首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Abstract. Mainland salt marshes in Schleswig-Holstein (northern Germany) have been grazed intensively by sheep for several decades. In 1988 experimental sites were established in the lower and middle salt marsh of Sönke-Nissen-Koog and subjected to different grazing intensities. From 1989 to 1993 the impact of sheep grazing on the composition and structure of the salt marsh vegetation was studied through the yearly analysis of permanent plots, vegetation mapping and measurements of the vegetation height. The intensively grazed site (10 sheep/ha) is covered by a short monotonous Puccinellia maritima sward with Salicornia europaea and Suaeda maritima. Halimione portulacoides and Aster tripolium, especially flowering plants, are rare. On the sites with 1.5 and 3 sheep/ha Puccinellia maritima remained dominant. The population density of Salicornia europaea decreases after reduction of the grazing intensity, whereas Suaeda maritima finds optimal growing conditions. Stands of Halimione portulacoides and flowering Aster tripolium plants are rare near the sea dike but their cover and size increases further away from the dike. In the plot with 1.5 sheep/ha the height of the vegetation increases along the gradient from the dike towards the tidal flats, due to local differences in actual grazing intensity. When grazing is stopped, Puccinellia maritima is successively replaced by Festuca rubra, Halimione portulacoides and Aster tripolium. High variability of vegetation height indicates structural diversity. Patches of higher and lower vegetation correspond with the distribution pattern of different plant species. In terms of nature conservation cessation of grazing is recommended.  相似文献   

2.
Salt tolerance of halophytes corresponds with the habitat requirement of the species. It is an important factor during the germination phase and it can determine successful establishment. This paper presents the effects of alternating temperature–light regimes (4/8°C, 10/20°C, 20/32°C; 12 h dark: 12 h light) and different salinity levels (0, 200, 400, 600 mmol l21 NaCl) on seed germination of five halophytes, Halimione pedunculata, Bupleurum tenuissimum, Aster tripolium, Triglochin maritimum and Armeria maritima. The five species differ with respect to family and life‐form and spatially correspond to a decreasing salt gradient (i.e. distance from salt water, with H. pedunculata being the most tolerant and A. maritima being the least). Armeria maritima, A. tripolium and T. maritimum seeds were additionally subjected to a cold stratification experiment. The results showed that Halimione pedunculata, an annual therophyte of year‐round heavily saline habitats, was dormant under all experimental conditions. Bupleurum tenuissimum, a species typical to sites of varying salinity prone to leaching during spring and autumn rainfall, germinated best under cold and warm temperatures, but only under non‐saline conditions. Aster tripolium and T. maritimum, close neighbours in salt marshes, showed very similar germination behaviour: seeds of both species tolerated high levels of salinity and germinated best in summer temperatures during periods of highest soil salinity, and germination was significantly promoted by cold. Armeria maritima, a species usually found on the marginal fringes of saline habitats, germinated only under low salt levels and maximum germination was under cold (spring) and warm (autumn) temperatures, with no significant effect of cold stratification.  相似文献   

3.
Summary The performance of phytophagous insects is influenced by the nutritional quality of the food plant, which may vary with environmental conditions. Hardly any information exists on food-plant mediated effects of variable soil salinity on the performance of phytophagous insects. Conspicuous differences in salinity levels, however, are found in soils of intertidal wetlands such as salt marshes and mangroves. The growth of larvae of Bucculatrix maritima, a leaf miner of the salt marsh halophyte Aster tripolium, was studied on the host plant along the salinity gradient of the Westerschelde estuary (S.W. Netherlands). In addition, its performance on A. tripolium grown on low or high salinity culture medium was investigated experimentally. Although salinity conditions significantly influenced the chemistry of the host plants, insect performance seemed almost unaffected, although near the mouth of the estuary high environmental salinities may have caused some inhibition of larval growth. The results contrast with our previous studies on the stem-borer Agapanthia villosoviridescens, which showed that growth and development was conspicuously influenced by the changing characteristics of Aster tripolium along the estuarine salinity gradient. The location-dependent qualities of halophytes in an estuary thus appear to have species-specific effects on insect performance. We hypothesize that this phenomenon contributes to the existence of non-identical distribution patterns of phytophagous insects associated with the same halophyte in an estuary.  相似文献   

4.
A study has been made of the ionic relations of stomata of Aster tripolium L., a maritime halophyte which colonizes coastal saltmarshes. The results obtained allow us to add this species to the growing list for which an involvement of K+ transport in stomatal movements has been demonstrated. However, an additional and ecologically important characteristic was found: there was a suppression of stomatal opening by increasing NaCl concentrations. A new hypothesis is offered of the mechanism for controlling salt and water relations in A. tripolium, a species which does not possess glands or other means of excreting salt. It is suggested that when the capacity of the tissues to accumulate salt in cell vacuoles is exceeded, the concentration of Na+ ions in the apoplast around the guard cells begins to rise. This causes partial stomatal closure, reduces transpiration and increases water-use-efficiency. Therefore, the flow of salt into the leaves is reduced but growth (and the manufacture of the new photosynthates required to support it) can continue. Aster tripolium can be added to the small list of known species which readily yield isolated epidermis suitable for detailed stomatal studies. Throughout this study, we have compared its stomatal physiology with C. communis, which has been thoroughly investigated in the past.  相似文献   

5.
Summary Phytophagous insects of estuarine salt marshes which live inside their host plants are not directly exposed to estuarine gradients. Host plant quality, however, may change along the estuary as a result of the direct effects of these gradients; as a consequence growth and development of endophagous insects may be influenced. The results of a study of the life cycle of Agapanthia villosoviridescens (Coleoptera, Cerambycidae), a stem-borer of the halophyte Aster tripolium, on three salt marshes along the Westerschelde estuary (the Netherlands) are in line with this hypothesis. It was shown that in upstream direction (1) mean larval weights were consistently higher during the entire period of larval development; (2) the percentage of late instars on a given sampling date generally was higher; (3) the percentage of larvae which underwent successful metamorphosis increased. Furthermore, (4) dry weight of the imagos was highest on the least saline marsh. The effects of estuarine gradients on the Aster host plants was indicated by differences in growth and chloride content between the populations of the three marshes. The non-overlapping geographic distribution of Agapanthia villosoviridescens and its host plant Aster tripolium on the Westerschelde salt marshes may be related to the effects of estuarine gradients on the suitability of the host plant.  相似文献   

6.
The halophytes Plantago maritima, Aster tripolium, Artemisia santonicum, Puccinellia limosa, Festuca pseudovina and Lepidium crassifolium from two different saline soils of the Hungarian steppe were examined for colonization by arbuscular mycorrhizal fungi (AMF). The salt aster (A. tripolium) and the sea plantain (P. maritima) were examined more thoroughly by recording root colonization parameters, the salt content in the soil and monthly precipitations in 2001 and 2002. Mycorrhizal colonization was maximal in late spring to early summer and had a second peak later in the autumn. Arbuscule formation and overall mycorrhizal colonization appeared to be inversely correlated with the intensity of rainfall at the investigated sites. The results suggest that, in addition to seasonality, drought may play an important role in governing mycorrhizal activity in saline habitats. In greenhouse experiments, conditions in which AMF could overcome the inhibitory effects of sodium chloride on establishing plant–mycorrhizal symbiosis were not met.  相似文献   

7.
It is known that vegetation plays an important role in the retention of heavy metals in salt marshes by taking up and accumulating the metals. In this study, we investigated whether arbuscular mycorrhizal fungi (AMF) increase Cd and Cu uptake and accumulation in the root system of the salt marsh species Aster tripolium L., and whether indigenous AMF isolated from polluted salt marshes have higher capacity to resist and alleviate metal stress in A. tripolium than isolates of the same species originated from non-polluted sites. Plants inoculated with Glomus geosporum, either isolated from a polluted salt marsh site (PL isolate) or from a non-polluted site (NP isolate), and non-mycorrhizal (NM) plants were compared in a pot experiment at four different Cd and Cu concentrations. Cd had no effect in root colonization, whereas high concentrations of Cu decreased colonization level in plants inoculated with the NP isolate. AM colonization did not increase plant dry weight or P concentration but influenced root Cd and Cu concentrations. Inoculation with PL and NP isolates enhanced root Cd and Cu concentrations, especially at highest metal addition levels, as compared to NM plants, without increasing shoot Cd and Cu concentrations. There was no evidence of intraspecific variation in the effects between AMF isolated from polluted and non-polluted sites, since there were no differences between plants inoculated with PL or NP isolate in any of the tested plant variables. The results of this study showed that AMF enhance metal accumulation in the root system of A. tripolium, suggesting a contribution of AMF to the sink of metals within vegetation in the salt marshes.  相似文献   

8.
Starch and soluble sugars in leaves of Aster tripolium L. and Cochlearia angliea L. Effect of NaCI. - The limbs or foliar disks of Aster tripolium L. and Cochlearia anglica L. synthelize starch when exposed to light at 25°C, and in the presence of glucose or saceharose together with 0.25 to 0.61 % of NaCI.  相似文献   

9.
The emergence of seedlings, the length of roots and shoots, and the biomass of four dominant plant species and shore height were measured to investigate the growth strategy of these plants on the salt marsh of Mankyung River estuary. Four salt marsh plants showed a distinctive zonation, for example, Suaeda japonica was predominantly spread around the low salt marsh, Atriplex gmelini and Aster tripolium were in the middle, and S. asparagoides was in the upper part of the marsh. In terms of emergence of seedlings, S. japonica appeared first followed by A. gmelini, S. asparagoides, and A. tripolium. The growth strategies of halophytes were as follows: S. japonica germinated earlier than the other halophytes so that its root grew rapidly and extensively at the beginning of growth. This species adopted a continuous germination strategy, allowing growth whenever favorable conditions were provided. A. gmelini germinated later than S. japonica, as a quasi-simultaneous germination type, it showed the highest germination rate within the shortest time. Aster tripolium germinated later than any other halophyte. Since this species exhibited characteristics between the continuous germination type and the quasi-simultaneous germination type, it did not show a very high germination rate. Instead, it showed continuous germination and consistent growth of both above-ground and underground parts. Suaeda asparagoides showed an especially high emergence rate at the beginning of its growth. However, the high density retarded its growth until the middle stage. Its roots extended longer than the other halophytes, allowing it to grow well in the dry conditions of the upper marsh.  相似文献   

10.
Summary Concentrations of heavy metals in the honey, derived fromAster tripolium was the starting-point for this investigation. Lead content of pollen inAster tripolium andTaraxacum officinale is mainly due to airborne lead. Accumulation of other heavy metals such as zinc and copper in pollen occur mainly via a translocation process from roots to flowers.  相似文献   

11.
Abstract. Lower salt-marsh species occur more in the grazed than in the mown sites of a salt marsh in Schiermonnikoog in the Netherlands. This was demonstrated by a sowing experiment which determined which characteristic of the stand structure, height of the canopy or percentage of bare soil, is responsible for this difference. The total number of seedlings which emerged was negatively related to the height of the canopy and positively to the percentage of bare soil. The survival of seedlings of Suaeda maritima and Plantago maritima could be explained by the height of the canopy and for the latter species also by the percentage of bare soil. The survival of Aster tripolium and Plantago maritima was higher in grazed than in mown sites. Since the amount of bare soil was higher than seemed necessary for germination and survival, it was concluded that the taller canopy was responsible for the absence of lower salt-marsh species in the mown sites.  相似文献   

12.
The halophyte Aster tripolium, unlike well-studied non-halophytic species, partially closes its stomata in response to high Na+ concentrations. Since A. tripolium possesses no specific morphological adaptation to salinity, this stomatal response, preventing excessive accumulation of Na+ within the shoot via control of the transpiration rate, is probably a principal feature of its salt tolerance within the shoot. The ionic basis of the stomatal response to Na+ was studied in guard cell protoplasts from A. tripolium and from a non-halophytic relative, Aster amellus, which exhibits classical stomatal opening on Na+. Patch-clamp studies revealed that plasma membrane K+ channels (inward and outward rectifiers) of the halophytic and the non-halophytic species are highly selective for K+ against Na+, and are very similar with respect to unitary conductance and direct sensitivity to Na+. On the other hand, both species possess a significant permeability to Na+ through non-rectifying cation channels activated by low (physiological) external Ca2+ concentrations. Finally, it appeared that the differential stomatal response between the two species is achieved, at least in part, by a Na+-sensing system in the halophyte which downregulates K+ uptake. Thus, increases in guard cell cytosolic Na+ concentration in A. tripolium but not in A. amellus, lead to a delayed (20–30 min) and dramatic deactivation of the K+ inward rectifier. This deactivation is probably mediated by an increase in cytosolic Ca2+ since buffering it abolishes the response. The possible role of K+ inward rectifiers in the response of A. tripolium’s stomata to Na+, suggested by patch-clamp studies, was confirmed by experiments demonstrating that specific blockade of inward rectifying channels mimics Na+ effects on stomatal aperture, and renders aperture refractory to Na+.  相似文献   

13.
Paul Binet 《Plant Ecology》1985,61(1-3):241-246
It was shown for Cochlearia anglica roots in comparison with Phaseolus vulgaris, roots that: (a) the cell walls of the halophyte are heavy; (b) they have a high Ca2+ content; (c) they may be a convenient means of transfer for Na+.In Aster tripolium as well as in Atriplex littoralis NaCl alters the composition of the various pectic fractions and maintains a low pectinemethylesterase activity and a great cellulase activity. This effect may be responsible for the great plasticity of the cell walls which allows an increased cell growth and leads to the formation of succulent organs, therefore to the dilution of salt within the cells.  相似文献   

14.
A new aphid species, Pemphigus trehernei, found on the roots of Aster tripolium L. in Western Europe is described. The gall, fundatrix and alate fundatrigenia were produced artificially on Populus nigra L. var. italica Duroi. The life cycle and host range of the species were investigated.  相似文献   

15.
Sclerites and muscles of the ovipositor in the tephritid fly Campiglossa plantaginis (Haliday, 1833), with phytophagous larvae developing in inflorescences of Aster tripolium L. and other Asteraceae, were examined. Structural adaptations of the ovipositor, providing oviposition into different substrates, are discussed in relation to different trophic specialization of larvae.  相似文献   

16.
The halophilous vegetation in the Po Delta region (north Adriatic) has been studied with the Braun-Blanquet method. Vegetation types have been defined by numerical classification of vegetation data. Their ecology has been studied by indirect gradient analysis. The following three main groups of phytocoena have been recognized. (1) Perennial halophytic vegetation (class Puccinellio-Salicornietea) including 7 associations: Spartinetum maritimae, Puccinellietum palustris, Salicornietum radicantis, Salicornietum fruticosae, Agropyro-Inuletum crithmoidis, Halimionetum portulacoidis, are quoted according to an approximate gradient of decreasing soil moisture. The Juncetum maritimi is conditioned by soil erosion. (2) Therophytic vegetation settled on soils subject to natural or artificial disturbance (class Thero-Salicornietea), including 3 associations: Suaedo-Kochietum hirsutae, Salicornietum herbaceae s.1. and the Aster tripolium-Suaeda maritima community. (3) Halotolerant vegetation (class Artemisietea vulgaris), including only the Atripliceto-Elytrigietum pungentis settled on soils with a low salt content.Nomenclature of species follows Pignatti (1982).The research was supported by a grant of the Istituto per i Beni Artistici, Culturali e Naturali, Regione Emilia-Romagna (Italy) and by a grant of the Italian C.N.R. (Research Group for Naturalistic Biology).  相似文献   

17.
Abstract A study of the growth of the maritime halophyte Aster tripolium L. has been carried out over a range of salinity treatments. The regression approach to growth analysis using frequent small harvests has been used to allow ‘continuous’ measurement of growth over a period of 36 d. Salinity was applied with the major ions present in ratios typical of those found in seawater. Growth was inhibited in terms of both dry weight production and leaf expansion at salinity levels equivalent to 0.625 strength sea water (full culture solution 300) and above, with the greatest effect being seen in terms of leaf area. Aster tripolium did not show increased succulence at high salinity, leaf fresh weight to dry weight ratio in fact declined, whilst leaf fresh weight per unit area remained constant. It should be noted that the plants exhibit low growth rates due to the low light intensity used.  相似文献   

18.
The effect of sulphide on the growth of several species of salt-marsh plants was investigated. Relative growth rates were significantly reduced in two upper-marsh species, Festuca rubra and Atriplex patula, and in the lower-marsh species Puccinellia maritima. However the growth of Salicornia europaea, a species frequently associated with sulphide-containing sediments, was unaffected. In a separate experiment the wide ranging halophyte Aster tripolium, also appeared to be tolerant of sulphide at a concentration frequently encountered in salt marshes. Sulphide pretreatment inhibited the activity of two metallo-enzymes, polyphenol oxidase and external phosphatase, in plants from the upper marsh, but had no effect on enzymes from P. maritima or S. europaea. The rate of respiration by root tissue was significantly reduced in all of the species investigated but whereas the uptake of 86rubidium was markedly inhibited in the other three species, uptake by S. europaea showed a significant stimulation. Similarly, whereas sulphide-grown plants of F. rubra, A. patula and P. maritima had a considerably reduced tissue iron content, the total iron concentration in S. europaea tissues was comparable to that of the controls. When the sulphide-tolerant species A. tripolium was grown in sulphide-containing media there was no significant effect on the tissue concentration of any of the elements investigated. These results are discussed in relation to possible mechanisms of sulphide toxicity and resistance.  相似文献   

19.
Summary The intertidal aphid, Pemphigus trehernei, is restricted to aster plants (Aster tripolium) growing near the edges of creeks and salt pans in low areas on tidal saltmarshes. Aphid populations in mid-marsh areas do not show an equivalent edge effect. In low-marshes the edge soil generally has more surface cracks and cavities which can accommodate aphids and a higher % air space than soil from regions away from edges. Adults and 1st instars can penetrate edge soil more readily than non-edge soil. Aphid abundance is positively correlated with % air space in low-marsh regions. Aphid populations established on potted asters were destroyed or reduced to very low levels when transferred to non-edge regions of low-marsh areas. It is suggested that aphid distribution is primarily limited by soil conditions, especially the extent of soil drainage.  相似文献   

20.
Coastal systems worldwide deliver vital ecosystem services, such as biodiversity, carbon sequestration, and coastal protection. Effectivity of these ecosystem services increases when vegetation is present. Understanding the mechanisms behind vegetation establishment in bio‐geomorphic systems is necessary to understand their ability to recover after erosive events and potential adaptations to climate change. In this study, we examined how seed availability affects vegetation establishment in the salt marsh–intertidal flat transition zone: the area with capacity for lateral marsh expansion. This requires vegetation establishment; therefore, seed availability is essential. In a 6‐month field experiment, we simulated a before and after winter seed dispersal at two locations, the salt‐marsh vegetation edge and the intertidal flat, and studied seed retention, the seed bank, and the seed viability of three pioneer marsh species: Salicornia procumbens, Aster tripolium, and Spartina anglica. During winter storm conditions, all supplied seeds eroded away with the sediment surface layer. After winter, supplied seeds from all three species were retained, mostly at the surface while 9% was bioturbated downwards. In the natural seed bank, A. tripolium and S. anglica were practically absent while S. procumbens occurred more frequently. The viability of S. procumbens seeds was highest at the surface, between 80% and 90%. The viability quickly decreased with depth, although viable S. procumbens seeds occurred up to 15 cm depth. Only when seeds were supplied after winter, many S. procumbens and some S. anglica individuals did establish successfully in the transition zone. Viable seed availability formed a vegetation establishment threshold, even with a local seed source. Our results suggest that, although boundary conditions such as elevation, inundation, and weather conditions were appropriate for vegetation establishment in spring, the soil surface in winter can be so dynamic that it limits lateral marsh expansion. These insights can be used for designing effective nature‐based coastal protection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号