首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Streptococcus pneumoniae was shown to possess lactate oxidase in addition to well-documented pyruvate oxidase. The activities of both H(2)O(2)-forming oxidases in wild-type cultures were detectable even in the early exponential phase of growth and attained the highest levels in the early stationary phase. For each of these oxidases, a defective mutant was constructed and compared to the parent regarding the dynamics of pyruvate and lactate in aerobic cultures. The results obtained indicated that the energy-yielding metabolism in the wild type could be best described by the following scheme. (i) As long as glucose is available, approximately one-fourth of the pyruvate formed is converted to acetate by the sequential action of pyruvate oxidase and acetate kinase with acquisition of additional ATP; (ii) the rest of the pyruvate is reduced by lactate dehydrogenase to form lactate, with partial achievement of redox balance; (iii) the lactate is oxidized by lactate oxidase back to pyruvate, which is converted to acetate as described above; and (iv) the sequential reactions mentioned above continue to occur as long as lactate is present. As predicted by this model, exogenously added lactate was shown to increase the final growth yield in the presence of both oxidases.  相似文献   

2.
We have obtained two types of thermostable mutant lactate oxidase - one that exhibited an E-to-G point mutation at position 160 (E160G) through error-prone PCR-based random mutagenesis, and another that exhibited an E-to-G mutation at position 160 and a V-to-I mutation at position 198 (E160G/V198I) through DNA shuffling-based random mutagenesis - both of which we have previously reported. Our molecular modeling of lactate oxidase suggests that the substitution of G for E at position 160 reduces the electrostatic repulsion between the negative charges of E160 and E130 in the (beta/alpha)8 barrel structure, but a thermal-inactivation experiment on the five kinds of single-mutant lactate oxidase at position 160 (E160A, E160Q, E160H, E160R, and E160K) showed that the side-chain volume of the amino acid at position 160 mainly contributes to the thermostability of lactate oxidase. We also produced V198I single-mutant lactate oxidase through site-directed mutagenesis, and analysed the thermostability of wild-type, V198I, E160G, and E160G/V198I lactate oxidase enzymes. The half-life of E160G/V198I lactate oxidase at 70 degrees C was about three times longer than that of E160G lactate oxidase, and was about 20 times longer than that of wild-type lactate oxidase. In contrast, the thermostability of the V198I lactate oxidase was almost identical to that of wild-type lactate oxidase. This indicates that the V198I mutation alone does not affect lactate oxidase thermostability, but does affect it when combined with the E160G mutation.  相似文献   

3.
Cytochrome oxidase, succinate oxidase and lactate dehydrogenase were compared in: (a) leg and breast muscle from 11-19-day-old chick embryos; and (b) 2, 6, 10 and 14-day-old primary cell cultures established from myoblasts of embryonic leg and breast muscle. Cytochrome oxidase, succinate oxidase and lactate dehydrogenase activities were higher (48.8, 65.4, 277.6%, respectively) in leg muscle after 19 days in ovo. Cytochrome and succinate oxidase activities were higher (111.3, 48.1%, respectively) in leg muscle cell cultures after 14 days in vitro. The data represent evidence for intrinsic developmental patterns for certain enzymes.  相似文献   

4.
Lactate oxidase was purified from Aerococcus viridans (A. viridans) by dye affinity chromatography and FPLC ion exchange chromatography. The lactate oxidase could be purified by comparatively simple procedures, the purification achieved from a crude extract of A. viridans was 41-fold with a specific activity of 143 units/(mg of protein). The purified enzyme was a L-lactate oxidase, which catalyses the conversion of L-lactate in the presence of molecular oxygen to pyruvate and H(2)O(2). This purified lactate oxidase showed an apparent molecular mass of 48,200 in SDS-PAGE and the native molecular weight, as estimated by FPLC gel filtration, was 187,300. This molecular weight indicates that lactate oxidase exists in tetrameric form after gel filtration. To differing degrees, all the triazine dyes tested were inhibitors of lactate oxidase, solutions of free triazine dyes showing an inhibition mechanism which was both time- and pH-dependent.  相似文献   

5.
The respiratory chain of Corynebacterium glutamicum was investigated, especially with respect to a cyanide-resistant respiratory chain bypass oxidase. The membranes of C. glutamicum had NADH, succinate, lactate, and NADPH oxidase activities, and menaquinone, and cytochromes a 598, b 562(558), and c 550 as respiratory components. The NADH, succinate, lactate, and NADPH oxidase systems, all of which were more cyanide-resistant than N,N,N′,N′-tetramethyl-p-phenylene diamine oxidase activity (cytochrome aa 3 terminal oxidase), had different sensitivities to cyanide; the cyanide sensitivity of these oxidase systems increased in the order, NADPH, lactate, NADH, and succinate. Taken together with the analysis of redox kinetics in the cytochromes and the effects of respiratory inhibitors, the results suggested that there is a cyanide-resistant bypass oxidase branching at the menaquinone site, besides cyanide-sensitive cytochrome oxidase in the respiratory chain. H+/O measurements with resting cells suggested that the cyanide-sensitive respiratory chain has two or three coupling sites, of which one is in NADH dehydrogenase and the others between menaquinone and cytochrome oxidase, but the cyanide-resistant bypass oxidase may not have any proton coupling site. NADPH and lactate oxidase systems were more resistant to UV irradiation than other systems and the UV insensitivity was highest in the NADPH oxidase system, suggesting that a specific quinone resistant to UV or no such a quinone works in at least NADPH oxidase system while the UV-sensitive menaquinone pool does in other oxidase systems. Furthermore, superoxide was generated in well-washed membranes, most strongly in the NADPH oxidase system. Thus, it was suggested that the cyanide-resistant bypass oxidase system of C. glutamicum is related to the NADPH oxidase system, which may be involved in generation of superoxide anions and probably functions together with superoxide dismutase and catalase.  相似文献   

6.
Synthesis of oxalic Acid by enzymes from lettuce leaves   总被引:3,自引:0,他引:3       下载免费PDF全文
A rapid purification of lactate dehydrogenase and glycolate oxidase from lettuce (Lactuca sativa) leaves is described. The kinetics of both enzymes are reported in relation to their possible roles in the production of oxalate. Lettuce lactate dehydrogenase behaves like mammalian dehydrogenase, catalyzing the dismutation of glyoxylate to glycolate and oxalate. A model is proposed in which glycolate oxidase in the peroxisomes and lactate dehydrogenase in the cytosol are involved in the production of oxalate. The effect of pH on the balance between oxalate and glycolate produced from glyoxylate suggests that in leaves lactate dehydrogenase may function as part of an oxalate-based biochemical, pH-stat.  相似文献   

7.
Horizontal starch-gel electrophoresis was performed on domestic cat blood and stained for 6-phosphogluconic dehydrogenase (6-PGD), lactate dehydrogenase (LDH) and tetrazolium oxidase. A polymorphism was found for 6-PGD; LDH and tetrazolium oxidase were monomorphic. These systems were tested on cats of English, Mexican and American origin.  相似文献   

8.
An enzyme designated as lactate oxidase was purified from Acetobacter peroxydans by using the partition methods of separation. A DE-52 cellulose column was used for the primary purification of lactate oxidase, and the purified enzyme was covalently bound to a porous cellulose bead matrix in which benzoquinone was used as the coupling reagent. The physicochemical properties of the native and immobilized enzymes were determined including molecular weight, cofactor requirements, and optimal reaction conditions. Lactate oxidase was shown not to be subject to product inhibition, and to require Mg(2+) as a metal cofactor. Analysis of an immobilized lactate oxidase packed-bed reactor indicated that this system may not be subject to internal diffusional limitations. Molecular oxygen appeared to be a cosubstrate of the enzyme, and a reaction mechanism was postulated to predict the kinetic behavior of the immobilized reactor system. Applications of the immobilized lactate oxidase reactor for the pulse-flow analysis of lactic acid in whole milk and in a yeast fermentation system were considered.  相似文献   

9.
For the purpose of producing pyruvate from -lactate by enzymatic methods, four microorganism strains that produce lactate oxidase (LOD) were screened and isolated from many soil samples. Among them, strain SM-6, which showed high potential for pyruvate production, was chosen for further research. Physiological studies and 16S rDNA relationship reveal that SM-6 belongs to Pseudomonas putida. The optimized pH and temperature of the enzyme-catalyzed reaction were pH 7.2, and 39 °C, respectively. Low-concentration EDTA (1 mM) could improve the stability of pyruvate and conversion ratio of lactate oxidase. Vmax and Km value for -lactate were 2.46 μmol/(min mg) protein and 9.53 mM, respectively. On preparation scale, cell-free extract from SM-6, containing 300 mg/l of crude enzyme (4037 U/ml lactate oxidase), could convert 66% of 116 mM of -lactate into 76.6 mM pyruvate in 18 h, and 82% of substrate was transformed after 48 h, giving 95.0 mM (10.5 mg/ml) of pyruvate. The ratio of product to biocatalyst was 34.8:1 (g/g).  相似文献   

10.
The amperometric biosensor based on lactate oxidase for determination of lactate has been developed, and two methods of immobilization of lactate oxidase on the surface of industrial screen-printed platinum electrodes SensLab were compared. A sensor with immobilized in the Resydrol polymer lactate oxidase by the method of physical adsorption is characterized of narrow dynamic range and greater response value in comparison with a biosensor based on immobilised in poly(3,4-ethylenedioxythiophene) lactate oxidase by the method of electrochemical polymerization. Operational stability of the biosensor developed was studied and it was shown, that the immobilization method does not influence their stability. The analysis of the lactate in wine and during wine fermentation has been conducted. High correlation of the data obtained by means of amperometric lactate biosensor and a standard method of an ionic chromatography has been shown. The developed biosensor could be applied in the food industry for the control and optimization of the wine fermentation process, and quality control of wine.  相似文献   

11.
Lactobacillus plantarum P5 grew aerobically in rich media at the expense of lactate; no growth was observed in the absence of aeration. The oxygen-dependent growth was accompanied by the conversion of lactate to acetate which accumulated in the growth medium. Utilization of oxygen with lactate as substrate was observed in buffered suspensions of washed whole cells and in cell-free extracts. A pathway which accounts for the generation of adenosine triphosphate during aerobic metabolism of lactate to acetate via pyruvate and acetyl phosphate is proposed. Each of the enzyme activities involved, nicotinamide adenine dinucleotide independent lactic dehydrogenase, nicotinamide adenine dinucleotide dependent lactic dehydrogenase, pyruvate oxidase, acetate kinase and NADH oxidase were demonstrated in cell-free extracts. The production of pyruvate, acetyl phosphate and acetate was demonstrated using cell-free extracts and cofactors for the enzymes of the proposed pathway.Abbreviations MRS Man, Rogosa and Sharpe (1960) medium modified as in Materials and methods - TY Tryptone Yeast Extract broth - OUL Oxygen uptake with lactate as substrate - DCPIP 2,6-Dichlorophenolindophenol - LDH Lactic dehydrogenase  相似文献   

12.
Obesity is an increasing nutritional disorder in developed countries, and oxidative stress has been identified as a key factor in numerous pathologies such as diabetes, inflammation, and atherosclerosis, which are favored by obesity. The objective of the present study was to investigate the effects of oxidative stress in 3T3-L1 adipose cells on two parameters involved in metabolic complications associated with obesity, namely adiponectin secretion and lactate production. Differentiated 3T3-L1 adipose cells were exposed to increasing concentrations of glucose oxidase. 4-Hydroxynonenal (4-HNE), a relevant lipid peroxidation by-product which may affect several metabolic processes in making covalent adducts with various molecules; adiponectin secretion; and lactate production were measured in response to glucose oxidase exposure. Results show an inhibition of adiponectin mRNA expression by glucose oxidase and a significant inverse correlation between 4-HNE formation and adiponectin secretion. Furthermore, 4-HNE alone inhibits adiponectin production by 3T3-L1. On the other hand, glucose oxidase and 4-HNE significantly stimulated lactate production by 3T3-L1 adipocytes. These results demonstrate that adipose cells are highly sensitive to oxidative stress, with subsequent decreased adiponectin secretion and increased lactate production, two events involved in the development of insulin resistance.  相似文献   

13.
The effect of chronic treatment (8 months) with diphenylhydantoin (DPH) on rat brain was studied. The activity of some enzymes related to energy transduction (lactate dehydrogenase, citrate synthase, and malate dehydrogenase; NADH-cytochromec reductase and cytochrome oxidase) and neurotransmission (acetylcholine esterase) was evaluated both in the whole brain homogenate and/or in the crude mitochondrial fraction. A clear-cut decrease of acetylcholine esterase activity was observed, the decrease continuing even after treatment was discontinued. Effects on energy metabolism and on lactate dehydrogenase, malate dehydrogenase, and cytochrome oxidase are discussed.  相似文献   

14.
Streptococcus pyogenes strains can be divided into two classes, one capable and the other incapable of producing H2O2 (M. Saito, S. Ohga, M. Endoh, H. Nakayama, Y. Mizunoe, T. Hara, and S. Yoshida, Microbiology 147:2469-2477, 2001). In the present study, this dichotomy was shown to parallel the presence or absence of H2O2-producing lactate oxidase activity in permeabilized cells. Both lactate oxidase activity and H2O2 production under aerobic conditions were detectable only after glucose in the medium was exhausted. Thus, the glucose-repressible lactate oxidase is likely responsible for H2O2 production in S. pyogenes. Of the other two potential H2O2-producing enzymes of this bacterium, NADH and alpha-glycerophosphate oxidase, only the former exhibited low but significant activity in either class of strains. This activity was independent of the growth phase, suggesting that the protein may serve in vivo as a subunit of the H2O2-scavenging enzyme NAD(P)H-linked alkylhydroperoxide reductase. The activity of lactate oxidase was associated with the membrane while that of NADH oxidase was in the soluble fraction, findings consistent with their respective physiological roles, i.e., the production and scavenging of H2O2. Analyses of fermentation end products revealed that the concentration of lactate initially increased with time and decreased on glucose exhaustion, while that of acetate increased during the culture. These results suggest that the lactate oxidase activity of H2O2-producing cells oxidizes lactate to pyruvate, which is in turn converted to acetate. This latter process proceeds presumably via acetyl coenzyme A and acetyl phosphate with formation of extra ATP.  相似文献   

15.
An interference and cross-talk free dual electrode amperometric biosensor integrated with a microdialysis sampling system is described, for simultaneous monitoring of glucose and lactate by flow injection analysis. The biosensor is based on a conventional thin layer flow-through cell equipped with a Pt dual electrode (parallel configuration). Each Pt disk was modified by a composite bilayer consisting of an electrosynthesised overoxidized polypyrrole (PPYox) anti-interference membrane covered by an enzyme entrapping gel, obtained by glutaraldehyde co-crosslinking of glucose oxidase or lactate oxidase with bovine serum albumin. The advantages of covalent immobilization techniques were coupled with the excellent interference-rejection capabilities of PPYox. Ascorbate, cysteine, urate and paracetamol produced lactate or glucose bias in the low micromolar range; their responses were, however, completely suppressed when the sample was injected through the microdialysis unit. Under these operational conditions the flow injection responses for glucose and lactate were linear up to 100 and 20 mM with typical sensitivities of 9.9 (+/- 0.1) and 7.2 (+/- 0.1) nA/mM. respectively. The shelf-lifetime of the biosensor was at least 2 months. The potential of the described biosensor was demonstrated by the simultaneous determination of lactate and glucose in untreated tomato juice samples; results were in good agreement with those of a reference method.  相似文献   

16.
Using the method of enrichment cultures, eight lactate oxidase producer strains of the fungus Geotrichum candidum were identified. The microorganisms were isolated from diverse specimens of fermented vegetables and manure. Variation in the content of glucose and lactate and the degree of aeration made it possible to attain lactate oxidase activities of up to 130-140 U per 11 grown medium containing microbial cells.  相似文献   

17.
在以前工作的基础上,对已获得的产乳酸氧化酶的5株菌进行复筛,对产酶量大的一株菌进行了分类鉴定,确定该菌株属迟钝爱德华氏菌生物群I(Edwardsiella tarda Biogroup I)。这与曾报道的产乳酸氧化酶分枝杆菌(Mycobacterium)和片球菌(Pediococcus)是不同的菌。分别研究了培养基中的培养初始pH、核黄素、乳酸钠以及硫酸铵对发酵产乳酸氧化酶的影响。这一酶源在酶法生产丙酮酸及医疗诊断和酶电极应用上有意义。  相似文献   

18.

Background

Besides its role as a fuel source in intermediary metabolism, lactate has been considered a signaling molecule modulating lactate-sensitive genes involved in the regulation of skeletal muscle metabolism. Even though the flux of lactate is significantly high in the heart, its role on regulation of cardiac genes regulating lactate oxidation has not been clarified yet. We tested the hypothesis that lactate would increase cardiac levels of reactive oxygen species and up-regulate the expression of genes related to lactate oxidation complex.

Methods/Principal Findings

Isolated hearts from male adult Wistar rats were perfused with control, lactate or acetate (20mM) added Krebs-Henseleit solution during 120 min in modified Langendorff apparatus. Reactive oxygen species (O2 ●-/H2O2) levels, and NADH and NADPH oxidase activities (in enriched microsomal or plasmatic membranes, respectively) were evaluated by fluorimetry while SOD and catalase activities were evaluated by spectrophotometry. mRNA levels of lactate oxidation complex and energetic enzymes MCT1, MCT4, HK, LDH, PDH, CS, PGC1α and COXIV were quantified by real time RT-PCR. Mitochondrial DNA levels were also evaluated. Hemodynamic parameters were acquired during the experiment. The key findings of this work were that lactate elevated cardiac NADH oxidase activity but not NADPH activity. This response was associated with increased cardiac O2 ●-/H2O2 levels and up-regulation of MCT1, MCT4, LDH and PGC1α with no changes in HK, PDH, CS, COXIV mRNA levels and mitochondrial DNA levels. Lactate increased NRF-2 nuclear expression and SOD activity probably as counter-regulatory responses to increased O2 ●-/H2O2.

Conclusions

Our results provide evidence for lactate-induced up-regulation of lactate oxidation complex associated with increased NADH oxidase activity and cardiac O2 ●-/H2O2 driving to an anti-oxidant response. These results unveil lactate as an important signaling molecule regulating components of the lactate oxidation complex in cardiac muscle.  相似文献   

19.
Purification and some properties of a novel microbial lactate oxidase   总被引:1,自引:0,他引:1  
Geotrichum candidum was found to produce a lactate oxidase. The enzyme was purified by gel filtration and ion-exchange chromatography. The purified lactate oxidase showed a molecular mass of 50 kDa under denaturing and about 400 kDa under non-denaturing conditions. Transmission electron micro-scopy analysis confirmed an octameric structure. FMN was found to be a cofactor for this enzyme. Polarographic studies confirmed an oxygen uptake by the lactate oxidase. The enzyme showed specificity towards the L isomer of lactate and did not oxidise pyruvate, fumarate, succinate, maleate and ascorbate. It was stable at alkaline pH and also for 15 min at 45°C. The addition of glycerol and dextran 500 000 to the enzyme sample enhanced storage stability. Received: 28 September 1995/Received revision: 10 January 1996/Accepted: 15 January 1996  相似文献   

20.
A flow-injection analysis (FIA) system based on fibre optic detection of oxygen consumption using immobilized glucose oxidase (GOD) and lactate oxidase (LOD) is described for the on-line monitoring of glucose and lactate concentrations in animal cell cultures. The consumption of oxygen was determined via dynamic quenching by molecular oxygen of the fluorescence of an indicator. GOD and LOD were immobilized on controlled pore glass (CPG) in enzyme reactors which were directly linked to a specially designed fibre optic flow-through cell covering the oxygen optrode. The system is linear for 0-30 mM glucose, with an r.s.d. of 5% at 30 mM (five measurements) and for 0-30 mM lactate, with an r.s.d. of 5% at 30 mM (five measurements). The enzyme reactors used were stable for more than 4 weeks in continuous operation, and it was possible to analyse up to 20 samples per hour. The system has been successfully applied to the on-line monitoring of glucose and lactate concentrations of an animal cell culture designed for the production of recombinant human antithrombine III (AT-III). Results of the on-line measurement obtained by the FIA system were compared with the off-line results obtained by a glucose and lactate analyser from Yellow Springs Instrument Company (YSI).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号