less than 5% (in Ad2(+)ND(3)) to more than 30% (in Ad2(+)ND(4)) of the SV40 genome. We have characterized the SV40 portions of these hybrids by relating the SV40-specific RNA sequences transcribed in cells infected with each hybrid virus to those transcribed in cells infected with each of the other hybrid viruses and with SV40 itself. RNA-DNA hybridization-competition experiments indicate that the number of unique SV40 RNA sequences transcribed in infected cells is proportional to the size of the SV40 DNA segment contained within each hybrid and, in the case of the three hybrids which induce detectable SV40-specific antigens, to the number of SV40 antigens induced. Furthermore, the SV40-specific RNA sequences transcribed from any one of the hybrids are completely represented in the RNA transcribed from all other hybrids with longer SV40 segments. Thus, the SV40 DNA regions in the five hybrid viruses appear to contain some nucleotide sequences in common. The SV40-specific RNA transcribed from Ad2(+)ND(4), the hybrid containing the largest SV40 segment, is qualitatively similar to the SV40-specific RNA transcribed early (i.e., prior to viral DNA replication) in SV40 lytic infection. Thus, it appears that no significant amount of late SV40 DNA is transcribed during infection by any of the five nondefective Ad2-SV40 hybrid viruses.  相似文献   

16.
A previous analysis of naturally occurring defective interfering (DI) RNA genomes of the prototypic paramyxovirus simian virus 5 (SV5) indicated that 113 bases at the 3′ terminus of the antigenome were sufficient to direct RNA encapsidation and replication. A nucleotide sequence alignment of the antigenomic 3′-terminal 113 bases of members of the Rubulavirus genus of the Paramyxoviridae family identified two regions of sequence identity: bases 1 to 19 at the 3′ terminus (conserved region I [CRI]) and a more distal region consisting of antigenome bases 73 to 90 (CRII) that was contained within the 3′ coding region of the L protein gene. To determine whether these regions of the antigenome were essential for SV5 RNA replication, a reverse genetics system was used to analyze the replication of copyback DI RNA analogs that contained a foreign gene (GL, encoding green fluorescence protein) flanked by 113 5′-terminal bases and various amounts of SV5 3′-terminal antigenomic sequences. Results from a deletion analysis showed that efficient encapsidation and replication of SV5-GL DI RNA analogs occurred when the 90 3′-terminal bases of the SV5 antigenomic RNA were retained, but replication was reduced ~5- to 14-fold in the case of truncated antigenomes that lacked the 3′-end CRII sequences. A chimeric copyback DI RNA containing the 3′-terminal 98 bases including the CRI and CRII sequences from the human parainfluenza virus type 2 (HPIV2) antigenome in place of the corresponding SV5 sequences was efficiently replicated by SV5 cDNA-derived components. However, replication was reduced ~20-fold for a truncated SV5-HPIV2 chimeric RNA that lacked the HPIV2 CRII sequences between antigenome bases 72 and 90. Progressive deletions of 6 to 18 bases in the region located between the SV5 antigenomic CRI and CRII segments (3′-end nucleotides 21 to 38) resulted in a ~25-fold decrease in SV5-GL RNA synthesis. Surprisingly, replication was restored to wild-type levels when these length alterations between CRI and CRII were corrected by replacing the deleted bases with nonviral sequences. Together, these data suggest that a functional SV5 antigenomic promoter requires proper spacing between an essential internal region and the 3′ terminus. A model is presented for the structure of the 3′ end of the SV5 antigenome which proposes that positioning of CRI and CRII along the same face of the helical nucleocapsid is an essential feature of a functional antigenomic promoter.  相似文献   

17.
Heat shock inhibits replicative DNA synthesis, but the underlying mechanism remains unknown. We investigated mechanistic aspects of this regulation in melanoma cells using a simian virus 40 (SV40)-based in vitro DNA replication assay. Heat shock (44 degrees C) caused a monotonic inhibition of cellular DNA replication following exposures for 5-90 min. SV40 DNA replication activity in extracts of similarly heated cells also decreased after 5-30 min of exposure, but returned to near control levels after 60-90 min of exposure. This transient inhibition of SV40 DNA replication was eliminated by recombinant replication protein A (rRPA), suggesting a regulatory process targeting this key DNA replication factor. SV40 DNA replication inhibition was associated with a transient increase in the interaction between nucleolin and RPA that peaked at 20-30 min. Because binding to nucleolin compromises the ability of RPA to support SV40 DNA replication, we suggest that the observed interaction reflects a mechanism whereby DNA replication is regulated after heat shock. The relevance of this interaction to the regulation of cellular DNA replication is indicated by the transient translocation in heated cells of nucleolin from the nucleolus into the nucleoplasm with kinetics very similar to those of SV40 DNA replication inhibition and of RPA-nucleolin interaction. Because the targeting of RPA by nucleolin in heated cells occurs in an environment that preserves the activity of several essential DNA replication factors, active processes may contribute to DNA replication inhibition to a larger degree than presently thought. RPA-nucleolin interactions may reflect an early step in the regulation of DNA replication, as nucleolin relocalized into the nucleolus 1-2 h after heat exposure but cellular DNA replication remained inhibited for up to 8 h. We propose that the nucleolus functions as a heat sensor that uses nucleolin as a signaling molecule to initiate inhibitory responses equivalent to a checkpoint.  相似文献   

18.
Bizelesin, a bifunctional DNA minor groove alkylating agent, inhibits both cellular and viral (SV40) DNA replication in whole cells. Bizelesin inhibition of SV40 DNA replication was analyzed in SV40-infected cells, using two-dimensional (2D) neutral agarose gel electrophoresis, and in a cell-free SV40 DNA replication assay. Within 1 h of bizelesin addition to infected cells, a similar rapid decrease in both the level of SV40 replication intermediates and replication activity was observed, indicating inhibition of initiation of SV40 DNA replication. However, prolonged bizelesin treatment (>/=2 h) was associated with a reduced extent of elongation of SV40 replicons, as well as the appearance on 2D gels of intense spots, suggestive of replication pause sites. Inhibition of elongation and induction of replication pause sites may result from the formation of bizelesin covalent bonds on replicating SV40 molecules. The level of in vitro replication of SV40 DNA also was reduced when extracts from bizelesin-treated HeLa cells were used. This effect was not dependent upon the formation of bizelesin covalent bonds with the template DNA. Mixing experiments, using extracts from control and bizelesin-treated cells, indicated that reduced DNA replication competence was due to the presence of a trans-acting DNA replication inhibitor, rather than to decreased levels or inactivation of essential replication factor(s).  相似文献   

19.
Lytic infection of African green monkey kidney (CV-1) cells by simian virus 40 (SV40) is characterized by stimulation of DNA synthesis leading to bypass of mitosis and replication of cellular and viral DNA beyond a 4C DNA content. To define mechanisms underlying the absence of mitosis, the expression levels of upstream regulatory molecules of mitosis-promoting factor (MPF) were compared in parallel synchronized cultures of SV40-infected and uninfected CV-1 cells. The DNA replication/damage checkpoint kinase Chk1 was phosphorylated in both uninfected and SV40-infected cultures arrested at G(1)/S by mimosine, consistent with checkpoint activation. Following release of uninfected cultures from G(1)/S, Chk1 phosphorylation was lost even though Chk1 protein levels were retained. In contrast, G(1)/S-released SV40-infected cultures exhibited dephosphorylation of Chk1 in S phase, followed by an increase in Chk1 phosphorylation coinciding with entry of infected cells into >G(2). Inhibitors of Chk1, UCN-01 and caffeine, induced mitosis and abnormal nuclear condensation and increased the protein kinase activity of MPF in SV40-infected CV-1 cells. These results demonstrate that SV40 lytic infection triggers components of a DNA damage checkpoint pathway. In addition, chemical inhibition of Chk1 activity suggests that Chk1 contributes to the absence of mitosis during SV40 lytic infection.  相似文献   

20.
Ad2(+)ND(1), a nondefective adenovirus 2 (Ad2)-simian virus 40 (SV40) hybrid virus, has been previously shown to contain a small segment of the SV40 genome covalently linked to Ad2 deoxyribonucleic acid (DNA). The SV40 portion of this hybrid virus has been characterized by relating the SV40-specific ribonucleic acid (RNA) sequences transcribed from the Ad2(+)ND(1) DNA to those transcribed from the DNA of SV40 itself. RNA-DNA hybridization-competition studies indicate that the SV40 component of Ad2(+)ND(1) consists of some, but not all, of that part of the SV40 genome which is transcribed early, i.e., prior to viral DNA replication, in SV40 lytic infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号