首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two strains of a basidiomycetous yeast were derived from an insect trypanosomatid culture isolated from the intestine of a plant bug, Collaria oleosa (Heteroptera: Miridae), collected in Costa Rica. The yeast did not form ballistoconidia but reproduced only by budding. Teliospores were not observed in individual and crossed cultures of each strain. Morphological and other taxonomic characteristics of the yeast were similar to those of the species in the polyphyletic genus Rhodotorula. However, molecular phylogeny inferred from the internal transcribed spacers and D1/D2 region of the large subunit rRNA gene showed that the strains represent a new species placed among the smut fungi in the family Ustilentylomataceae, which includes Aurantiosporium subnitens, Fulvisporium restifaciens, Ustilentyloma fluitans, and Rhodotorula hordea. Given the well distinguished phylogenetic position of this novel species within the Ustilentylomataceae, we propose Microbotryozyma collariae gen. nov., sp. nov. to accommodate the yeast isolated from C. oleosa, with strain American Type Culture Collection MYA-4666T (= PRA303-1S = CBS 12537) designated as the type strain.  相似文献   

2.
On the basis of molecular phylogeny, it is clear that the fungi treated as Amanita pantherina in Japan are confused, i.e., A. pantherina and a misidentified species. As for morphology, the misidentified species differs from A. pantherina by having clamp connections on hyphae and basidia, a larger-sized fruitbody, ascending volval rings of stipe base and deciduous annulus. It is clear that the misidentified species is a poisonous fungus containing ibotenic acid and muscimol and causes the Pantherina syndrome. On these characters, it is concluded that the misidentified species is the unexplored Amanita species treated under the Japanese name ‘ibotengutake’ after which ibotenic acid was named. Here, we described it as a new species Amanita ibotengutake.  相似文献   

3.
A red-pigmented, Gram-negative, strictly aerobic, rod-shaped bacterium which was motile by gliding, designated strain 1351T, was isolated from the soil of Lengduo, Tibet in China and subjected to a polyphasic taxonomic analysis. The isolate grows optimally at 30°C and pH 7. It grows with NaCl tolerated up to 1.5% (optimum, 0.5%). Phylogenetic analysis based on the 16S rRNA gene sequence shows that strain 1351T is closely related to members of the family ‘Cytophagaceae’ closest sequence similarity was observed with similarity with Adhaeribacter terreus (91.8%). The major whole-cell fatty acids are summed feature 4 (containing anteiso-C17:1 B and/or iso-C17:1 I, 29.2%), summed feature 3 (containing C16:1ω6c and/or C16:1ω7c, 13.0%) and iso-C15:0 (12.0%). The predominant menaquinone of strain 1351T is menaquinone-7 (MK-7) and the G+C content of the DNA is 46.8 mol%. According to the phylogenetic evidence and phenotypic data, strain 1351T is considered to represent a new genus and species of the family ‘Cytophagaceae’ for which the name Rufibacter tibetensis gen nov., sp. nov. is proposed. The type species is R. tibetensis and the type strain is 1351T (=CCTCC AB 208084T = NRRL B-51285T).  相似文献   

4.
A new nonmotile purple sulfur bacterium (strain M9) was isolated from the steppe soda lake Lake Dzun Uldziin Nur (pH 9.4; mineralization, 3.3%) situated in southeastern Mongolia. Individual cells appear as vibrios 0.3–0.5 × 0.7–1 m in size. The dividing cells often do not separate from each other, forming an almost closed ring. The internal photosynthetic membranes are represented by concentric lamellae lining the cell wall. Photosynthetic pigments are bacteriochlorophyll a and carotenoids of the spirilloxanthin series. The main carotenoid (>96%) is spirilloxanthin. Two typical light-harvesting complexes (LH1 and LH2) are present in the membranes in a 1 : 1 ratio. The bacterium is an anaerobe and facultative photoorganoheterotroph. Photolithoautotrophic growth on sulfide is scarce. Thiosulfate is utilized as an electron donor only in the presence of organic matter. Globules of elemental sulfur are formed as an intermediary product of sulfide and thiosulfate oxidation and are deposited outside the cells. The end product of oxidation is sulfate. In the presence of sulfide and carbonates, acetate, lactate, malate, pyruvate, propionate, succinate, and fumarate are used as additional sources of carbon in anoxygenic photosynthesis. Vitamins are not required. The bacterium is an alkaliphile, the pH optimum is at 8.3–9.1, the pH range is 7.6–10.1. The optimum NaCl concentration in the medium is 1 to 7%; the range is 0.5 to 0.9%. The optimum carbonate content in the medium is 2%; the range is 1 to 10%. The best growth occurs at 30–35°C. The DNA G+C content is 57.5 mol %. According to the results of analysis of the 16S rRNA gene sequences, the new isolate M9 belongs to the phylogenetic cluster containing representatives of the family Ectothiorhodospiraceae within the class Gammaproteobacteria. In this class, the new isolate forms a new branch, which occupies an intermediate position between the representatives of the genera Ectothiorhodospira and Thiorhodospira. Based on the phenotypic and genetic characteristics, the new purple sulfur bacterium was assigned to a new species of a new genus of the family Ectothiorhodospiraceae, Ectothiorhodosinus mongolicum gen. nov., sp. nov.  相似文献   

5.
From an uranium mine three strains of rodshaped, mesophilic, chemolithoautotrophic bacteria were isolated. They grow by oxidation of H2S, galena (PbS) and H2. Anglesite (PbSO4) is formed from galena. No ferrous iron is oxidized by the isolates. They grow between pH 4 and 6.5 at temperatures of about 9 to 41°C (optimum around 27°C). The G+C content of the DNA is around 66 mol %. Based on their ability to oxidize sulfur compounds, the new organisms belong to the genus Thiobacillus. No significant homology with Thiobacillus ferrooxidans and Thiobacillus cuprinus was detected by DNA-DNA hybridization. Therefore the new isolates represent a new species within the genus Thiobacillus. Based on the unusual growth on galena, we name the new species Thiobacillus plumbophilus (type strain Gro 7; DSM 6690).  相似文献   

6.
Two novel genera of restricted facultative methylotrophs are described; both Methylosulfonomonas and Marinosulfonomonas are unique in being able to grow on methanesulfonic acid as their sole source of carbon and energy. Five identical strains of Methylosulfonomonas were isolated from diverse soil samples in England and were shown to differ in their morphology, physiology, DNA base composition, molecular genetics, and 16S rDNA sequences from the two marine strains of Marinosulfonomonas, which were isolated from British coastal waters. The marine strains were almost indistinguishable from each other and are considered to be strains of one species. Type species of each genus have been identified and named Methylosulfonomonas methylovora (strain M2) and Marinosulfonomonas methylotropha (strain PSCH4). Phylogenetic analysis using 16S rDNA sequencing places both genera in the α-Proteobacteria. Methylosulfonomonas is a discrete lineage within the α-2 subgroup and is not related closely to any other known bacterial genus. The Marinosulfonomonas strains form a monophyletic cluster in the α-3 subgroup of the Proteobacteria with Roseobacter spp. and some other partially characterized marine bacteria, but they are distinct from these at the genus level. This work shows that the isolation of bacteria with a unique biochemical character, the ability to grow on methanesulfonic acid as energy and carbon substrate, has resulted in the identification of two novel genera of methylotrophs that are unrelated to any other extant methylotroph genera. Received: 19 July 1996 / Accepted: 7 October 1996  相似文献   

7.
Five strains of sulfate-reducing bacteria were isolated from the highest positive dilutions of a most probable number (MPN) series supplemented with lactate and inoculated with sediments from the oligotrophic Lake Stechlin. The isolates were endospore-forming and were motile by means of laterally inserted flagella. They stained Gram-negative and contained b-type cytochromes. CO difference spectra indicated the presence of P582 as a sulfite reductase. Phylogenetic analyses of the 16S rDNA sequences revealed that the isolates were very closely affiliated with the genus Sporomusa. However, sulfate and amorphous Fe(OH)3, but not sulfite, elemental sulfur, MnO2, or nitrate were used as terminal electron acceptors. Homoacetogenic growth was found with H2/CO2 gas mixture, formate, methanol, ethanol, and methoxylated aromatic compounds. The strains grew autotrophically with H2 plus CO2 in the presence or absence of sulfate. Formate, butyrate, several alcohols, organic acids, carbohydrates, some amino acids, choline, and betaine were also utilized as substrates. The growth yield with lactate and sulfate as substrate was 7.0 g dry mass/mol lactate and thus two times higher than in sulfate-free fermenting cultures. All isolates were able to grow in a temperature range of 4–37°C. Physiologically and by the presence of a Gram-negative cell wall, the new isolates resemble known Desulfosporosinus species. However, phylogenetically they are affiliated with the Gram-negative genus Sporomusa belonging to the Selenomonas subgroup of the Firmicutes. Therefore, the new isolates reveal a new phylogenetic lineage of sulfate-reducing bacteria. A new genus and species, Desulfosporomusa polytropa gen. nov., sp. nov. is proposed.Dedicated to Prof. H. G. Schlegel on the occasion of his 80th birthday.  相似文献   

8.
Two new species and one new variety of Elatostema J. R. Forst. & G. Forst. (Urticaceae) are described from Yunnan and Xizang, China. Habitat details and morphological comparison with similar species are given and discussed. The new taxa proposed are: Elatostema densistriolatum W. T. Wang & Zeng. Y. Wu, E. latistipulum W. T. Wang & Zeng Y. Wu and E. cyrtandrifolium (Zoll. & Mor.) Miq. var. hirsutum W. T. Wang & Zeng Y. Wu.  相似文献   

9.
A new type of gas-vacuolated, sulfate-reducing bacterium was isolated at 10° C from reduced mud (E0 < 0) obtained from a temperate estuary with thiosulfate and lactate as substrates. The strain was moderately psychrophilic with optimum growth at 18–19° C and a maximum growth temperature of 24° C. Propionate, lactate, and alcohols served as electron donors and carbon sources. The organism grew heterotrophically only with hydrogen as electron donor. Propionate and lactate were incompletely oxidized to acetate; traces of lactate were fermented to propionate, CO2, and possibly acetate in the presence of sulfate. Pyruvate was utilized both with and without an electron acceptor present. The strain did not contain desulfoviridin. The G+C content was 48.4 mol%. The differences in the 16S rRNA sequence of the isolate compared with that of its closest phylogenetic neighbors, bacteria of the genus Desulfobulbus, support the assignment of the isolate to a new genus. The isolate is described as the type strain of the new species and genus, Desulforhopalus vacuolatus. Received: 4 March 1996 / Accepted: 17 June 1996  相似文献   

10.
Two motile actinomycete strains, K95–5561T and K95–5562, were isolated from a soil sample collected at Sayama City, Saitama Prefecture, Japan. They produced bell shaped spore vesicles (sporangia) with hairy surfaces on substrate hyphae. When released into water, the sporangiospores became motile by a tuft of polar flagella. The chemotaxonomic and morphological characteristics together with 16S rRNA gene sequence data indicated that the two isolates belonged to the genus Actinoplanes. The two strains were assigned to a single species on the basis of phenotypic, notably cultural, morphological and physiological characteristics, and DNA-DNA pairing data. The two strains were distinguished from representatives of all validly described species of Actinoplanes using a combination of genotypic and phenotypic properties. It is, therefore, proposed that strains K95–5561 and K95–5562 be recognized as a new species of the genus Actinoplanes with the name Actinoplanes capillaceus sp. nov. The type strain of the species is strain K95–5561T (=JCM 10268T =IFO 16408T). The invalidly proposed species `Ampullariella cylindrica', `Ampullariella pekinensis' and `Ampullariella pilifera' were assigned to Actinoplanes capillaceus on the basis of genotypic and phenotypic data.  相似文献   

11.
A new species of halophilic anoxygenic purple bacteria of the genus Rhodospirillum is described. The new organism, isolated from water/sediment of the Dead Sea, was vibrio-shaped and an obligate halophile. Growth was best at 12% NaCl, with only weak growth occurring at 6% or 21% NaCl. Growth occurred at Mg2+ concentrations up to 1 M but optimal growth was obtained at 0.05–0.1 M Mg2+. Bromide was well tolerated as an alternative anion to chloride. The new organism is an obligate phototroph, growing photoheterotrophically in media containing yeast extract and acetate or a few other organic compounds. Growth of the Dead Sea Rhodospirillum species under optimal culture conditions was slow (minimum td 20 h). Cells contained bacteriochlorophyll a and carotenoids of the spirilloxanthin series and mass cultures were pink in color. Absorption spectra revealed the presence of a B875 (light-harvesting I) but no B800/B850 (light-harvesting II) photopigment complex. The new organism shares a number of properties with the previously described halophilic phototrophic bacterium Rhodospirillum salinarum and was shown to be related to this phototroph by 16S rRNA sequencing. However, because of its salinity requirements, photosynthetic properties, and isolation from the Dead Sea, the new phototroph is proposed as a new species of the genus Rhodospirillum, R. sodomense.  相似文献   

12.
In the course of pilot industrial testing of a biohydrometallurgical technology for processing gold-arsenic concentrate obtained from the Nezhdaninskoe ore deposit (East Siberia, Sakha (Yakutiya)), a new gram-positive rod-shaped spore-forming moderately thermophilic bacterium (designated as strain N1) oxidizing Fe2+, S0, and sulfide minerals in the presence of yeast extract (0.02%) was isolated from a dense pulp. Physiologically, strain N1 differs from previously described species of the genus Sulfobacillus in having a somewhat higher optimal growth temperature (55°C). Unlike the type strain of S. thermosulfidooxidans, strain N1 could grow on a medium with 1 mM thiosulfate or sodium tetrathionate as a source of energy only within several passages and failed to grow in the absence of an inorganic energy source on media with sucrose, fructose, glucose, reduced glutathione, alanine, cysteine, sorbitol, sodium acetate, or pyruvate. The G+C content of the DNA of strain N1 was 48.2 mol %. The strain showed 42% homology after DNA–DNA hybridization with the type strain of S. thermosulfidooxidans and 10% homology with the type strain of S. acidophilus. The isolate differed from previously studied strains of S. thermosulfidooxidans in the structure of its chromosomal DNA (determined by the method of pulsed-field gel electrophoresis), which remained stable as growth conditions were changed. According to the results of the 16S rRNA gene analysis, the new strain forms a single cluster with the bacteria of the species Sulfobacillus thermosulfidooxidans (sequence similarity of 97.9–98.6%). Based on these genetic and physiological features, strain N1 is described as a new species Sulfobacillus sibiricus sp. nov.  相似文献   

13.
The new genusBotryozyma with a single species,B. nematodophila is proposed for two isolates from nematodes (Panagrellus zymosiphilus) occurring in grapes with sour-rot. The new genus has typical ascomycetous characteristics and, being unable to produce ascospores, is placed in the family Candidaceae.  相似文献   

14.
Zhu  Wen-Zhuo  Gao  Hui-Min  Ge  Ya-Ming  Dai  Jun  Yang  Xi  Zhang  Xiao-Ling  Yang  Qiao 《Antonie van Leeuwenhoek》2022,115(4):473-486

Two yellow-pigmented bacterial strains, LZ-14 T and ABI-LZ29, were isolated from the cultivable phycosphere microbiota of the highly toxic marine dinoflagellate Alexandrium catenella LZT09 and demonstrated obvious microalgae growth-promoting potentials toward the algal host. To elucidate the taxonomic status of the two bioactive bacterial strains, they were subjected to a polyphasic taxonomic characterization. Both strains were found to be Gram-negative, aerobic, rod-shaped and motile; to contain Q-10 as the predominant ubiquinone; summed feature 8, C16:0, C18:1 ω7c 11-methyl and summed feature 3 as the major fatty acids; and diphosphatidylglycerol, phosphatidylcholine, phosphatidylethanolamine, phosphatidylglycerol and two unidentified phospholipids as the predominant polar lipids. Based on the phylogenetic analysis, phylogenomic inferences and phenotypic characteristics, the strains could be clearly distinguished from phylogenetically closely related species and formed a distinct monophyletic lineage in the family Rhodobacteraceae. The size of the draft genome of strain LZ-14 T is 4.615 Mb, with a DNA G?+?C content of 63.3 mol%. It contains ten predicted secondary metabolite biosynthetic gene clusters and core genes for bacterial exopolysaccharide biosynthesis. Therefore, strain LZ-14 T (= CCTCC AB 2017230 T?=?KCTC 62342 T) represents a novel species of a new genus, for which the name Alexandriicola marinus gen. nov., sp. nov., is proposed.

  相似文献   

15.
A new phototrophic sulfur bacterium has been isolated from a red layer in a laminated mat occurring underneath a gypsum crust in the mediterranean salterns of Salin-de-Giraud (Camargue, France). Single cells were coccus-shaped, non motile, without gas vacuoles and contained sulfur globules. Bacteriochlorophyll a and okenone were present as major photosynthetic pigments. These properties and the G+C content of DNA (65.9–66.6 mol% G+C) are typical characteristics of the genus Thiocapsa. However, the new isolate differs from known species in the genus, particularly in NaCl requirement (optimum, 7% NaCl; range, 3–20% NaCl) and some physiological characteristics. Therefore, a new species is proposed, Thiocapsa halophila, sp. nov.Dedicated to Prof. Dr. Norbert Pfennig in occasion of his 65th birthday  相似文献   

16.
Three novel Gram-positive, endospore-forming bacteria were isolated from a cold and alkaline environment. Phylogenetic analysis showed that the strains were almost identical, and that they were related to Natronobacillus azotifigens 24KS-1T (95.8% identity), Paraliobacillus quinghaiensis YIM-C158T (95.1%), Paraliobacillus ryukyuensis O15-7T (94.5%), and Halolactibacillus miurensis M23-1T (93.9%). The isolates produced amylase, α-galactosidase, β-galactosidase, and β-glucuronidase, and showed optimal growth at pH 10, at 20°C, and at 2–8% (w/v) NaCl. Major fatty acids were C14:0 (10.6–11.6%), anteiso-C15:0 (25.7–32.7%), C16:1 ω11c (12.2–16.0%), and C16:0 (14.0–20.4%). The major polar lipids were diphosphatidylglycerol and phosphatidylglycerol, and meso-diaminopimelic acid was found in the cell-wall peptidoglycan. The G+C content was 38.4%. DNA–DNA hybridization between strain GCM68T and H. miurensis M23-1T was 32.4%, while hybridization to N. azotifigens 24KS-1T, Amphibacillus tropicus Z-7792T, and Paraliobacillus ryukyuensis O15-7T was below 30%. The phylogenetic analysis and G+C content place strain GCM68T in relation to species belonging to Bacillus rRNA group 1, but phylogenetic and physiologic data combined with chemotaxonomic analyses support our proposal for a new genus, Alkalilactibacillus, gen. nov., with the novel species Alkalilactibacillus ikkensis, sp. nov. (type strain is GCM68T = DSM 19937 = LMG 24405).  相似文献   

17.
18.
19.
Nervilia pangteyana J. S. Jalal, Kumar & G. S. Rawat (Orchidaceae), a new species from western Himalaya (Uttarakhand), India is described, illustrated and compared with its closest relative. In addition, a key is given to distinguish between species of Nervilia in the western Himalayas.  相似文献   

20.
Mesophilic, moderately halophilic bacteria were isolated from a silica-rich geothermal lake, the Blue Lagoon in Iceland. The isolates are strictly aerobic, but reduce nitrate to nitrite, and are oxidase- and catalase-positive. The nonsporeforming and nonmotile Gram negative rods are 0.6–0.8 μm in diameter and variable in length (9–18 μm), and contain gas vacuoles. The GC content in their DNA is 66.15%. The minimum, optimum, and maximum temperatures for growth are 22°C, 45°:C, and 50°C, respectively. The isolates do not grow without added salt in the medium and can grow at up to 7% NaCl (w/v). The optimal salinity for growth is 3.5%–4% NaCl. The pH range for growth is 6.5–8.5, with the optimal pH at 7.0. At optimal conditions the bacterium has a doubling time of 80 min. The main cytochrome is a membrane-bound cytochrome c with an α-peak at 549 nm. Sequencing of 16S rRNA from the type strain ITI-1157 revealed it to be a proteobacterium of the α-subclass with the closest relatives being Roseobacter litoralis and Paracoccus kocurii. The new isolates do not contain bacteriochlorophyll a and are considered to represent a new genus and a new species, Silicibacter lacuscaerulensis. Received: September 17, 1996 / Accepted: December 10, 1996  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号