首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary In European woodmice the amount and intensity of daily activity was compared to oxygen uptake and to the potential for oxidative metabolism of heart and skeletal muscle. One group of animals was inactivated by exposition to light during night time; another group of animals was trained by enforced running on a treadmill. The oxidative potential of the muscle tissue was assessed by morphometry of capillaries and mitochondria. A novel sampling technique was used which allowed us to obtain morphological data related to single muscles, to muscle groups, and finally to whole body muscle mass.Reducing the spontaneous activity by ten fold had no effect on oxygen uptake nor on capillaries or mitochondria in locomotory muscles. Mitochondrial volume was reduced, however, in heart and diaphragm. Enforced running increased the weight specific maximal oxygen uptake significantly. It also increased the mitochondrial volume in heart and diaphragm as well as in M. tibialis anterior. Capillary densities were neither affected by training nor by inactivation. A significant correlation was found between the capillary density and the volume density of mitochondria in all muscles analysed morphometrically. For the whole skeletal muscle mass of a European woodmouse the inner mitochondrial membranes were estimated to cover 30 m2. The oxygen consumption per unit time and per unit volume of muscle mitochondrion was found to be identical in all groups of animals (4.9 ml O2 min–1 cm–3).Symbols S v (im,m) surface area of inner mitochondrial membranes per unit mitochondrial volume - V v (mt, f) volume density of mitochondria (mitochondrial volume per fiber volume) - V (mt) total mitochondrial volume - V (f) muscle volume - N A (c, f) capillary density - (f) mean fiber cross-sectional area  相似文献   

2.
Bar-headed geese migrate over the Himalayas at up to 9000 m elevation, but it is unclear how they sustain the high metabolic rates needed for flight in the severe hypoxia at these altitudes. To better understand the basis for this physiological feat, we compared the flight muscle phenotype of bar-headed geese with that of low altitude birds (barnacle geese, pink-footed geese, greylag geese and mallard ducks). Bar-headed goose muscle had a higher proportion of oxidative fibres. This increased muscle aerobic capacity, because the mitochondrial volume densities of each fibre type were similar between species. However, bar-headed geese had more capillaries per muscle fibre than expected from this increase in aerobic capacity, as well as higher capillary densities and more homogeneous capillary spacing. Their mitochondria were also redistributed towards the subsarcolemma (cell membrane) and adjacent to capillaries. These alterations should improve O2 diffusion capacity from the blood and reduce intracellular O2 diffusion distances, respectively. The unique differences in bar-headed geese were much greater than the minor variation between low altitude species and existed without prior exercise or hypoxia exposure, and the correlation of these traits to flight altitude was independent of phylogeny. In contrast, isolated mitochondria had similar respiratory capacities, O2 kinetics and phosphorylation efficiencies across species. Bar-headed geese have therefore evolved for exercise in hypoxia by enhancing the O2 supply to flight muscle.  相似文献   

3.
The vascular supply of red, intermediate and white fibres in the axial muscle of axolotl (Ambystoma mexicanum Shaw) was visualized with Indian ink-injections and quantified with morphometrical methods on semithin sections. Red fibres were surrounded by 1.4 ± 0.6 capillaries (mean + SD), the intermediate fibres by 1.2 ± 0.9 capillaries and white fibres by 0.3 ± 0.6 capillaries. The mean vascularized surface area per unit volume of fibre was 0.0159, and 0.0068 and 0.0007 (μm2/μm3) for red, intermediate and white fibres, respectively. A unit volume of mitochondria within each type of fibre was supplied by 0.15, 0.17 and 0.08 μm2 vascularized surface for red, intermediate and white fibres, respectively. This indicates that there exist a good balance between oxygen demand represented by mitochondrial content and oxygen supply represented by the vascularized surface.  相似文献   

4.
Summary The white and red regions of the iliofibularis muscle of the lizard Dipsosaurus dorsalis were analyzed using histologic and morphometric analysis. These regions are composed of fast glycolytic (FG) and both fast oxidative, glycolytic (FOG) and tonic fibers, respectively. Endplate morphology and number of endplates per fiber were estimated from fibers from both areas. Capillary volume densities of the red and white regions were quantified from transverse sections. Mitochondrial volume of fibers from the red and white regions were estimated from electron micrographs.All fibers from the white region of the iliofibularis possessed a single, well defined endplate, as did most red region fibers. The remaining red fibers (28±5%) possessed an average of 14.7±3 endplates each, distributed along the entire length of the fiber at intervals of approximately 1124 m.Red fibers possessed twice the mitochondrial volume of white fibers (7.6±0.4%, red; 3.8±0.3%, white). Mitochondria were distributed uniformly through the fibers from both regions. Capillary anisotropy was low ( = 1.018) in both regions. Capillary densities of the red region (629±35 mm-2) were much greater than those of the corresponding White region (73±8 mm-2).The data indicate that capillary densities, mitochondrial volumes and theoretical diffusion distances correlate well with the oxidative capacity of lizard muscle fibers. Tonic fibrs of this species appear oxidative and therefore metabolically capable of functioning during locomotion. The similar mitochondrial volumes and capillary densities of reptilian and mammalian muscles suggest that the greater oxidative capacity of mammalian muscle is due in part to possession of more oxidatively active mitochondria rather than to possession of more mitochondria per se.  相似文献   

5.
The atria and ventricles of the frog and lizard were quantitated using stereologic techniques. The volume fraction (Vv) and surface density (Sv) of the free, junctional and total sarcoplasmic reticulum and mitochondria of the lizard atrium and ventricle were greater than in the corresponding chambers in the frog. Myofibrillar volume fraction and plasmalemmal surface density did not differ between the two species. The volume fraction and surface density of the free and total SR, and myocardial granules were greater in the lizard atrium than ventricle but the myofibrillar Vv and mitochondrial Vv and Sv were less. The Sv of the free SR, total SR, and the Vv and Sv of myocardial granules of the frog atrium were greater than in the frog ventricle. There were no differences between myofibrils and mitochondria in the frog atrium and ventricle.  相似文献   

6.
Summary The present study describes the effects of starvation for a duration of four months on the ultrastructure of skeletal muscles from the marine flatfish (Pleuronectes platessa L.). Starvation is associated with a decrease in resting metabolic rate from 20.1±2.2 to 11.6±1.5mg-O2/kg/h (P<0.05) and muscle wasting. Median fibre size fell from 700 m2 to 500 m2 in intermediate (fast oxidative) and from 1,800 m2 to 600 m2 in starved, white (fast-glycolytic) muscle fibres. In contrast, median fibre size in red (slow oxidative) muscle remained within the range 300–400 m2. The fraction of red fibre volume occupied by myofibrils (58.6%) and mitochondria (24.5%) did not change significantly with starvation. There was, however, a decrease in stored lipid (10.7% to 3.2%) and an alteration in the structure of the cristae in mitochondria from red muscle.Atrophy of white muscle fibres is associated with a decrease in both the diameter and fractional volume occupied by myofibrils (85.7% to 61.9% P < 0.01). In a high proportion of white fibres peripheral degeneration of Z-discs is evident causing an unravelling of the thin filament lattice. It is suggested that this allows a partial decrease in myofibril diameter and hence the maintenance of contractile function in muscle from starved fish. In severely degenerating white fibres, disorganised thick and thin filaments and numerous multimembrane lysosome-like vesicles are observed.Starvation results in an increase in the average content of mitochondria in white fibres from 2.2 to 6.7% (P<0.01). In fed plaice mitochondria constitute less than 1% of the volume of the white fibre in 43.5% of the fibres. The proportion of white fibres containing more than 6% mitochondria increases from 6.5% to 58% with starvation.  相似文献   

7.
Summary Many species of fish show a partial or complete thermal compensation of metabolic rate on acclimation from summer to winter temperatures. In the present study Crucian carp (Carassius carassius L.) were acclimated for two months to either 2° C or 28° C and the effects of temperature acclimation on mitochondrial content and capillary supply to myotomal muscles determined.Mitochondria occupy 31.4% and 14.7% of slow fibre volume in 2°C- and 28° C-acclimated fish, respectively. Fast muscles of coldbut not warm-acclimated fish show a marked heterogeneity in mitochondrial volume. For example, only 5 % of fast fibres in 28° C-acclimated fish contain 5 % mitochondria compared to 34 % in 2° C-acclimated fish. The mean mitochondrial volume in fast fibres is 6.1 % and 1.6 % for coldand warm-acclimated fish, respectively.Increases in the mitochondrial compartment with cold acclimation were accompanied by an increase in the capillary supply to both fast (1.4 to 2.9 capillaries/fibre) and slow (2.2 to 4.8 capillaries/fibre) muscles. The percentage of slow fibre surface vascularised is 13.6 in 28° C-acclimated fish and 32.1 in 2° C-acclimated fish. Corresponding values for fast muscle are 2.3 and 6.6 % for warm and cold-acclimated fish, respectively. Maximum hypothetical diffusion distances are reduced by approximately 23–30 % in the muscles of 2° C-compared to 28° C-acclimated fish. However, the capillary surface supplying 1 3 of mitochondria is similar at both temperatures.Factors regulating thermal compensation of aerobic metabolism and the plasticity of fish muscle to environmental change are briefly discussed.  相似文献   

8.
Summary A quantitative histochemical technique was developed for determining the kinetics of the calcium-activated myosin ATPase (Ca2+-myosin ATPase) reaction in rat skeletal muscle fibres. Using this technique, the maximum velocity (Vmax) and the apparent Michaelis-Menten rate constant for ATP (Kapp) of the Ca2+-myosin ATPase reaction were measured in type-identified fibres of the rat medial gastrocnemius (MG) muscle. The Vmax and the Kapp of the Ca2+-myosin ATPase reaction were lowest in type I fibres and highest (i.e., approx. two times greater) in type IIb fibres. The Kapp in type IIa fibres was similar to that in type I. However, the Vmax was 1.5 times greater in type IIa fibres, compared to type I fibres. Evidence is presented to suggest that the type IIb fibre population in the MG does not represent a single myosin isozyme. In addition, the broad range of Vmax and Kapp values indicates that there is marked heterogeneity in the myosin heavy chain and myosin light chain composition of myosin isozymes among individual fibres.  相似文献   

9.
The importance of the creatine kinase system in the cardiac muscle of ectothermic vertebrates is unclear. Mammalian cardiac muscle seems to be structurally organized in a manner that compartmentalizes the intracellular environment as evidenced by the substantially higher mitochondrial apparent Km for ADP in skinned fibres compared to isolated mitochondria. A mitochondrial fraction of creatine kinase is functionally coupled to the mitochondrial respiration, and the transport of phosphocreatine and creatine as energy equivalents of ATP and ADP, respectively, increases the mitochondrial apparent ADP affinity, i.e. lowers the Km. This function of creatine kinase seems to be absent in hearts of frog species. To find out whether this applies to hearts of ectothermic vertebrate species in general, we investigated the effect of creatine on the mitochondrial respiration of saponin-skinned fibres from the ventricle of rainbow trout, Atlantic cod and freshwater turtle. For all three species, the apparent Km for ADP appeared to be substantially higher than for isolated mitochondria. Creatine lowered this Km in trout and turtle, thus indicating a functional coupling between mitochondrial creatine kinase and respiration. However, creatine had no effect on Km in cod ventricle. In conclusion, the creatine kinase-system in trout and turtle hearts seems to fulfil the same functions as in the mammalian heart, i.e. facilitating energy transport and communication between cellular compartments. In cod heart, however, this does not seem to be the case.Abbreviations ACR acceptor control ratio - CK creatine kinase - PCr creatine phosphate - VADP ADP-stimulated respiration rate - Vmax maximal respiration rate - V0 respiration rate in the absence of ADPCommunicated by: G. Heidmaier  相似文献   

10.
Summary Subpopulations of fast and slow fibres within the trunk musculature of elvers were examined using morphometric analysis of electron micrographs. Fibre regions were characterised by their histochemical staining characteristics, and individual fibres located using a coordinate mapping system utilising morphological features as reference points. Percentages of fibre volume occupied by mitochondria, myofibrils, sarcoplasmic reticulum (S.R.), and T-system were determined in each of the fibre groups, along a transect from the skin to the vertebral column (fibres 1–14, respectively).The fine structure of slow (red) fibres (1–2 fibres deep) is relatively homogeneous throughout its range, giving mean values for mitochondria, 21.4%; myofibrils, 61.0%; S.R., 2.10%; T-system, 0.31%. The fibres are relatively small (204 m2) and the mitochondrial cristae poorly developed.In contrast, there is a marked heterogeneity in the ultrastructure of fast (white) fibres, dependent on both position and size. The moderately small (333 m2) superficial fast fibres (3–4 fibres deep) have a significantly higher mitochondrial content (7.6%) than the larger deep fibres (1.2%) (6–12 fibres deep, 775 m2). The mean fractional volumes occupied by myofibrils, S.R., and T-system in the deep fibres are: 80.4%, 5.95%, and 0.38%, respectively. Fibres < 100 m2 constitute up to 5% of the fast muscle and have a significantly higher mitochondrial volume (4.3%), more glycogen granules, and a slightly lower volume of S.R. (5.57%) than larger fibres.It is suggested that metabolic subpopulations of fast fibres correspond to different stages of fibre growth. The relatively poorly developed S.R. of eel fast muscle is thought to be correlated with the low frequency, high amplitude nature of the propagated waveform found in anguilliform locomotion.  相似文献   

11.
In skinned rat cardiac fibres, mitochondrial affinity for endogenous ADP generated by creatine kinase and Ca2+-activated ATPases is higher than for exogenous ADP added to the surrounding medium, suggesting that mitochondria are functionally coupled to creatine kinase and ATPases. Such a coupling may be weaker or absent in ectothermic vertebrate cardiac cells, because they typically have less elaborate intracellular membrane structures, higher glycolytic capacity and lower working temperature. Therefore, we examined skinned cardiac fibres from rainbow trout at 10 °C. The apparent mitochondrial affinity for endogenous ADP was obtained by stimulation with ATP and recording of the release of ADP into the surrounding medium. The apparent affinity for endogenous ADP was much higher than for exogenous ADP suggesting a functional coupling between mitochondria and ATPases. The apparent affinity for exogenous ADP and ATP was increased by creatine or an increase in Ca2+-activity, which should increase intrafibrillar turnover of ATP to ADP. In conclusion, ADP seems to be channelled from creatine kinase and ATPases to mitochondria without being released to the surrounding medium. Thus, despite difference in structure, temperature and metabolic capacity, trout myocardium resembles that of rat with regard to the regulation of mitochondrial respiration.Abbreviations ACR acceptor control ratio - ANT adenine nucleotide translocase - KM ADP apparent mitochondrial affinity for ADP - KM ATP apparent mitochondrial affinity for ATP - LDH lactate dehydrogenase - VADP ADP-stimulated respiration rate - VADP max maximal ADP-stimulated respiration rate - VATP ATP-stimulated respiration rate - VATP max maximal ATP-stimulated respiration rate - V0 basal respiration rate in the absence of ADPCommunicated by G. Heldmaier  相似文献   

12.
Cutaneous pain sensations are mediated largely by C-nociceptors consisting of both mechano-sensitive (CM) and mechano-insensitive (CMi) fibres that can be distinguished from one another according to their characteristic axonal properties. In healthy skin and relative to CMi fibres, CM fibres show a higher initial conduction velocity, less activity-dependent conduction velocity slowing, and less prominent post-spike supernormality. However, after sensitization with nerve growth factor, the electrical signature of CMi fibres changes towards a profile similar to that of CM fibres. Here we take a combined experimental and modelling approach to examine the molecular basis of such alterations to the excitation thresholds. Changes in electrical activation thresholds and activity-dependent slowing were examined in vivo using single-fibre recordings of CM and CMi fibres in domestic pigs following NGF application. Using computational modelling, we investigated which axonal mechanisms contribute most to the electrophysiological differences between the fibre classes. Simulations of axonal conduction suggest that the differences between CMi and CM fibres are strongly influenced by the densities of the delayed rectifier potassium channel (Kdr), the voltage-gated sodium channels NaV1.7 and NaV1.8, and the Na+/K+-ATPase. Specifically, the CM fibre profile required less Kdr and NaV1.8 in combination with more NaV1.7 and Na+/K+-ATPase. The difference between CM and CMi fibres is thus likely to reflect a relative rather than an absolute difference in protein expression. In support of this, it was possible to replicate the experimental reduction of the ADS pattern of CMi nociceptors towards a CM-like pattern following intradermal injection of nerve growth factor by decreasing the contribution of Kdr (by 50%), increasing the Na+/K+-ATPase (by 10%), and reducing the branch length from 2 cm to 1 cm. The findings highlight key molecules that potentially contribute to the NGF-induced switch in nociceptors phenotype, in particular NaV1.7 which has already been identified clinically as a principal contributor to chronic pain states such as inherited erythromelalgia.  相似文献   

13.
Summary The fibre composition of the anterior coxa rotator muscle of the locust middle leg (M92) was examined. The muscle is composed of 90–100 fibres. Muscle fibres were characterized with regard to innervation pattern, electrophysiological properties, and morphological parameters. Activity and isoenzyme composition of myofibrillar ATPase, succinic acid dehydrogenase (SDH) activity and glycogen content were examined employing histochemical techniques. Shortening velocity and the dependence of tension on intracellular Ca2+ were determined in skinned fibre experiments. A close match was observed between the innervation pattern of the muscle fibres and their histochemical and physiological properties. The combination of all parameters examined allowed an accurate classification of the muscle fibres into three types. Within a given type, broad variability of some properties was observed (SDH activity, Ca2+ sensitivity) while others assumed distinct values (innervation pattern, shortening velocity). The comprehensive characterization of muscle fibre properties permits a functional interpretation of fibre heterogeneity with regard to muscle performance. Fibres with the same innervation pattern may be recruited specifically, according to their electric properties and Ca2+ sensitivities. The resulting specific recruitment of fibres with different mechanical responses should allow a subtle control of muscular force, with regard to force amplitude, temporal characteristics of contraction, and metabolic cost.Abbreviations CI1 common inhibitory neurone one - ejp ijp excitatory, inhibitory junctional potential - EGTA ethylene glycol-bis[-aminoethyl ether] N,N,N,N-tetraacetic acid - mATPase myofibrillar adenosinetriphosphatase - MOPSO 3-[N-morpholino]-2-hydroxypropanesulfonic acid - M92 anterior rotator muscle of the coxa - n Hill coefficient - pCa50 pCa corresponding to half-maximal tension - P0 maximal isometric tension - SDH succinic acid dehydrogenase - V max maximal shortening velocity  相似文献   

14.
A sampling method is described to determine accurately the number of fast myotomal muscle fibres (NF) in a large flatfish species, the Atlantic halibut Hippoglossus hippoglossus. An unusual feature of the fast myotomal muscle is the presence of internalized strips of slow muscle fibres. In fish of 1·5–3·5 kg (n = 24), the total cross‐sectional area (ATC) of fast muscle was 18% greater in the dorsal than ventral myotomal compartments (P < 0·05), whereas there was no significant difference between left‐ and right‐hand sides of the body. Due the bilateral asymmetry, muscle blocks (5 × 5 × 5 mm) were prepared to systematically sample each myotomal quadrant (dorsal, ventral, left‐ and right‐side) and the diameters of 150 fast fibres measured per block. Smooth non‐parametric probability functions were fitted to a minimum of 800 measurements of fibre diameter per quadrant (n = 5). There were no significant differences in the distribution of muscle fibre diameters between myotomal compartments and therefore NF could be estimated from a single quadrant. The number of blocks required to estimate NF with a repeatability of ±2·5% increased from six at 300 g body mass to 17 at 96·5 kg, caused by variation within and between blocks. Gompertz curves were fitted to measurements of fibre number and fork length (LF). The estimated final fibre number was 8·96 × 105 (7·99–9·94 × 105, 95% CI) for males and 1·73 × 106 (1·56–1·90 × 106, 95% CI) for female fish. The estimated LF for cessation of fibre recruitment in the fast muscle of female fish (1775 mm) was almost twice that in males (810 mm), reflecting their greater ultimate body size.  相似文献   

15.
Livers of rats between the 16th gestational and 100th postnatal day of age were subjected to quantitative biochemical and electron microscope, morphometric analyses. The amount of total mitochondrial protein per gram of liver remained at 34% of the adult level throughout the last 4 days of gestation but this was the period of rapid rise in the levels of cytochrome c oxidase, aspartate aminotransferase, and glutamate dehydrogenase in mitochondria; the nuclear fraction also acquired some glutamate dehydrogenase but lost most of it during postnatal development. During early postnatal life the amount of mitochondrial protein rose in parallel with the levels of cytochrome c oxidase and glutamate dehydrogenase but the upsurges of glutaminase and, later, of ornithine aminotransferase were accompanied by relatively little change in total mitochondrial protein. The surface area of rough endoplasmic reticulum per unit volume of hepatocyte cytoplasm (SvRER) did not change significantly throughout the period of development studied. From the 16th day of gestation to term the surface area of smooth ER (SvSER), the volume occupied by mitochondria (VvMT) and their number (NvMT) remained at 30, 66, and 45% of their adult values, respectively. VvMT and NvMT attained their maximal levels by the 2nd postnatal day and SvSER between days 2 and 12. Mitochondria of adult liver are thus smaller and contain more protein per unit volume than do those of fetal liver. After the 12th postnatal day, hepatocytes treble their size; they acquire more cytoplasm with additional enzymes but without further change in organelle concentration. The data reveal several distinct phases in the differentiation of hepatocytes. Each phase can be characterized by the extent to which the quantity and composition of various subcellular compartments evolve.  相似文献   

16.
Summary The iliofibularis muscle ofXenopus laevis is reported to contain five types of fibres which have different force—velocity relationships. Ten fibres of each type were selected on the basis of succinate dehydrogenase activity, cross-sectional area and location in the muscle, in order to assess the validity of the fibre type classification.Maximum calcium-stimulated myofibrillar ATPase activity (V max) and apparent Michaelis constant (K m) for ATP were determined for these 50 fibres from serial sections. The values obtained varied according to the type of fibre. Type 1 had the highest and type 5 the lowest values forK m andV max.In a separate experiment, single freeze-dried fibres were used to determine the relationship between their ATP content and apparentK m for ATP. There was a tendency for high ATP concentrations in fibres with highK m values.When myofibrillar ATPase activity was related to the maximum velocity of shortening of the five fibre types, a significant correlation was found. It is concluded that calcium-stimulated myofibrillar ATPase histochemistry allows an estimate of the maximum shortening velocity of muscle fibres fromXenopus laevis.  相似文献   

17.
In cells, such as neurones and immune cells, mitochondria can form dynamic and extensive networks that change over the minute timescale. In contrast, mitochondria in adult mammalian skeletal muscle fibres show little motility over several hours. Here, we use a novel three channelled microflow device, the multifunctional pipette, to test whether mitochondria in mouse skeletal muscle connect to each other. The central channel in the pipette delivers compounds to a restricted region of the sarcolemma, typically 30 µm in diameter. Two channels on either side of the central channel use suction to create a hydrodynamically confined flow zone and remove compounds completely from the bulk solution to internal waste compartments. Compounds were delivered locally to the end or side of single adult mouse skeletal muscle fibres to test whether changes in mitochondrial membrane potential were transmitted to more distant located mitochondria. Mitochondrial membrane potential was monitored with tetramethylrhodamine ethyl ester (TMRE). Cytosolic free [Ca2+] was monitored with fluo-3. A pulse of carbonyl cyanide 4-(trifluoromethoxy) phenylhydrazone (FCCP, 100 µM) applied to a small area of the muscle fibre (30 µm in diameter) produced a rapid decrease in the mitochondrial TMRE signal (indicative of depolarization) to 38% of its initial value. After washout of FCCP, the TMRE signal partially recovered. At distances greater than 50 µm away from the site of FCCP application, the mitochondrial TMRE signal was unchanged. Similar results were observed when two sites along the fibre were pulsed sequentially with FCCP. After a pulse of FCCP, cytosolic [Ca2+] was unchanged and fibres contracted in response to electrical stimulation. In conclusion, our results indicate that extensive networks of interconnected mitochondria do not exist in skeletal muscle. Furthermore, the limited and reversible effects of targeted FCCP application with the multifunctional pipette highlight its advantages over bulk application of compounds to isolated cells.  相似文献   

18.
The intracellular lactate shuttle hypothesis posits that lactate generated in the cytosol is oxidized by mitochondrial lactate dehydrogenase (LDH) of the same cell. To examine whether skeletal muscle mitochondria oxidize lactate, mitochondrial respiratory oxygen flux (JO2) was measured during the sequential addition of various substrates and cofactors onto permeabilized rat gastrocnemius muscle fibers, as well as isolated mitochondrial subpopulations. Addition of lactate did not alter JO2. However, subsequent addition of NAD+ significantly increased JO2, and was abolished by the inhibitor of mitochondrial pyruvate transport, α-cyano-4-hydroxycinnamate. In experiments with isolated subsarcolemmal and intermyofibrillar mitochondrial subpopulations, only subsarcolemmal exhibited NAD+-dependent lactate oxidation. To further investigate the details of the physical association of LDH with mitochondria in muscle, immunofluorescence/confocal microscopy and immunoblotting approaches were used. LDH clearly colocalized with mitochondria in intact, as well as permeabilized fibers. LDH is likely localized inside the outer mitochondrial membrane, but not in the mitochondrial matrix. Collectively, these results suggest that extra-matrix LDH is strategically positioned within skeletal muscle fibers to functionally interact with mitochondria.  相似文献   

19.
The influence of lactobacilli and new probiotic product on mitochondrial energetics of rat heart mitochondria and on dynamics of intracellular calcium concentration ([Ca2+]i) of cardiomyocytes and rat aortic smooth muscle cells was investigated. Respiration of mitochondra was estimated polarographically. [Ca2+]i was measured using fluorescent calcium indicator Fura 2 AM and calcium imaging system. The application of lactobacilli (5 × 107 CFU/mL) was shown to increase [Ca2+]i in cardiomyocytes, thereby increasing myocardial contractility. On the other hand, application of lactobacilli reduced thapsigargin-induced calcium influx in smooth rat aortic muscle, thus exhibiting some hypotensive effect. It was shown that probiotic product stimulated mitochondria respiration and exerted a mild uncoupling effect on electronic transport and oxidative phosphorylation in mitochondria. In cardiomyocytes and in smooth muscles probiotic product increased [Ca2+]i and consequent increase in contractility of blood vessels and myocardium. It is supposed that the probiotic product can be effectively applied at the endotoxic shock, when contractility of blood vessels in response to vasoconstrictor agents is suppressed.  相似文献   

20.
The objective of the present study was to develop a combination of fluorescent stains that would allow visualisation of the network of mitochondria and lipid droplets (intramyocellular lipids or IMCL) in human skeletal muscle fibres by means of conventional and confocal microscopy. Muscle biopsies were taken from the vastus lateralis of three lean, healthy and physically active male subjects. Frozen muscle sections were stained for mitochondria using antibodies against three mitochondrial proteins; porin, cytochrome c oxidase (COX) and NADH-ubiquinol oxidoreductase and neutral lipids were stained with oil red O. Anti-COX staining produced images with the strongest fluorescence signal and the highest resolution of the mitochondrial network and this stain was successfully combined with the antibody against type I fibre myosin. A highly organised matrix arrangement of mitochondria within the sarcomeres (in pairs at the I-band) was observed in the oxidative type I fibres. The density of mitochondria was the highest in the subsarcolemmal region. Anti-COX staining was combined with oil red O demonstrating that in type I fibres lipid droplets are mainly located in the space between the mitochondria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号