首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ischemia-reperfusion (IR) causes human lung injury in association with the release of atrial and brain natriuretic peptides (ANP and BNP), but the role of ANP/BNP in IR lung injury is unknown. ANP and BNP bind to natriuretic peptide receptor-A (NPR-A) generating cGMP and to NPR-C, a clearance receptor that can decrease intracellular cAMP. To determine the role of NPR-A signaling in IR lung injury, we administered the NPR-A blocker anantin in an in vivo SWR mouse preparation of unilateral lung IR. With uninterrupted ventilation, the left pulmonary artery was occluded for 30 min and then reperfused for 60 or 150 min. Anantin administration decreased IR-induced Evans blue dye extravasation and wet weight in the reperfused left lung, suggesting an injurious role for NPR-A signaling in lung IR. In isolated mouse lungs, exogenous ANP (2.5 nM) added to the perfusate significantly increased the filtration coefficient sevenfold only if lungs were subjected to IR. This effect of ANP was also blocked by anantin. Unilateral in vivo IR increased endogenous plasma ANP, lung cGMP concentration, and lung protein kinase G (PKG(I)) activation. Anantin enhanced plasma ANP concentrations and attenuated the increase in cGMP and PKG(I) activation but had no effect on lung cAMP. These data suggest that lung IR triggered ANP release and altered endothelial signaling so that NPR-A activation caused increased pulmonary endothelial permeability.  相似文献   

2.
Atrial natriuretic peptide in hypoxia   总被引:4,自引:0,他引:4  
Chen YF 《Peptides》2005,26(6):1068-1077
A growing number of mammalian genes whose expression is inducible by hypoxia have been identified. Among them, atrial natriuretic peptide (ANP) synthesis and secretion is increased during hypoxic exposure and plays an important role in the normal adaptation to hypoxia and in the pathogenesis of cardiopulmonary diseases, including chronic hypoxia-induced pulmonary hypertension and vascular remodeling, and right ventricular hypertrophy and right heart failure. This review discusses the roles of ANP and its receptors in hypoxia-induced pulmonary hypertension. We and other investigators have demonstrated that ANP gene expression is enhanced by exposure to hypoxia and that the ANP so generated protects against the development of hypoxic pulmonary hypertension. Results also show that hypoxia directly stimulates ANP gene expression and ANP release in cardiac myocytes in vitro. Several cis-responsive elements of the ANP promoter are involved in the response to changes in oxygen tension. Further, the ANP clearance receptor NPR-C, but not the biological active NPR-A and NPR-B receptors, is downregulated in hypoxia adapted lung. Hypoxia-sensitive tyrosine kinase receptor-associated growth factors, including fibroblast growth factor (FGF) and platelet derived growth factor (PDGF)-BB, but not hypoxia per se, inhibit NPR-C gene expression in pulmonary arterial smooth muscle cells in vitro. The reductions in NPR-C in the hypoxic lung retard the clearance of ANP and allow more ANP to bind to biological active NPR-A and NPR-B in the pulmonary circulation, relaxing preconstricted pulmonary vessels, reducing pulmonary arterial pressure, and attenuating the development of hypoxia-induced pulmonary hypertension and vascular remodeling.  相似文献   

3.
Atrial natriuretic peptide (ANP), a 28-residue peptide with cardiovascular and renal effects, is rapidly cleared from the circulation. Beside renal clearance, an extra-renal metabolism by the enzyme neutral endopeptidase-24.11 (NEP-24.11) has been proposed, since specific NEP-24.11-inhibitors increase endogenous plasma-ANP. NEP-24.11 is present in rat lung but its significance for ANP hydrolysis within the lung is unclear. The aim of this study was to investigate a possible degradation of rat ANP in a membrane preparation from rat lung. Hydrolysis products of ANP were separated by HPLC and further characterized by a pulmonary artery bioassay, by radioimmunoassay with different antisera, by peptide sequencing and by masspectrometry. Rat pulmonary membranes degraded ANP to one main metabolite lacking biological activity and with poor cross-reactivity to an antiserum recognising the central ring-structure of the peptide. Formation of the hydrolysis product was prevented by the NEP-24.11-inhibitor phosphoramidon (1 microM). Peptide sequencing of the metabolite revealed a cleavage between Cys7 and Phe8, which was confirmed by mass-spectrometry. The metabolite had an HPLC elution time identical to that of the product formed by purified porcine NEP-24.11. These findings suggest that ANP is metabolized and inactivated by endopeptidase-24.11 in rat lungs, the first organ exposed to ANP released from the heart.  相似文献   

4.
Striated muscle cells and storage granules observed in the atria were found in main branches of the pulmonary veins and superior and inferior venae cavae of the rat, pig, and ox. The presence of atrial natriuretic polypeptide (ANP) in these veins was examined by reverse-phase high-performance liquid chromatography coupled with a radioimmunoassay for ANP. The veins contained 0.6 to 8.0 ng ANP/mg wet tissue with the major molecular form being gamma-ANP. ANP was detected in the peripheral lung tissue in a small quantity, but was not detected in the pulmonary artery. The identification of gamma-ANP and storage granules stained with an anti-ANP antiserum in the pulmonary vein and vena cava suggest that the veins may participate in regulating volume status, blood pressure, and cardiovascular homeostasis through the release of ANP.  相似文献   

5.
Chen YF  Feng JA  Li P  Xing D  Ambalavanan N  Oparil S 《Life sciences》2006,79(14):1357-1365
Hypoxic stress upsets the balance in the normal relationships between mitogenic and growth inhibiting pathways in lung, resulting in pulmonary vascular remodeling characterized by hyperplasia of pulmonary arterial smooth muscle cells (PASMCs) and fibroblasts and enhanced deposition of extracellular matrix. Atrial natriuretic peptide (ANP) reduces pulmonary vascular resistance and attenuates hypoxia-induced pulmonary hypertension in vivo and PASMC proliferation and collagen synthesis in vitro. The current study utilized an ANP null mouse model (Nppa-/-) to test the hypothesis that ANP modulates the pulmonary vascular and alveolar remodeling response to normobaric hypoxic stress. Nine-10 wk old male ANP null (Nppa-/-) and wild type nontransgenic (NTG) mice were exposed to chronic hypoxia (10% O(2), 1 atm) or air for 6 wks. Measurement: pulmonary hypertension, right ventricular hypertrophy, and pulmonary arterial and alveolar remodeling were assessed. Hypoxia-induced pulmonary arterial hypertrophy and muscularization were significantly increased in Nppa-/- mice compared to NTG controls. Furthermore, the stimulatory effects of hypoxia on alveolar myofibroblast transformation (8.2 and 5.4 fold increases in Nppa-/- and NTG mice, respectively) and expression of extracellular matrix molecule (including osteopontin [OPN] and periostin [PN]) mRNA in whole lung were exaggerated in Nppa-/- mice compared to NTG controls. Combined with our previous finding that ANP signaling attenuates transforming growth factor (TGF)-beta-induced expression of OPN and PN in isolated PASMCs, the current study supports the hypothesis that endogenous ANP plays an important anti-fibrogenic role in the pulmonary vascular adaptation to chronic hypoxia.  相似文献   

6.
To test the hypothesis that exogenous atrial natriuretic peptide (ANP) prevents the acute pulmonary pressor response to hypoxia, ANP (20-micrograms/kg bolus followed by 1-microgram.kg-1.min-1 infusion) or vehicle was administered intravenously to conscious rats beginning 3 min before exposure to hypoxia or room air for 90 min. Exogenous ANP abolished the acute pulmonary pressor response to hypoxia in association with marked and parallel increases in plasma ANP and guanosine 5'-cyclic monophosphate (cGMP) and with a significant increase in lung cGMP content. To examine whether endogenous ANP modulates the acute pulmonary pressor response to hypoxia, rats were pretreated with a monoclonal antibody (Ab) to ANP and exposed to hypoxia. Mean pulmonary arterial pressure (MPAP) in the Ab-treated rats was not different from control over the first 6 h of hypoxic exposure. Thereafter, the Ab-treated group had significantly higher MPAP than control. Our data suggest that 1) exogenous ANP blocks the pulmonary pressor response to acute hypoxia via stimulation of cGMP accumulation in the pulmonary vasculature, and 2) endogenous ANP may modulate the subacute, but not acute, phase of hypoxic pulmonary hypertension.  相似文献   

7.
In patients with severe chronic obstructive pulmonary disease (COPD) an increased pulmonary arterial pressure (PAP), a raised plasma level of atrial natriuretic peptide (ANP) and a correlation between increasing PAP and increasing plasma ANP have been shown. Furthermore, a negative correlation between lung function and PAP has been reported, and calcium antagonists have been claimed to decrease PAP. The purpose of the present study was to investigate whether 1) a negative correlation between lung function and plasma ANP could be demonstrated, whether 2) plasma ANP would increase during exercise in patients with COPD, and whether (3), in a randomised, placebo-controlled, double-blind design, a calcium antagonist was able to decrease plasma ANP at rest and modify the expected increase in plasma ANP during exercise. Eighteen patients with severe COPD were investigated. Plasma ANP was measured at rest and during exercise before and two hours after ingestion of either a single dose of 5 mg of isradipine, or a single dose of placebo. At rest, a correlation between lung function (forced vital capacity) and plasma ANP was found (rho = -0.49, P = 0.05). During the first exercise period, before ingestion of isradipine or placebo, the median level of ANP increased from 74 pg/ml at rest to 97 pg/ml at exhaustion (P less than 0.0002) (all patients). Administration of isradipine did not alter resting levels or exercise induced increases in plasma ANP. It is concluded, that in patients with severe COPD plasma ANP tends to be higher the more severely FVC is reduced. Plasma ANP increases during exercise. The calcium antagonist, isradipine, does not alter resting levels or exercise induced levels of plasma ANP.  相似文献   

8.
We tested the hypotheses that hypoxic exposure is associated with exacerbated pulmonary hypertension and right ventricular (RV) enlargement, reduced atrial natriuretic peptide (ANP) clearance receptor (NPR-C) expression, and enhanced B-type natriuretic peptide (BNP) expression in the absence of ANP. Male wild-type [ANP(+/+)], heterozygous [ANP(+/-)], and homozygous [ANP(-/-)] mice were studied after a 5-wk hypoxic exposure (10% O(2)). Hypoxia increased RV ANP mRNA and plasma ANP levels only in ANP(+/+) and ANP(+/-) mice. Hypoxia-induced increases in RV pressure were significantly greater in ANP(-/-) than in ANP(+/+) or ANP(+/-) mice (104 +/- 17 vs. 45 +/- 10 and 63 +/- 7%, respectively) as were increases in RV mass (38 +/- 4 vs. 26 +/- 5 and 29 +/- 4%, respectively). NPR-C mRNA levels were greatly reduced in the kidney, lung, and brain by hypoxia in all three genotypes. RV BNP mRNA and lung and kidney cGMP levels were increased in hypoxic mice. These findings indicate that disrupted ANP expression worsens hypoxic pulmonary hypertension and RV enlargement but does not alter hypoxia-induced decreases in NPR-C and suggest that compensatory increases in BNP expression occur in the absence of ANP.  相似文献   

9.
Atrial natriuretic peptide (ANP) is a clinically useful anti-hypertensive hormone. Maleimide derivatives of ANP have been synthesized and conjugated to cysteine-34 of human serum albumin. The conjugates were analyzed to assess their stability, receptor binding affinity and ability to stimulate guanylyl-cyclase activity in rat lung fibroblasts.  相似文献   

10.
Acute lung injury, sepsis, lung inflammation, and ventilator-induced lung injury are life-threatening conditions associated with lung vascular barrier dysfunction, which may lead to pulmonary edema. Increased levels of atrial natriuretic peptide (ANP) in lung circulation reported in these pathologies suggest its potential role in the modulation of lung injury. Besides well recognized physiological effects on vascular tone, plasma volume, and renal function, ANP may exhibit protective effects in models of lung vascular endothelial cell (EC) barrier dysfunction. However, the molecular mechanisms of ANP protective effects are not well understood. The recently described cAMP-dependent guanine nucleotide exchange factor (GEF) Epac activates small GTPase Rap1, which results in activation of small GTPase Rac-specific GEFs Tiam1 and Vav2 and Rac-mediated EC barrier protective responses. Our results show that ANP stimulated protein kinase A and the Epac/Rap1/Tiam/Vav/Rac cascade dramatically attenuated thrombin-induced pulmonary EC permeability and the disruption of EC monolayer integrity. Using pharmacological and molecular activation and inhibition of cAMP-and cGMP-dependent protein kinases (PKA and PKG), Epac, Rap1, Tiam1, Vav2, and Rac we linked ANP-mediated protective effects to the activation of Epac/Rap and PKA signaling cascades, which dramatically inhibited the Rho pathway of thrombin-induced EC hyper-permeability. These results suggest a novel mechanism of ANP protective effects against agonist-induced pulmonary EC barrier dysfunction via inhibition of Rho signaling by Epac/Rap1-Rac and PKA signaling cascades.  相似文献   

11.
Receptors for atrial natriuretic peptide (ANP) were localized in the alveoli and bronchiolar smooth muscle cells of bovine lung and in podocytes of the kidney by immunofluorescence and immunoperoxidase methods. Two specific antisera were raised against the ANP receptor purified from bovine lung plasma membranes: anti-Rc 140 and anti-Rc 70. Anti-Rc 140 was raised against the 140 KD native receptor having a homodimeric structure, and anti-Rc 70 was elicited by immunizing a rabbit with the 70 KD reduced subunits. Essentially identical staining patterns were obtained with both antisera. Identification of ANP receptor sites would provide useful information in understanding the pulmonary and renal actions of ANP.  相似文献   

12.
Lung inflammation and alterations in endothelial cell (EC) permeability are key events to development of acute lung injury (ALI). Protective effects of atrial natriuretic peptide (ANP) have been shown against inflammatory signaling and endothelial barrier dysfunction induced by gram-negative bacterial wall liposaccharide. We hypothesized that ANP may possess more general protective effects and attenuate lung inflammation and EC barrier dysfunction by suppressing inflammatory cascades and barrier-disruptive mechanisms shared by gram-negative and gram-positive pathogens. C57BL/6J wild-type or ANP knockout mice (Nppa-/-) were treated with gram-positive bacterial cell wall compounds, Staphylococcus aureus-derived peptidoglycan (PepG) and/or lipoteichoic acid (LTA) (intratracheal, 2.5 mg/kg each), with or without ANP (intravenous, 2 μg/kg). In vitro, human pulmonary EC barrier properties were assessed by morphological analysis of gap formation and measurements of transendothelial electrical resistance. LTA and PepG markedly increased pulmonary EC permeability and activated p38 and ERK1/2 MAP kinases, NF-κB, and Rho/Rho kinase signaling. EC barrier dysfunction was further elevated upon combined LTA and PepG treatment, but abolished by ANP pretreatment. In vivo, LTA and PepG-induced accumulation of protein and cells in the bronchoalveolar lavage fluid, tissue neutrophil infiltration, and increased Evans blue extravasation in the lungs was significantly attenuated by intravenous injection of ANP. Accumulation of bronchoalveolar lavage markers of LTA/PepG-induced lung inflammation and barrier dysfunction was further augmented in ANP-/- mice and attenuated by exogenous ANP injection. These results strongly suggest a protective role of ANP in the in vitro and in vivo models of ALI associated with gram-positive infection. Thus ANP may have important implications in therapeutic strategies aimed at the treatment of sepsis and ALI-induced gram-positive bacterial pathogens.  相似文献   

13.
本实验观察了80只家兔在急性缺氧6、12、24、36、48、60、71h后肺指数、血浆心钠素(ANP)、抗利尿激素(AVP)、醛固酮(ALD)及尿量的变化。结果表明:在缺氧24-72h,肺指数明显升高,尿量减少;缺氧16h,血浆ANP明显升高;而缺氧48和60h无ANP升高现象。缺氧72h,血浆ANF又明显高于缺氧前水平;血浆AVP只在缺氧24h明显升高;血浆ALD未见显著性变化。这些结果提示:在缺氧状态下,ANP、AVP的释放均与缺氧暴露的时间有关。这些激素的平衡失调可能与急性缺氧性肺水肿的发生有关。  相似文献   

14.
Summary The distribution of atrial natriuretic polypeptide (ANP) was immunohistochemically surveyed in the rat heart and lung using an antiserum raised against -human ANP. The ANP-immunoreactive cells were seen to be distributed in the atrial walls and proximal portions of the pulmonary vein and venae cavae, but were absent from the aorta, pulmonary arteries, trachea, bronchus, and alveolar cells. The immunoreactive cells were present in a narrow region just beneath the endothelium of the pulmonary vein and vena cavae, and, ultrastructurally and immunocytochemically, were seen to be striated muscle cells with ANP-containing specific granules similar to those seen in atrial cardiocytes. A radioimmunoassay for ANP revealed a content of 604±51 pg/mg wet weight in the pulmonary vein, and 3343±1620 pg/mg wet weight in the venae cavae. In addition to the atrial wall, the proximal portion of both the pulmonary vein and venae cavae are suggested to be constituents of an ANP-producing organ.  相似文献   

15.
Using a specific radioimmunoassay (RIA) for alpha-rat atrial natriuretic polypeptide (alpha-rANP), we have demonstrated the presence of a considerable amount (6.10 +/- 0.38 ng/g) (mean +/- SE) of alpha-rANP-like immunoreactivity (alpha-rANP-LI) in the rat lung, the first organ through which atrial natriuretic polypeptide (ANP) released from the heart passes. High performance gel permeation chromatography coupled with the RIA revealed that most of alpha-rANP-LI eluted at the position of a low molecular weight form corresponding to synthetic alpha-rANP. In 2- or 5-day water-deprived rats, the concentration and content of alpha-rANP-LI in the lung decreased significantly compared with those of control rats. In addition, water-deprivation induced a significant decrease in the plasma concentration of alpha-rANP-LI simultaneously determined. There was a significant positive correlation between the concentrations of alpha-rANP-LI in the lung and plasma (r = 0.591, P less than 0.01). These results indicate the presence of ANP in the lung and suggest physiological roles of ANP in pulmonary function.  相似文献   

16.
In order to elucidate biosynthesis and secretion of natriuretic peptides in the early phase of acute myocardial infarction (AMI), we measured the plasma level of brain natriuretic peptide (BNP), a novel cardiac hormone secreted from the ventricle, in patients with AMI and compared with that of atrial natriuretic peptide (ANP). The plasma level of BNP increased rapidly (within hours from the onset of AMI) and markedly (greater than 100 times the normal level) as compared to that of ANP. The plasma ANP level correlated with pulmonary capillary wedge pressure (PCWP), whereas the plasma BNP level did not correlate with PCWP but highly correlated inversely with cardiac index. These results indicate that BNP is secreted from the heart much more acutely and prominently than ANP in the early phase of AMI, in association with left ventricular dysfunction.  相似文献   

17.
Microtubule (MT) dynamics is involved in a variety of cell functions, including control of the endothelial cell (EC) barrier. Release of Rho-specific nucleotide exchange factor GEF-H1 from microtubules activates the Rho pathway of EC permeability. In turn, pathologic vascular leak can be prevented by treatment with atrial natriuretic peptide (ANP). This study investigated a novel mechanism of vascular barrier protection by ANP via modulation of GEF-H1 function. In pulmonary ECs, ANP suppressed thrombin-induced disassembly of peripheral MT and attenuated Rho signaling and cell retraction. ANP effects were mediated by the Rac1 GTPase effector PAK1. Activation of Rac1-PAK1 promoted PAK1 interaction with the Rho activator GEF-H1, inducing phosphorylation of total and MT-bound GEF-H1 and leading to attenuation of Rho-dependent actin remodeling. In vivo, ANP attenuated lung injury caused by excessive mechanical ventilation and TRAP peptide (TRAP/HTV), which was further exacerbated in ANP−/− mice. The protective effects of ANP against TRAP/HTV-induced lung injury were linked to the increased pool of stabilized MT and inactivation of Rho signaling via ANP-induced, PAK1-dependent inhibitory phosphorylation of GEF-H1. This study demonstrates a novel protective mechanism of ANP against pathologic hyperpermeability and suggests a novel pharmacological intervention for the prevention of increased vascular leak via PAK1-dependent modulation of GEF-H1 activity.  相似文献   

18.
19.
This study investigated the hypothesis that atrial natriuretic peptide (ANP) responses are mediated by particulate guanylate cyclase in the pulmonary vascular bed of the cat. When tone in the pulmonary vascular bed was raised to a high steady level with the thromboxane mimic U-46619, injections of ANP caused dose-related decreases in lobar arterial pressure. After administration of HS-142-1, an ANP-A- and ANP-B-receptor antagonist, vasodilator responses to ANP were reduced. The nitric oxide (NO) synthase inhibitor N(omega)-nitro-L-arginine methyl ester (L-NAME) enhanced ANP vasodilator responses, suggesting that inhibition of NO modulates ANP responses. L-NAME administration with constant 8-bromo-cGMP infusion attenuated the increased vasodilator response to ANP, suggesting that supersensitivity to ANP occurs upstream to activation of a cGMP-dependent protein kinase. In pulmonary arterial rings, ANP produced concentration-related vasorelaxant responses with and without endothelium. Methylene blue, L-NAME, or N(omega)-monomethyl-L-arginine did not alter ANP vasorelaxant responses. These data show that ANP supersensitivity observed in the intact pulmonary vascular bed is not seen in isolated pulmonary arterial segments, suggesting that it may only occur in resistance vessel elements. These results suggest that ANP responses occur through activation of ANP-A and/or -B receptors in an endothelium-independent manner and are modulated by NO in resistance vessel elements in the pulmonary vascular bed of the cat.  相似文献   

20.
To test the hypothesis that atrial natriuretic peptide (ANP) has a direct vasodilator effect on the pulmonary vasculature that is enhanced in hypoxia-induced pulmonary hypertension in the rat, we determined the effects of ANP on mean pulmonary (MPAP) and systemic arterial pressure (MSAP) in intact conscious Sprague-Dawley rats exposed to 10% O2 or room air for 4 wk. Catheters were placed in the pulmonary artery through the right jugular vein by means of a closed-chest technique. MPAP and MSAP were monitored before and after intravenous injections of graded doses of ANP. ANP produced dose-related decreases in MPAP that were greater in the hypoxic group than in air controls. There were no significant between-group differences in the systemic depressor responses to ANP or in the ANP-induced reduction in cardiac output. ANP lowered MPAP significantly in isolated perfused lungs from both hypoxia-adapted and air control rats, and this effect was significantly greater in the hypoxic than the air control lungs. These data indicate that ANP lowers pulmonary arterial pressure in rats with hypoxia-induced pulmonary hypertension, mainly by a direct vasodilator effect on the pulmonary vasculature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号