首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An in situ transglycosylase assay has been developed using endogenously synthesized lipid II. The assay involves the preferential synthesis and accumulation of lipid II in a reaction mixture containing the cell wall membrane material isolated from Escherichia coli, exogenously supplied UDP-MurNAc-pentapeptide, and radiolabeled UDP-GlcNAc. In the presence of Triton X-100, the radiolabeled product formed is almost exclusively lipid II, while the subsequent formation of peptidoglycan is inhibited. Removal of the detergent resulted in the synthesis of peptidoglycan (25% incorporation of radiolabeled material) from the accumulated lipid II. This reaction was inhibited by moenomycin, a known transglycosylase inhibitor. In addition, tunicamycin, which affects an earlier step of the pathway by inhibiting MraY, had no effect on the formation of peptidoglycan in this assay, as expected. Similarly, ampicillin and bacitracin did not inhibit the formation of peptidoglycan under the conditions established.  相似文献   

2.
Thirty-five clinical isolates of coagulase-negative staphylococci with decreased glycopeptide sensitivity were examined by a penicillin-binding protein (PBP2′) latex agglutination (LA) test and were compared to the detection of the mecA gene by PCR, and oxacillin susceptibility determined minimum inhibitory concentrations. The latex test demonstrated high sensitivity and specificity for detecting methicillin resistance in coagulase-negative staphylococci after PBP2′ induction with oxacillin.  相似文献   

3.
Described here is the asymmetric synthesis of iminosugar 2b, a Lipid II analog, designed to mimic the transition state of transglycosylation catalyzed by the bacterial transglycosylase. The high density of functional groups, together with a rich stereochemistry, represents an extraordinary challenge for chemical synthesis. The key 2,6-anti- stereochemistry of the iminosugar ring was established through an iridium-catalyzed asymmetric allylic amination. The developed synthetic route is suitable for the synthesis of focused libraries to enable the structure–activity relationship study and late-stage modification of iminosugar scaffold with variable lipid, peptide and sugar substituents. Compound 2b showed 70% inhibition of transglycosylase from Acinetobacter baumannii, providing a basis for further improvement.  相似文献   

4.
Simple analogues of lipid II were synthesized from 3,4,6-tri-O-acetyl-2-acetamido-2-deoxy-1-thio-β-d-glucopyranose using conjugate addition onto ethylidene bisphosphonate and subsequent Wadsworth–Horner–Emmons reaction with long chain aliphatic aldehydes.  相似文献   

5.
The penicillin-binding proteins PBP 1A and 1Bs are the essential murein polymerases of Escherichia coli. Purification of these membrane-bound bifunctional transglycosylase-transpeptidases was a major obstacle in studying the details of both enzymatic reactions. Here we describe a simple, highly specific affinity chromatography method that takes advantage of the availability of the specific inhibitor of the transglycosylase site moenomycin A in order to enrich PBP 1A and 1Bs in one step from crude membrane preparations. Separation of PBP 1A from PBP 1Bs is achieved in a second step employing cation exchange chromatography yielding enzymatically active native murein polymerases.  相似文献   

6.
Defensins constitute a major class of cationic antimicrobial peptides in mammals and vertebrates, acting as effectors of innate immunity against infectious microorganisms. It is generally accepted that defensins are bactericidal by disrupting the anionic microbial membrane. Here, we provide evidence that membrane activity of human α-defensins does not correlate with antibacterial killing. We further show that the α-defensin human neutrophil peptide-1 (HNP1) binds to the cell wall precursor lipid II and that reduction of lipid II levels in the bacterial membrane significantly reduces bacterial killing. The interaction between defensins and lipid II suggests the inhibition of cell wall synthesis as a novel antibacterial mechanism of this important class of host defense peptides.  相似文献   

7.
Ten-eleven translocation protein (TET) 1 plays a key role in control of DNA demethylation and thereby of gene expression. Dysregulation of these processes leads to serious pathological states such as oncological and neurodegenerative ones and thus TET 1 targeting is highly requested. Therefore, in this work, we examined the ability of hydrazones (acyl-, aroyl- and heterocyclic hydrazones) to inhibit the TET 1 protein and its mechanism of action. Inhibitory activity of hydrazones 17 towards TET 1 was measured. The results showed a high affinity of the tested chelators for iron(II). The study clearly showed a significant correlation between the chelator’s affinity for iron(II) ions (represented by the binding constant) and TET 1 protein inhibitory activity (represented by IC50 values).  相似文献   

8.
9.
The identification and validation of the targets of active compounds identified in cell-based assays is an important step in preclinical drug development. New analytical approaches that combine drug affinity pull-down assays with mass spectrometry (MS) could lead to the identification of new targets and druggable pathways. In this work, we investigate a drug-target system consisting of ampicillin- and penicillin-binding proteins (PBPs) to evaluate and compare different amino-reactive resins for the immobilization of the affinity compound and mass spectrometric methods to identify proteins from drug affinity pull-down assays. First, ampicillin was immobilized onto various amino-reactive resins, which were compared in the ampicillin-PBP model with respect to their nonspecific binding of proteins from an Escherichia coli membrane extract. Dynal M-270 magnetic beads were chosen to further study the system as a model for capturing and identifying the targets of ampicillin, PBPs that were specifically and covalently bound to the immobilized ampicillin. The PBPs were identified, after in situ digestion of proteins bound to ampicillin directly on the beads, by using either one-dimensional (1-D) or two-dimensional (2-D) liquid chromatography (LC) separation techniques followed by tandem mass spectrometry (MS/MS) analysis. Alternatively, an elution with N-lauroylsarcosine (sarcosyl) from the ampicillin beads followed by in situ digestion and 2-D LC-MS/MS analysis identified proteins potentially interacting noncovalently with the PBPs or the ampicillin. The in situ approach required only little time, resources, and sample for the analysis. The combination of drug affinity pull-down assays with in situ digestion and 2-D LC-MS/MS analysis is a useful tool in obtaining complex information about a primary drug target as well as its protein interactors.  相似文献   

10.
Herein we report the synthesis of symmetrical C-linked and pseudo-symmetrical O-linked disaccharides structurally related to Araf motifs present in the cell wall of MTB. Their activity in a competition-based arabinosyltransferase assay using [14C]-DPA as the glycosyl donor is also presented. In addition, in vitro inhibitory activity for the disaccharides was determined in a colorimetric broth microdilution assay system against MTB H37Ra and Mycobacterium avium.  相似文献   

11.
A stochastic model is proposed to explain one possible underlying mechanism of the postantibiotic effect (PAE). This phenomenon, of continued inhibition of bacterial growth after removal of the antibiotic drug, is of high relevance in the context of optimizing dosing regimens. One clinical implication of long PAE lies in the possibility of increasing intervals between drug administrations. The model describes the dynamics of synthesis, saturation and removal of penicillin binding proteins (PBPs). High fractions of saturated PBPs are in the model associated with a lower growth capacity of bacteria. An analytical solution for the bivariate probability of saturated and unsaturated PBPs is used as a basis to explore optimal antibiotic dosing regimens. Our finding that longer PAEs do not necessarily promote for increased intervals between doses, might help for our understanding of data provided from earlier PAE studies and for the determination of the clinical relevance of PAE in future studies.   相似文献   

12.
Heterogeneous nuclear ribonucleoprotein B1, an RNA binding protein, is overexpressed from the early stage of lung cancers; it is evident even in bronchial dysplasia, a premalignant lesion. We evaluated the proteins bound with hnRNP B1 and found that hnRNP B1 interacted with DNA-dependent protein kinase (DNA-PK) complex, and recombinant hnRNP B1 protein dose-dependently inhibited DNA-PK activity in vitro. To test the effect of hnRNP B1 on DNA repair, we performed comet assay after irradiation, using normal human bronchial epithelial (HBE) cells treated with siRNA for hnRNP A2/B1: reduction of hnRNP B1 treated with siRNA for hnRNP A2/B1 induced faster DNA repair in normal HBE cells. Considering these results, we assume that overexpression of hnRNP B1 occurring in the early stage of carcinogenesis inhibits DNA-PK activity, resulting in subsequent accumulation of erroneous rejoining of DNA double-strand breaks, causing tumor progression.  相似文献   

13.
We report the characterization of the novel human protein MDGA1 encoded by MDGA1 (MAM domain containing glycosylphosphatidylinositol anchor-1) gene, firstly termed as GPIM. MDGA1 has been mapped to 6p21 and it is expressed in human tissues and tumors. The deduced polypeptide consists of 955 amino acids and exhibits structural features found in different types of cell adhesion molecules (CAMs), such as the presence of both immunoglobulin domains and a MAM domain or the capacity to anchor to the cell membrane by a GPI (glycosylphosphatidylinositol) motif. Our results demonstrate that human MDGA1 (hMDGA1) is localized in the membrane of eukaryotic cells. The protein follows the secretion pathway and finally it is retained in the cell membrane by a GPI anchor, susceptible to be cleavaged by phospholipase C (PI-PLC). Moreover, our results reveal that hMDGA1 is localized specifically into membrane microdomains known as lipid rafts. Finally, as other proteins of the secretory pathway, hMDGA1 undergoes other post-translational modification consisting of N-glycosylation.  相似文献   

14.
The glycosyl transferase of the Escherichia coli bifunctional penicillin-binding protein (PBP) 1b catalyzes the assembly of lipid-transported N-acetylglucosaminyl-beta-1,4-N-acetylmuramoyl-L-Ala-gamma-D-Glu-meso-A2pm-D-Ala-D-Ala units (lipid II) into linear peptidoglycan chains. These units are linked, at C1 of N-acetylmuramic acid (MurNAc), to a C55 undecaprenyl pyrophosphate. In an in vitro assay, lipid II functions both as a glycosyl donor and as a glycosyl acceptor substrate. Using substrate analogues, it is suggested that the specificity of the enzyme for the glycosyl donor substrate differs from that for the acceptor. The donor substrate requires the presence of both N-acetylglucosamine (GlcNAc) and MurNAc and a reactive group on C1 of the MurNAc and does not absolutely require the lipid chain which can be replaced by uridine. The enzyme appears to prefer an acceptor substrate containing a polyprenyl pyrophosphate on C1 of the MurNAc sugar. The problem of glycan chain elongation that presumably proceeds by the repetitive addition of disaccharide peptide units at their reducing end is discussed.  相似文献   

15.
N-Fluorenylmethyloxycarbonyl-protected serine and threonine derivatives, carryingO-glycosidically - or -linked peracetylated -d-Galp-(1–3)-d-GalNAcp carbohydrate chains, were prepared. These derivatives are intended for use in solid phase glycopeptide synthesis. Suitably protected mono- and disaccharide thioglycosides were used as carbohydrate intermediates. These were activated by treatment with bromine to give the glycosyl bromides, which were then used in silver triflate-promoted glycosidations ofN-fluorenylmethyloxycarbonyl amino-acid phenacyl esters. Removal of the phenacyl esters with zinc gave the target free acids.  相似文献   

16.
Inhibition of the nonmevalonate pathway (NMP) of isoprene biosynthesis has been examined as a source of new antibiotics with novel mechanisms of action. Dxr is the best studied of the NMP enzymes and several reports have described potent Dxr inhibitors. Many of these compounds are structurally related to natural products fosmidomycin and FR900098, each bearing retrohydroxamate and phosphonate groups. We synthesized a series of compounds with two to five methylene units separating these groups to examine what linker length was optimal and tested for inhibition against Mtb Dxr. We synthesized ethyl and pivaloyl esters of these compounds to increase lipophilicity and improve inhibition of Mtb growth. Our results show that propyl or propenyl linker chains are optimal. Propenyl analog 22 has an IC50 of 1.07 μM against Mtb Dxr. The pivaloyl ester of 22, compound 26, has an MIC of 9.4 μg/mL, representing a significant improvement in antitubercular potency in this class of compounds.  相似文献   

17.
Three series of indeno[1,2-c]isoquinolines bearing a ferrocenyl entity were synthesized and evaluated for DNA interaction, topoisomerase I and II inhibition, and cytotoxicity against breast human cancer cell lines. In the first and second series, the ferrocenyl scaffold was inserted as a linker between the two nitrogen atoms. In the last series, it was introduced at the end of the carbon chain. The present study showed that the ferrocenyl entity enhanced the topoisomerase II inhibition. Most compounds showed a potent growth inhibitory effect on MDA-MB-231 cell line with the IC50 in μM range.  相似文献   

18.
19.
The C1b domain of protein kinase Cδ (PKCδ), a potent receptor for ligands such as diacylglycerol and phorbol esters, was synthesized by utilizing native chemical ligation. With this synthetic strategy, the domain was efficiently constructed and shown to have high affinity ligand binding and correct folding. The C1b domain has been utilized for the development of novel ligands for the control of phosphorylation by PKC family members. This strategy will pave the way for the efficient construction of C1b domains modified with fluorescent dyes, biotin, etc. Copyright © 2009 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

20.
Abstract Low-affinity penicillin binding proteins are particular membrane proteins, in several Gram-positive bacteria, which are involved in β-lactam antibiotic resistance. The structural gene for the low-affinity penicillin binding protein 5 (PBP5) of Enterococcus faecalis was cloned and sequenced. From the sequence of the 3378 bp, a 2040 bp coding region was identified. From biochemical analysis it emerges that E. faecalis PBP5 is a type II membrane protein with an uncleaved N-terminal and is composed of 679 amino acids with a molecular weight of 74055. This protein showed 48 and 33% of identity with Enterococcus hirae PBP5 and Staphylococcus aureus PBP2a, both low-affinity PBPs involved in β-lactam resistance. Anti-PBP5 antibodies cross-reacted with a membrane protein present in other species of enterococci, but the entire gene fragment cloned hybridized only with DNAs of E. faecalis strains, thus suggesting that genes coding for low-affinity PBPs of enterococci are not stictly homologous. In this experiment digoxigenin-labelled E. faecalis DNA was used.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号