首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
By means of a simulation model we are showing that the rates of migration can be related to avoidance of competition between relatives, especially in clonal organisms. This could result in a strong selective pressure for migration, even at a high cost. In addition, if the habitat is fragmented, migration can strongly affect local dynamics and result in a dramatic decrease of the densities in some places. In parthenogenetically reproducing organisms like aphids, the level of relatedness in local populations is expected to be very high and therefore they can serve as a good model group for testing these hypotheses. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

2.
In insect parasitoids, mating strategy depends on mate availability and is influenced by the spatial and temporal emergence patterns of adults. For quasi-gregarious species, simultaneous emergence favors local mating and reduces search costs for partners while increasing the risk of inbreeding, particularly when only one female parasitizes the initial host patch. Consequently, in inbreeding sensitive species, mating on the place of adult emergence (patch mating) between siblings should be counter selected. In practice, the timing of male and female emergence and of their dispersal influences mate availability and can limit on patch mating. To test the role of these two factors, we analyzed the daily distribution of emergence and patch residence time of a cohort in the aphid parasitoid Aphidius matricariae (Hymenoptera: Braconidae). We observed that adult emergence is concentrated on the morning with males emerging on average before females with some overlaps. A more precise evaluation of emergence pattern within a brood suggests that brothers and sisters rarely emerge at the same time and rapid dispersal of males and females favors off-patch mating. The relationships between timing of emergence including differences between sex and consequences on inbreeding probability in these species are thus discussed.  相似文献   

3.
Explaining the evolution of cooperation remains one of the greatest problems for both biology and social science. The classical theories of cooperation suggest that cooperation equilibrium or evolutionary stable strategy between partners can be maintained through genetic similarity or reciprocity relatedness. These classical theories are based on an assumption that partners interact symmetrically with equal payoffs in a game of cooperation interaction. However, the payoff between partners is usually not equal and therefore they often interact asymmetrically in real cooperative systems. With the Hawk-Dove model, we find that the probability of cooperation between cooperative partners will depend closely on the payoff ratio. The higher the payoff ratio between recipients and cooperative actors, the greater will be the probability of cooperation interaction between involved partners. The greatest probability of conflict between cooperative partners will occur when the payoff between partners is equal. The results show that this asymmetric relationship is one of the key dynamics of the evolution of cooperation, and that pure cooperation strategy (i.e., Nash equilibrium) does not exist in asymmetrical cooperation systems, which well explains the direct conflict observed in almost all of the well documented cooperation systems. The model developed here shows that the cost-to-benefit ratio of cooperation is also negatively correlated with the probability of cooperation interaction. A smaller cost-to-benefit ratio of cooperation might be created by the limited dispersal ability or exit cost of the partners involved, and it will make the punishment of the non-cooperative individuals by the recipient more credible, and therefore make it more possible to maintain stable cooperation interaction.  相似文献   

4.
A game model is developed of the daily schedule of matesearching activity by male butterflies, assuming that each male maximizes his expected mating success given a limited total time for mate search. The model predicts that (1) in the early morning, no male is active even though many females are emerging; (2) at a critical time, many males suddenly become active; and (3) the male's maximum activity occurs after the peak female emergence and before the peak capture efficiency. The inverse problem is also analyzed, in which the temporal pattern of capture efficiency is estimated from the knowledge of male activity and female emergence, assuming the evolutionarily stable strategy (ESS) condition. The model is then applied to data from a cabbage white butterfly (Pieris rapae crucivora) population and predicts that (1) females remain unmated for several hours on average after emergence, and (2) the male 's capture efficiency is rather low and increases significantly with time during the morning.  相似文献   

5.
Diversification rates and evolutionary trajectories are known to be influenced by phenotypic traits and the geographic history of the landscapes that organisms inhabit. One of the most conspicuous traits in butterflies is their wing color pattern, which has been shown to be important in speciation. The evolution of many taxa in the Neotropics has also been influenced by major geological events. Using a dated, species‐level molecular phylogenetic hypothesis for Preponini, a colorful Neotropical butterfly tribe, we evaluated whether diversification rates were constant or varied through time, and how they were influenced by color pattern evolution and biogeographical events. We found that Preponini originated approximately 28 million years ago and that diversification has increased through time consistent with major periods of Andean uplift. Even though some clades show evolutionarily rapid transitions in coloration, contrary to our expectations, these shifts were not correlated with shifts in diversification. Involvement in mimicry with other butterfly groups might explain the rapid changes in dorsal color patterns in this tribe, but such changes have not increased species diversification in this group. However, we found evidence for an influence of major Miocene and Pliocene geological events on the tribe''s evolution. Preponini apparently originated within South America, and range evolution has since been dynamic, congruent with Andean geologic activity, closure of the Panama Isthmus, and Miocene climate variability.  相似文献   

6.
7.
Parental care is of fundamental importance to understanding reproductive strategies and allocation decisions. Here, we explore how parental care strategies evolve in variable environments. Using a set of life-history trait trade-offs, we explore the relative costs and benefits of parental care in stochastic environments. Specifically, we consider the cases in which environmental variability results in varying adult death rates, egg death rates, reproductive rate and carrying capacity. Using a measure of fitness appropriate for stochastic environments, we find that parental care has the potential to evolve over a wide range of life-history characteristics when the environment is variable. A variable environment that affects adult or egg death rates can either increase or decrease the fitness of care relative to that in a constant environment, depending on the specific costs of care. Variability that affects carrying capacity or adult reproductive rate has negligible effects on the fitness associated with care. Increasing parental care across different life-history stages can increase fitness gains in variable environments. Costly investment in care is expected to affect the overall fitness benefits, the fitness optimum and rate of evolution of parental care. In general, we find that environmental variability, the life-history traits affected by such variability and the specific costs of care interact to determine whether care will be favoured in a variable environment and what levels of care will be selected.  相似文献   

8.
Correlated evolution of male and female morphologles in water striders   总被引:5,自引:0,他引:5  
Sexually antagonistic coevolution may be an important force in the evolution of sexual dimorphism. We undertake a comparative study of correlated evolution of male and female morphologies in a clade of 15 water strider species in the genus Gerris (Heteroptera: Gerridae). Earlier studies have shown that superfluous matings impose costs on females, including increased energetic expenditure and predation risk, and females therefore resist males with premating struggles. Males of some species possess grasping structures and females of some species exhibit distinct antigrasping structures, which are used to further the interests of each sex during these premating struggles. We use this understanding, combined with coevolutionary theory, to derive a series of a priori predictions concerning both the types of traits in the two sexes that are expected to coevolve and the coevolutionary dynamics of these traits expected under sexually antagonistic coevolution. We then assess the actual pattern of correlated evolution in this clade with new morphometric methods combined with standard comparative techniques. The results were in agreement with the a priori predictions. The level of armament (different abdominal structures in the two sexes) was closely correlated between the sexes across species. Males are well adapted to grasping females in species in which females are well adapted to thwart harassing males and vice versa. Furthermore, our comparative analyses supports the prediction that correlated evolution of armament in the two sexes should be both rapid and bidirectional.  相似文献   

9.
This paper is written in memory of John Maynard Smith. In a brief survey it discusses essential aspects of how game theory in biology relates to its counterpart in economics, the major transition in game theory initiated by Maynard Smith, the discrepancies between genetic and phenotypic models in evolutionary biology, and a balanced way of reconciling these models. In addition, the paper discusses modern problems in understanding games at the genetic level using the examples of conflict between endosymbionts and their hosts, and the molecular interactions between parasites and the mammalian immune system.  相似文献   

10.
Eurasian penduline tits (Remiz pendulinus) have an unusually diverse breeding system consisting of frequent male and female polygamy, and uniparental care by the male or the female. Intriguingly, 30 to 40 per cent of all nests are deserted by both parents. To understand the evolution of this diverse breeding system and frequent clutch desertion, we use 6 years of field data to derive fitness expectations for males and females depending on whether or not they care for their offspring. The resulting payoff matrix corresponds to an asymmetric Snowdrift Game with two alternative evolutionarily stable strategies (ESSs): female-only and male-only care. This, however, does not explain the polymorphism in care strategies and frequent biparental desertion, because theory predicts that one of the two ESSs should have spread to fixation. Using a bootstrapping approach, we demonstrate that taking account of individual variation in payoffs explains the patterns of care better than a model based on the average population payoff matrix. In particular, a model incorporating differences in male attractiveness closely predicts the observed frequencies of male and female desertion. Our work highlights the need for a new generation of individual-based evolutionary game-theoretic models.  相似文献   

11.
Recent developments of the theory of stochastic matrix modeling have made it possible to estimate general properties of age- and size-structured populations in fluctuating environments. However, applications of the theory to natural populations are still few. The empirical studies which have used stochastic matrix models are reviewed here to examine whether predictions made by the theory can be generally found in wild populations. The organisms studied include terrestrial grasses and herbs, a seaweed, a fish, a reptile, a deer and some marine invertebrates. In all the studies, the stochastic population growth rate (ln λ s ) was no greater than the deterministic population growth rate determined using average vital rates, suggesting that the model based only on average vital rates may overestimate growth rates of populations in fluctuating environments. Factors affecting ln λ s include the magnitude of variation in vital rates, probability distribution of random environments, fluctuation in different types of vital rates, covariances between vital rates, and autocorrelation between successive environments. However, comprehensive rules were hardly found through the comparisons of the empirical studies. Based on shortcomings of previous studies, I address some important subjects which should be examined in future studies.  相似文献   

12.
Mate choice in the face of costly competition   总被引:6,自引:2,他引:6  
Studies of mate choice commonly ignore variation in preferencesand assume that all individuals should favor the highest-qualitymate available. However, individuals may differ in their matepreferences according to their own age, experience, size, orgenotype. In the present study, we highlight another simplereason why preferences may differ: if there is costly competitionfor mates, the poorest competitors might be better off avoidingthe highest-quality partners and instead targeting low-qualitypartners, so that they minimize the costs they incur. We presenta game-theoretical model of mate choice in which males of differingquality compete for access to females and try to retain themtill the time of mating. Our model predicts that high-qualitymales, who are better competitors, have a preference for thebest females that is typically several times stronger than thatof low-quality males. Early in the competitive period, the lattermay even prefer low-quality females over high-quality females.Thus, variation in competitive ability generates variation inboth the strength and direction of preferences. Differencesin competitive ability result in assortative mating with respectto quality, which is reinforced by variation in preferences.As the time of mating draws near and there is an increased riskof ending up unpaired, all males become indifferent to the qualityof potential mates. Our findings are equally applicable to femalechoice for males, and offer a new explanation for adaptive variationin mating preferences based on differing abilities to cope withthe costs of mate choice.  相似文献   

13.
Based on a population genetic model of mixed strategies determined by alleles of small effect, we derive conditions for the evolution of social learning in an infinite-state environment that changes periodically over time. Each mixed strategy is defined by the probabilities that an organism will commit itself to individual learning, social learning, or innate behavior. We identify the convergent stable strategies (CSS) by a numerical adaptive dynamics method and then check the evolutionary stability (ESS) of these strategies. A strategy that is simultaneously a CSS and an ESS is called an attractive ESS (AESS). For certain parameter sets, a bifurcation diagram shows that the pure individual learning strategy is the unique AESS for short periods of environmental change, a mixed learning strategy is the unique AESS for intermediate periods, and a mixed learning strategy (with a relatively large social learning component) and the pure innate strategy are both AESS's for long periods. This result entails that, once social learning emerges during a transient era of intermediate environmental periodicity, a subsequent elongation of the period may result in the intensification of social learning, rather than a return to innate behavior.  相似文献   

14.
Changes in resource availability often cause competitively driven changes in tree allocation to foliage, wood, and fine roots, either via plastic changes within individuals or through turnover of individuals with differing strategies. Here, we investigate how optimally competitive tree allocation should change in response to elevated atmospheric CO2 along a gradient of nitrogen and light availability, together with how those changes should affect carbon storage in living biomass. We present a physiologically‐based forest model that includes the primary functions of wood and nitrogen. From a tree's perspective, wood is an offensive and defensive weapon used against neighbors in competition for light. From a biogeochemical perspective, wood is the primary living reservoir of stored carbon. Nitrogen constitutes a tree's photosynthetic machinery and the support systems for that machinery, and its limited availability thus reduces a tree's ability to fix carbon. This model has been previously successful in predicting allocation to foliage, wood, and fine roots along natural productivity gradients. Using game theory, we solve the model for competitively optimal foliage, wood, and fine root allocation strategies for trees in competition for nitrogen and light as a function of CO2 and nitrogen mineralization rate. Instead of down‐regulating under nitrogen limitation, carbon storage under elevated CO2 relative to carbon storage at ambient CO2 is approximately independent of the nitrogen mineralization rate. This surprising prediction is a consequence of both increased competition for nitrogen driving increased fine root biomass and increased competition for light driving increased allocation to wood under elevated CO2.  相似文献   

15.
Many organisms survive unfavourable seasons as resting stages, some of which hatch each favourable season. Hatching fraction and timing of resting stage production are important life history variables. We model life cycles of freshwater invertebrates in temporary pools, with various combinations of uncertain season length and density‐dependent fecundity. In deterministic density‐independent conditions, resting stage production begins suddenly. With uncertain season length and density independence, resting stage production begins earlier and gradually. A high energetic cost of resting stages favours later resting stage production and a lower hatching fraction. Deterministic environments with density dependence allow sets of coexisting strategies, dominated by pairs, each switching suddenly to resting stage production on a different date, usually earlier than without density dependence. Uncertain season length and density dependence allow a single evolutionarily stable strategy, around which we observe many mixed strategies with negatively associated yield (resting stages per initial active stage) and optimal hatching fraction.  相似文献   

16.
Summary We analyse mathematical models of the evolution of a trait that determines ability in contest competition. We assume that the value of the competitive trait affects two different components of fitness, one measuring the benefit of winning contests and the other measuring the cost of developing the competitive trait. Unlike previous analyses, we include the population dynamical consequences of larger competitive trait values. Exaggeration of the competitive trait reduces the mean probability of survival during the non-competitive stage of the life cycle. The resulting lower population density reduces competition and, therefore, reduces the advantages of greater competitive ability. Models without population dynamics often predict dimorphism in the competitive trait when resource possession is decided by interactions with many other individuals. If the competition involves a contest with a single other individual, models without population dynamics often predict cycles of increase and collapse in the trait or a continual increase, possibly resulting in extinction. When population dynamics are included, both of these results become less likely and a single stable trait value becomes more likely. Population dynamics also make it possible to have dimorphism when individuals have a single pairwise contest and alternative stable trait values when an individual has many contests. Increases in the value of the resource being contested may increase or decrease the evolutionarily stable size of the trait. Competition between very differently sized species will often decrease size in the larger species (character convergence).  相似文献   

17.
Genetic assimilation emerges from selection on phenotypic plasticity. Yet, commonly used quantitative genetics models of linear reaction norms considering intercept and slope as traits do not mimic the full process of genetic assimilation. We argue that intercept–slope reaction norm models are insufficient representations of genetic effects on linear reaction norms and that considering reaction norm intercept as a trait is unfortunate because the definition of this trait relates to a specific environmental value (zero) and confounds genetic effects on reaction norm elevation with genetic effects on environmental perception. Instead, we suggest a model with three traits representing genetic effects that, respectively, (i) are independent of the environment, (ii) alter the sensitivity of the phenotype to the environment and (iii) determine how the organism perceives the environment. The model predicts that, given sufficient additive genetic variation in environmental perception, the environmental value at which reaction norms tend to cross will respond rapidly to selection after an abrupt environmental change, and eventually becomes equal to the new mean environment. This readjustment of the zone of canalization becomes completed without changes in genetic correlations, genetic drift or imposing any fitness costs of maintaining plasticity. The asymptotic evolutionary outcome of this three‐trait linear reaction norm generally entails a lower degree of phenotypic plasticity than the two‐trait model, and maximum expected fitness does not occur at the mean trait values in the population.  相似文献   

18.
In mixed or 'bet-hedging' strategies, offspring phenotypes are taken randomly from a distribution determined by the genotype and shaped by evolution. Offspring of a single parent represent a finite sample from this distribution, and therefore are subject to variability because of sampling. Contrary to a recent article by A.M. Simons (2007; J. Evol. Biol.20: 813-817), I show that selection does not favour the production of many offspring just to reduce sampling variability when such mixed strategies are used in large populations.  相似文献   

19.
Observations on emergence pattern of parasitoidApanteles angaleti Muesebeck and its 2 hosts, cotton pink bollwormPectinophora gossypiella (Saunders) and saprophyteSathrobrota simplex Wlsm. were made during 1980–81 to 1983–84. The adult emergence of parasitoidA. angaleti and non-pestS. simplex was similar and completed by end April. ParasitoidA. angaleti overwintered mostly in the larvae of non-pestS. simplex and not in pink bollworm larvaeP. gossypiella. The early breeding activity ofS. simplex in the rotten bolls in the cotton stacks helped in the carryover and initial build-up ofA. angaleti to the main crop season. The initiation and peak moth emergence in pink bollworm varied with different sources of its carryover but all adults emerged until end August.  相似文献   

20.
以1980、2005和2010年鄱阳湖地区的土地覆盖数据为基础,采用GIS、RS及景观生态学的方法,分析1980-2010年该区土地覆盖及景观格局变化情况,并定量分析了土地覆盖类型变化度、斑块面积指数、斑块形状指数、边缘密度指数以及多样性指数等指标.结果表明:1980-2010年,研究区水田、内陆水体、常绿阔叶林和城镇建设用地不仅是该区域的主要土地覆盖类型,而且变化最强烈.总体上,内陆水体、城镇建设用地面积显著增加,水田和旱地面积有所减少.从景观格局变化来看,虽然鄱阳湖地区受到人口增长和经济发展的影响,其景观破碎度变化和景观多样性指数略呈下降趋势,但变化并不大,这反映出前期环境管理对于区域环境保护已经发挥重要作用,但仍然面临长期挑战.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号