首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
At a time of the emergence of drug-resistant bacterial strains, the development of antimicrobial compounds with novel mechanisms of action is of considerable interest. Perhaps the most promising among these is a family of antibacterial peptides originally isolated from insects. These were shown to act in a stereospecific manner on an as-yet unidentified target bacterial protein. One of these peptides, drosocin, is inactive in vivo due to the rapid decomposition in mammalian sera. However, another family member, pyrrhocoricin, is significantly more stable, has increased in vitro efficacy against gram-negative bacterial strains, and if administered alone, as we show here, is devoid of in vitro or in vivo toxicity. At low doses, pyrrhocoricin protected mice against Escherichia coli infection, but at a higher dose augmented the infection of compromised animals. Analogs of pyrrhocoricin were, therefore, synthesized to further improve protease resistance and reduce toxicity. A linear derivative containing unnatural amino acids at both termini showed high potency and lack of toxicity in vivo and an expanded cyclic analog displayed broad activity spectrum in vitro. The bioactive conformation of native pyrrhocoricin was determined by nuclear magnetic resonance spectroscopy, and similar to drosocin, reverse turns were identified as pharmacologically important elements at the termini, bridged by an extended peptide domain. Knowledge of the primary and secondary structural requirements for in vivo activity of these peptides allows the design of novel antibacterial drug leads.  相似文献   

2.
Members of the proline-rich antibacterial peptide family, pyrrhocoricin, apidaecin and drosocin appear to kill responsive bacterial species by binding to the multihelical lid region of the bacterial DnaK protein. Pyrrhocoricin, the most potent among these peptides, is nontoxic to healthy mice, and can protect these animals from bacterial challenge. A structure-antibacterial activity study of pyrrhocoricin against Escherichia coli and Agrobacterium tumefaciens identified the N-terminal half, residues 2-10, the region responsible for inhibition of the ATPase activity, as the fragment that contains the active segment. While fluorescein-labeled versions of the native peptides entered E. coli cells, deletion of the C-terminal half of pyrrhocoricin significantly reduced the peptide's ability to enter bacterial or mammalian cells. These findings highlighted pyrrhocoricin's suitability for combating intracellular pathogens and raised the possibility that the proline-rich antibacterial peptides can deliver drug leads into mammalian cells. By observing strong relationships between the binding to a synthetic fragment of the target protein and antibacterial activities of pyrrhocoricin analogs modified at strategic positions, we further verified that DnaK was the bacterial target macromolecule. Inaddition, the antimicrobial activity spectrum of native pyrrhocoricin against 11 bacterial and fungal strains and the binding of labeled pyrrhocoricin to synthetic DnaK D-E helix fragments of the appropriate species could be correlated. Mutational analysis on a synthetic E. coli DnaK fragment identified a possible binding surface for pyrrhocoricin.  相似文献   

3.
Recently, we documented that the short, proline-rich antibacterial peptides pyrrhocoricin, drosocin, and apidaecin interact with the bacterial heat shock protein DnaK, and peptide binding to DnaK can be correlated with antimicrobial activity. In the current report we studied the mechanism of action of these peptides and their binding sites to Escherichia coli DnaK. Biologically active pyrrhocoricin made of L-amino acids diminished the ATPase activity of recombinant DnaK. The inactive D-pyrrhocoricin analogue and the membrane-active antibacterial peptide cecropin A or magainin 2 failed to inhibit the DnaK-mediated phosphate release from adenosine 5'-triphosphate (ATP). The effect of pyrrhocoricin on DnaK's other significant biological function, the refolding of misfolded proteins, was studied by assaying the alkaline phosphatase and beta-galactosidase activity of live bacteria. Remarkably, both enzyme activities were reduced upon incubation with L-pyrrhocoricin or drosocin. D-Pyrrhocoricin, magainin 2, or buforin II, an antimicrobial peptide involved in binding to bacterial nucleic acids, had only negligible effect. According to fluorescence polarization and dot blot analysis of synthetic DnaK fragments and labeled pyrrhocoricin analogues, pyrrhocoricin bound with a K(d) of 50.8 microM to the hinge region around the C-terminal helices D and E, at the vicinity of amino acids 583 and 615. Pyrrhocoricin binding was not observed to the homologous DnaK fragment of Staphylococcus aureus, a pyrrhocoricin nonresponsive strain. In line with the lack of ATPase inhibition, drosocin binding appears to be slightly shifted toward the D helix. Our data suggest that drosocin and pyrrhocoricin binding prevents the frequent opening and closing of the multihelical lid over the peptide-binding pocket of DnaK, permanently closes the cavity, and inhibits chaperone-assisted protein folding. The biochemical results were strongly supported by molecular modeling of DnaK-pyrrhocoricin interactions. Due to the prominent sequence variations of procaryotic and eucaryotic DnaK molecules in the multihelical lid region, our findings pave the road for the design of strain-specific antibacterial peptides and peptidomimetics. Far-fetched applications of the species-specific inhibition of chaperone-assisted protein folding include the control of not only bacteria but also fungi, parasites, insects, and perhaps rodents.  相似文献   

4.
Interaction between heat shock proteins and antimicrobial peptides   总被引:14,自引:0,他引:14  
Drosocin, pyrrhocoricin, and apidaecin, representing the short (18-20 amino acid residues) proline-rich antibacterial peptide family, originally isolated from insects, were shown to act on a target bacterial protein in a stereospecific manner. Native pyrrhocoricin and one of its analogues designed for this purpose protect mice from bacterial challenge and, therefore, may represent alternatives to existing antimicrobial drugs. Furthermore, this mode of action can be a basis for the design of a completely novel set of antibacterial compounds, peptidic or peptidomimetic, if the interacting bacterial biopolymers are known. Recently, apidaecin was shown to enter Escherichia coli and subsequently kill bacteria through sequential interactions with diverse target macromolecules. In this paper report, we used biotin- and fluorescein-labeled pyrrhocoricin, drosocin, and apidaecin analogues to identify biopolymers that bind to these peptides and are potentially involved in the above-mentioned multistep killing process. Through use of a biotin-labeled pyrrhocoricin analogue, we isolated two interacting proteins from E. coli. According to mass spectrometry, Western blot, and fluorescence polarization, the short, proline-rich peptides bound to DnaK, the 70-kDa bacterial heat shock protein, both in solution and on the solid-phase. GroEL, the 60-kDa chaperonin, also bound in solution. Control experiments with an unrelated labeled peptide showed that while binding to DnaK was specific for the antibacterial peptides, binding to GroEL was not specific for these insect sequences. The killing of bacteria and DnaK binding are related events, as an inactive pyrrhocoricin analogue made of all-D-amino acids failed to bind. The pharmaceutical potential of the insect antibacterial peptides is underscored by the fact that pyrrhocoricin did not bind to Hsp70, the human equivalent of DnaK. Competition assay with unlabeled pyrrhocoricin indicated differences in GroEL and DnaK binding and a probable two-site interaction with DnaK. In addition, all three antibacterial peptides strongly interacted with two bacterial lipopolysaccharide (LPS) preparations in solution, indicating that the initial step of the bacterial killing cascade proceeds through LPS-mediated cell entry.  相似文献   

5.
Proline-rich antimicrobial peptides (PrAMPs) kill bacteria via a nonlytic mechanism in which they permeate through the outer membrane, utilize protein-mediated transport across the inner membrane, and target the ribosome to inhibit protein synthesis. We previously reported that substitutions of oncocin () with a pair of cationic residues improved the antimicrobial activity. In this study, we applied the design protocol to three other PrAMPs: apidaecin-1b, pyrrhocoricin, and bactenecin 7(1–16) and found that the substitutions (R4K and I8K/R) for apidaecin-1b improve the activity by twofold (p < .05) against nonpathogenic Escherichia coli. Moreover, the substitutions (L7K/R and R14K) for pyrrhocoricin improve the activity by 2–10-fold (p < .05) against some strains of E. coli and Salmonella Typhimurium. We also performed activity tests against inner membrane protein (SbmA or YgdD) knockout strains. The result is consistent with previous studies that SbmA is the major transporter for apidaecin-1b and pyrrhocoricin derivatives. However, bactenecin 7(1–16) functions independently of these transporters. In addition, several apidaecin-1b derivatives exhibit enhanced activity relative to wild-type only in the absence of SbmA, which is consistent with mutations that enhance transport across the inner membrane. A high performance liquid chromatography-based kinetic assay for cellular association and internalization demonstrates that the selected cationic mutations can improve cellular association in minimal media, but this enhanced association is not required for increased activity, which suggests the importance of inner membrane transport. These functional studies on cationic mutants of PrAMPs advance understanding of potency and mechanism and advance the ability to engineer improved antimicrobials as evidenced by the identification of the pyrrhocoricin mutant (L7R and R14K) with 10-fold elevated potency against pathogenic E. coli.  相似文献   

6.
Analogs of pyrrhocoricin, a proline-rich antibacterial peptide with a potential therapeutic use, show multiple actions on bacterial cells. We used a dual-fluorochrome membrane viability assay to provide evidence that the lead drug candidate, Pip-pyrr-MeArg dimer derivative, kills bacteria better than the native peptide due to an improved activity on bacterial membranes. This assay was also instrumental in documenting that activity on bacterial membranes and toxicity to human cells can be correlated, and the predominant mode of action can be changed from intracellular DnaK inhibition to membrane disintegration. Similar analyses with an alanine-scan on pyrrhocoricin identified Lys3 as a crucial player to interaction with bacterial membranes, three prolines in mid-chain position as being responsible for maintaining structural integrity and Asp2, Tyr6, Leu7, and Arg9 as putative contact points to the D-E helix of the bacterial target protein DnaK.  相似文献   

7.
The Relationship between Structure and Activity of Taurolin   总被引:2,自引:0,他引:2  
Taurolin [Bis(1,1-dioxo-perhydro-1,2,4 thiadiazinyl-4)methane] is an antimicrobial compound formed by the condensation of two molecules of taurine with three of formaldehyde. It has been suggested that it releases formaldehyde in contact with bacteria. Evidence from TLC, HPLC and NMR spectroscopy indicates that taurolin is mostly hydrolysed in aqueous solution to release one molecule of formaldehyde and two monomeric molecules (1,1-dioxo-perhydro-1,2,4-thiadiazine and its carbinolamine derivative). A stable equilibrium is established. Antibacterial activity is not entirely due to adsorption of free formaldehyde but also to reaction with a masked (or latent) formaldehyde, as the activity of taurolin is greater than formaldehyde. The monomer is only slightly active by comparison.  相似文献   

8.
Summary Pyrrhocoricin, a highly active antibacterial peptide isolated from insects, inhibits chaperone-assisted protein folding via binding to the 70 kDa heat shock protein DnaK with its amino terminal half. The C-terminus functions as an intracellular delivery module. In the current study, chimeras consisting of the putative functional units of pyrrhocoricin and a related peptide, drosocin, were made, and it was found that some mixed and matched sequences retained their ability to killEscherichia coli, Salmonella typhimurium andAgrobacterium tumefaciens. While pyrrhocoricin appeared to have a more universal pharmacophore, drosocin featured a more robust intracellular delivery unit. We also identified the minimal length of pyrrhocoricin that is needed to efficiently kill bacteria. While for activity againstS. typhimurium the peptide could not be shortened, againstE. coli it was sufficient to have a Vall-Ile16 amino-terminal fragment. Although Vall was not part of the Asp2-Pro 10 pharmacophore (it could be replaced with other residues), it could not be eliminated and apparently played an important role in defining the activity of the peptide. Indeed, when Val1 was replaced with lysine, not only the efficacy of pyrrhocoricin to kill the sensitive strains increased significantly, resulting in the most active antimicrobial peptide against some clinical strains ever made, but the modified peptide was also able to killPseudomonas aeruginosa, an originally unresponsive bacterium in the low μg ml−1 concentration range. However, this substitution likely influenced the interaction with bacterial membranes rather than that with the target protein, and therefore the dominant mode of action of the Lysl-pyrrhocoricin peptide may feature membrane disintegration instead of DnaK inhibition.  相似文献   

9.
Pyrrhocoricin, a highly active antibacterial peptide isolated from insects, inhibits chaperone-assisted protein folding via binding to the 70 kDa heat shock protein DnaK with its amino terminal half. The C-terminus functions as an intracellular delivery module. In the current study, chimeras consisting of the putative functional units of pyrrhocoricin and a related peptide, drosocin, were made, and it was found that some mixed and matched sequences retained their ability to kill Escherichia coli, Salmonella typhimurium and Agrobacterium tumefaciens. While pyrrhocoricin appeared to have a more universal pharmacophore, drosocin featured a more robust intracellular delivery unit. We also identified the minimal length of pyrrhocoricin that is needed to efficiently kill bacteria. While for activity against S. typhimurium the peptide could not be shortened, against E. coli it was sufficient to have a Val1-Ile16 amino-terminal fragment. Although Val1 was not part of the Asp2-Pro10 pharmacophore (it could be replaced with other residues), it could not be eliminated and apparently played an important role in defining the activity of the peptide. Indeed, when Val1 was replaced with lysine, not only the efficacy of pyrrhocoricin to kill the sensitive strains increased significantly, resulting in the most active antimicrobial peptide against some clinical strains ever made, but the modified peptide was also able to kill Pseudomonas aeruginosa, an originally unresponsive bacterium in the low g ml-1 concentration range. However, this substitution likely influenced the interaction with bacterial membranes rather than that with the target protein, and therefore the dominant mode of action of the Lys1-pyrrhocoricin peptide may feature membrane disintegration instead of DnaK inhibition.  相似文献   

10.
Gaegurin 4 (GGN4) is a 37-residue antimicrobial peptide isolated from the skin of a Korean frog, Rana rugosa. This peptide shows a broad range of activity against prokaryotic cells but shows very little hemolytic activity against human red blood cells. The solution structure of GGN4 was studied by using circular dichroism (CD) and NMR spectroscopy. CD investigations revealed that GGN4 adopts mainly an alpha-helical conformation in trifluoroethanol/water solution, in dodecylphosphocholine and in SDS micelles, but adopts random structure in aqueous solution. By using both homonuclear and heteronuclear NMR experiments, complete 1H and 15N resonance assignments were obtained for GGN4 in 50% trifluoroethanol/water solution. The calculated structures of GGN4 consist of two amphipathic alpha-helices extending from residues 2-10 and from residues 16-32. These two helices are connected by a flexible loop spanning between the residues 11 and 15. By using enzyme digestion and matrix-assisted laser desorption/ionization mass spectroscopy, we confirmed that GGN4 contains a disulfide bridge formed between the residues Cys31 and Cys37 in its C-terminus. The effect of disulfide bridge on the structure and the activity of GGN4 was investigated. The reduced form of GGN4 revealed a similar activity and conformation to native GGN4, suggesting that the disulfide bridge does not strongly affect the conformation and the antimicrobial activity of GGN4.  相似文献   

11.
The high-resolution three-dimensional structure of an antimicrobial peptide has implications for the mechanism of its antimicrobial activity, as the conformation of the peptide provides insights into the intermolecular interactions that govern the binding to its biological target. For many cationic antimicrobial peptides the negatively charged membranes surrounding the bacterial cell appear to be a main target. In contrast to what has been found for other classes of antimicrobial peptides, solution NMR studies have revealed that in spite of the wide diversity in the amino acid sequences of amphibian antimicrobial peptides (AAMPs), they all adopt amphipathic α-helical structures in the presence of membrane-mimetic micelles, bicelles or organic solvent mixtures. In some cases the amphipathic AAMP structures are directly membrane-perturbing (e.g. magainin, aurein and the rana-box peptides), in other instances the peptide spontaneously passes through the membrane and acts on intracellular targets (e.g. buforin). Armed with a high-resolution structure, it is possible to relate the peptide structure to other relevant biophysical and biological data to elucidate a mechanism of action. While many linear AAMPs have significant antimicrobial activity of their own, mixtures of peptides sometimes have vastly improved antibiotic effects. Thus, synergy among antimicrobial peptides is an avenue of research that has recently attracted considerable attention. While synergistic relationships between AAMPs are well described, it is becoming increasingly evident that analyzing the intermolecular interactions between these peptides will be essential for understanding the increased antimicrobial effect. NMR structure determination of hybrid peptides composed of known antimicrobial peptides can shed light on these intricate synergistic relationships. In this work, we present the first NMR solution structure of a hybrid peptide composed of magainin 2 and PGLa bound to SDS and DPC micelles. The hybrid peptide adopts a largely helical conformation and some information regarding the inter-helix organization of this molecule is reported. The solution structure of the micelle associated MG2-PGLa hybrid peptide highlights the importance of examining structural contributions to the synergistic relationships but it also demonstrates the limitations in the resolution of the currently used solution NMR techniques for probing such interactions. Future studies of antimicrobial peptide synergy will likely require stable isotope-labeling strategies, similar to those used in NMR studies of proteins.  相似文献   

12.
S Park  S H Park  H C Ahn  S Kim  S S Kim  B J Lee  B J Lee 《FEBS letters》2001,507(1):95-100
Novel cationic antimicrobial peptides, named nigrocin 1 and 2, were isolated from the skin of Rana nigromaculata and their amino acid sequences were determined. These peptides manifested a broad spectrum of antimicrobial activity against various microorganisms with different specificity. By primary structural analysis, it was revealed that nigrocin 1 has high sequence homology with brevinin 2 but nigrocin 2 has low sequence homology with any other known antimicrobial peptides. To investigate the structure-activity relationship of nigrocin 2, which has a unique primary structure, circular dichroism (CD) and homonuclear nuclear magnetic resonance spectroscopy (NMR) studies were performed. CD investigation revealed that nigrocin 2 adopts mainly an alpha-helical structure in trifluoroethanol (TFE)/H(2)O solution, sodium dodecyl sulfate (SDS) micelles, and dodecylphosphocholine micelles. The solution structures of nigrocin 2 in TFE/H(2)O (1:1, v/v) solution and in SDS micelles were determined by homonuclear NMR. Nigrocin 2 consists of a typical amphipathic alpha-helix spanning residues 3-18 in both 50% TFE solution and SDS micelles. From the structural comparison of nigrocin 2 with other known antimicrobial peptides, nigrocin 2 could be classified into the family of antimicrobial peptides containing a single linear amphipathic alpha-helix that potentially disrupts membrane integrity, which would result in cell death.  相似文献   

13.
The solution structure of one of the first members of the cyclotide family of macrocyclic peptides to be discovered, circulin B has been determined and compared with that of circulin A and related cyclotides. Cyclotides are mini-proteins derived from plants that have the characteristic features of a head-to-tail cyclised peptide backbone and a knotted arrangement of their three disulfide bonds. First discovered because of their uterotonic or anti-HIV activity, they have also been reported to have activity against a range of Gram positive and Gram negative bacteria as well as fungi. The aim of the current study was to develop structure-activity relationships to rationalise this antimicrobial activity. Comparison of cyclotide structures and activities suggests that the presence and location of cationic residues may be a requirement for activity against Gram negative bacteria. Understanding the topological differences associated with the antimicrobial activity of the cyclotides is of significant interest and potentially may be harnessed for pharmaceutical applications.  相似文献   

14.
Microcin J25 (MccJ25) is the single macrocyclic antimicrobial peptide belonging to the ribosomally synthesized class of microcins that are secreted by Enterobacteriaceae. It showed potent antibacterial activity against several Salmonella and Escherichia strains and exhibited a compact three-dimensional structure [Blond et al. (2001) Eur. J. Biochem., 268, 2124-2133]. The molecular mechanisms involved in the biosynthesis, folding and mode of action of MccJ25 are still unknown. We have investigated the structure and the antimicrobial activity of thermolysin-linearized MccJ25 (MccJ25-L1-21: VGIGTPISFY10GGGAGHVPEY20F), as well as two synthetic analogs, sMccJ25-L1-21 (sequence of the thermolysin-cleaved MccJ25) and sMccJ25-L12-11 (C-terminal sequence of the MccJ25 precursor: G12GAGHVPEYF21V1GIGTPISFYG11). The three-dimensional solution structure of MccJ25-L1-21, determined by two-dimensional NMR, consists of a boot-shaped hairpin-like well-defined 8-19 region flanked by disordered N and C termini. This structure is remarkably similar to that of cyclic MccJ25, and includes a short double-stranded antiparallel beta-sheet (8-10/17-19) perpendicular to a loop (Gly11-His16). The thermolysin-linearized MccJ25-L1-21 had antibacterial activity against E. coli and S. enteritidis strains, while both synthetic analogues lacked activity and organized structure. We show that the 8-10/17-19 beta-sheet, as well as the Gly11-His16 loop are required for moderate antibacterial activity and that the Phe21-Pro6 loop and the MccJ25 macrocyclic backbone are necessary for complete antibacterial activity. We also reveal a highly stable 8-19 structured core present in both the native MccJ25 and the thermolysin-linearized peptide, which is maintained under thermolysin treatment and resists highly denaturing conditions.  相似文献   

15.
The properties and structure-activity relationships (SAR) of a macrocyclic analogue of porcine protegrin I (PG-I) have been investigated. The lead compound, having the sequence cyclo-(-Leu-Arg-Leu-Lys-Lys-Arg-Arg-Trp-Lys-Tyr-Arg-Val-d-Pro-Pro-), shows antimicrobial activity against Gram-positive and -negative bacteria, but a much lower haemolytic activity and a much reduced ability to induce dye release from phosphatidylcholine/phosphatidylglycerol liposomes, when compared to PG-I. The enantiomeric form of the lead peptide shows comparable antimicrobial activity, a property shared with other cationic antimicrobial peptides acting on cell membranes. SAR studies involving the synthesis and biological profiling of over 100 single site substituted analogues, showed that the antimicrobial activity was tolerant to a large number of the substitutions tested. Some analogues showed slightly improved antimicrobial activities (2-4-fold lowering of MICs), whereas other substitutions caused large increases in haemolytic activity on human red blood cells.  相似文献   

16.
A derivative of chitooligosaccharide (COS) with quaternary ammonium functionality was synthesized and characterized by means of FT-IR and NMR spectroscopy. Its amtimicrobial activity was evaluated against Streptococcus mutans, which is a principal etiological agent of dental caries in humans. Introduction of quaternary ammonium group to COS has been easily accomplished by coupling of glycidyl trimethylammonium chloride (GTMAC) to COS in aqueous solution without an additional catalyst. The degree of substitution (%), as determined by (1)H NMR, of GTMAC to the COS increased up to 116% at 70 degrees C for 24h. The resulting COS-GTMAC exhibited the growth inhibition of above 80% against S. mutans after 5h, whereas the COS showed the growth inhibition of about 10%. It was found that antimicrobial activity of the COS could be considerably enhanced by the introduction of quaternary ammonium functionality.  相似文献   

17.
The alarming rate of bacterial resistance induction highlights the clinical need for antimicrobial agents that act by novel modes of action. Based on the activity profile, the general tissue distribution and renal clearance of peptide-based drugs, we hypothesized that our newly developed pyrrhocoricin derivative would be able to fight resistant uropathogens in vitro and in vivo. Indeed, the Pip-pyrr-MeArg dimer killed all 11 urinary tract infection-related Escherichia coli and Klebsiella pneumoniae strains we studied in the sub-low micromolar concentration range. Almost all control antibiotics, including the currently leading trimethoprim-sulfametoxazole combination for urinary tract infection, remained without considerable activity against two or more of these bacterial strains. In a mouse ascending urinary tract infection model with E. coli CFT073 as pathogen, two doses of intravenous, subcutaneous or oral treatment with the Pip-pyrr-MeArg derivative reduced the bacterial counts in the kidneys, bladder and urine to varying levels. Statistically significant elimination or reduction of bacteria compared to untreated animals was observed at dual intravenous or subcutaneous doses of 0.4 or 10mg/kg, respectively. Serial passage of the same E. coli strain in the presence of sublethal doses of the designed peptide failed to generate resistant mutants. The Pip-pyrr-MeArg dimer showed no toxicity to COS-7 cells to the highest 500microM concentration studied.  相似文献   

18.
Penaeidins are a family of antimicrobial peptides of 47-63 residues isolated from several species of shrimp. These peptides display a proline-rich domain (N-terminal part) and a cysteine-rich domain (C-terminal part) stabilized by three conserved disulfide bonds whose arrangement has not yet been characterized. The recombinant penaeidin-3a of Litopenaeus vannamei (63 residues) and its [T8A]-Pen-3a analogue were produced in Saccharomyces cerevisiae and showed similar antimicrobial activity. The solution structure of the [T8A]-Pen-3a analogue was determined by using two-dimensional 1H NMR and simulated annealing calculations. The proline-rich domain, spanning residues 1-28 was found to be unconstrained. In contrast, the cysteine-rich domain, spanning residues 29-58, displays a well defined structure, which consists of an amphipathic helix (41-50) linked to the upstream and the downstream coils by two disulfide bonds (Cys32-Cys47 and Cys48-Cys55). These two coils are in turn linked together by the third disulfide bond (Cys36-Cys54). Such a disulfide bond packing, which is in agreement with the analysis of trypsin digests by ESI-MS, contributes to the highly hydrophobic core. Side chains of Arg45 and Arg50, which belong to the helix, and side chains of Arg37 and Arg53, which belong to the upstream and the downstream coils, are located in two opposite parts of this globular and compact structure. The environment of these positively charged residues, either by hydrophobic clusters at the surface of the cysteine-rich domain or by sequential hydrophobic residues in the unconstrained proline-rich domain, gives rise to the amphipathic character required for antimicrobial peptides. We hypothesize that the antimicrobial activity of penaeidins can be explained by a cooperative effect between the proline-rich and cysteine-rich features simultaneously present in their sequences.  相似文献   

19.
Lactoferricin and lactoferrampin are two antimicrobial peptides found in the N-terminal lobe of bovine lactoferrin with broad spectrum antimicrobial activity against a range of Gram-positive and Gram-negative bacteria as well as Candida albicans. A heterodimer comprised of lactoferrampin joined to a fragment of lactoferricin was recently reported in which these two peptides were joined at their C-termini through the two amino groups of a single Lys residue (Bolscher et al., 2009, Biochimie 91(1):123-132). This hybrid peptide, termed LFchimera, has significantly higher antimicrobial activity compared to the individual peptides or an equimolar mixture of the two. In this work, the underlying mechanism behind the increased antibacterial activity of LFchimera was investigated. Differential scanning calorimetry studies demonstrated that all the peptides influenced the thermotropic phase behaviour of anionic phospholipid suspensions. Calcein leakage and vesicle fusion experiments with anionic liposomes revealed that LFchimera had enhanced membrane perturbing properties compared to the individual peptides. Peptide structures were evaluated using circular dichroism and NMR spectroscopy to gain insight into the structural features of LFchimera that contribute to the increased antimicrobial activity. The NMR solution structure, determined in a miscible co-solvent mixture of chloroform, methanol and water, revealed that the Lys linkage increased the helical content in LFchimera compared to the individual peptides, but it did not fix the relative orientations of lactoferricin and lactoferrampin with respect to each other. The structure of LFchimera provides insight into the conformation of this peptide in a membranous environment and improves our understanding of its antimicrobial mechanism of action.  相似文献   

20.
Belmonte R  Cruz CE  Pires JR  Daffre S 《Peptides》2012,37(1):120-127
The antimicrobial activity of hemoglobin fragments (hemocidins) has been reported in a variety of models. The cattle tick Rhipicephalus (Boophilus) microplus is a blood sucking arthropod from where the first in vivo-generated hemocidin was characterized (Hb 33-61). In the present work we identified a novel antimicrobial peptide from the midgut of fully engorged R. (B.) microplus females, which comprises the amino acids 98-114 of the alpha subunit of bovine hemoglobin, and was designated Hb 98-114. This peptide was active against several yeast and filamentous fungi, although no activity was detected against bacteria up to 50μM of the synthetic peptide. Hb 98-114 was capable of permeabilizing Candida albicans cell membrane and had a fungicidal effect against this yeast. Circular dichroism (CD) and nuclear magnetic resonance (NMR) experiments showed that Hb 98-114 has a random conformation in aqueous solution but switches to an alpha-helical conformation in the presence of sodium dodecyl sulfate (SDS). This alpha helix adopts an amphipathic structure which may be the mechanism of cell membrane permeabilization. Importantly, Hb 98-114 may play an important role in defending the tick midgut against fungal pathogens and is the first hemocidin with specific antifungal activity to be characterized.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号