首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ongoing Childhood Leukemia Survival Study is examining the possible association between magnetic field exposure and survival of children with newly diagnosed acute lymphocytic leukemia (ALL). We report the results of the first year 24 h personal magnetic field monitoring for 356 US and Canadian children by time weighted average TWA and alternative exposure metrics. The mean TWA of 0.12 microT was similar to earlier personal exposure studies involving children. A high correlation was found between 24 h TWA and alternative metrics: 12 h day TWA, 12 night TWA, geometric mean, 95th percentile value, percentage time over 0.2 and 0.3 microT, and an estimate of field stability (Constant Field Metric). Two measures of field intermittency, rate of change metric (RCM) and standardized rate of change metric (RCMS), were not highly correlated with TWA. The strongest predictor of TWA was location of residence, with highest TWAs associated with urban areas. Residence in an apartment, lower paternal educational level, and residential mobility were also associated with higher TWAs. There were no significant differences in the appliance use patterns of children with higher TWA values. Children with the highest field intermittency (high RCM) were more likely to sit within 3 feet of a video game attached to the TV. Our results suggest that 24 h TWA is a representative metric for certain patterns of exposure, but is not highly correlated with two metrics that estimate field intermittency.  相似文献   

2.
A physically based model for residential magnetic fields from electric transmission and distribution wiring was developed to reanalyze the Los Angeles study of childhood leukemia by London et al. For this exposure model, magnetic field measurements were fitted to a function of wire configuration attributes that was derived from a multipole expansion of the Law of Biot and Savart. The model parameters were determined by nonlinear regression techniques, using wiring data, distances, and the geometric mean of the ELF magnetic field magnitude from 24-h bedroom measurements taken at 288 homes during the epidemiologic study. The best fit to the measurement data was obtained with separate models for the two major utilities serving Los Angeles County. This model's predictions produced a correlation of 0.40 with the measured fields, an improvement on the 0.27 correlation obtained with the Wertheimer-Leeper (WL) wire code. For the leukemia risk analysis in a companion paper, the regression model predicts exposures to the 24-h geometric mean of the ELF magnetic fields in Los Angeles homes where only wiring data and distances have been obtained. Since these input parameters for the exposure model usually do not change for many years, the predicted magnetic fields will be stable over long time periods, just like the WL code. If the geometric mean is not the exposure metric associated with cancer, this regression technique could be used to estimate long-term exposures to temporal variability metrics and other characteristics of the ELF magnetic field which may be cancer risk factors.  相似文献   

3.
A study was carried out in 1990 to guide the development of a protocol for assessing residential exposures of children to time-weighted-average (TWA) power-frequency magnetic fields. The principal goal of this dosimetry study was to determine whether area (i.e., spot and/or 24 h) measurements of power-frequency magnetic fields in the residences and in the schools and daycare centers of 29 children (4 months through 8 years of age) could be used to predict their measured personal 24-h exposures. TWA personal exposures, measured with AMEX-3D meters worn by subjects, were approximately log-normally distributed with both residential and nonresidential geometric means of 0.10 μT (1.0 mG). Between-subjects variability in residential personal exposure levels (geometric standard deviation of 2.4) was substantially greater than that observed for nonresidential personal exposure levels (1.4). The correlation between log-transformed residential and total personal exposure levels was 0.97. Time-weighted averages of the magnetic fields measured in children's bedrooms, family rooms, living rooms, and kitchens were highly correlated with residential personal exposure levels (r = 0.90). In general, magnetic field levels measured in schools and daycare centers attended by subjects were smaller and less variable than measured residential fields and were only weakly correlated with measured nonresidential personal exposures. The final measurement protocol, which will be used in a large US study examining the relationship between childhood leukemia and exposure to magnetic fields, contains the following elements: normal- and low-power spot magnetic field measurements in bedrooms occupied by subjects during the 5 years prior to the date of diagnosis for cases or the corresponding date for controls; spot measurements under normal and low power-usage conditions at the centers of the kitchen and the family room; 24-h magnetic-field recordings near subjects' beds; and wire coding using the Wertheimer-Leeper method. © 1994 Wiley-Liss, Inc.
  • 1 This article is a US Government work and, as such, is in the public domain in the United States of America.
  •   相似文献   

    4.
    The accurate and valid measurement of personal exposure to magnetic fields poses a major challenge for epidemiologic studies. When considering the various methods to assess exposure, it is unclear which measures are most relevant for studies of human disease, if any. Given these uncertainties, the Electromagnetic Fields and Breast Cancer on Long Island Study (EBCLIS) undertook a pilot study to develop the data collection protocol for a case-control study of breast cancer and magnetic fields. The pilot study used and compared various methods to assess residential exposures to magnetic fields, and related these measures to personal exposures. It included 31 women without breast cancer (mean age, 63+/-7 yr) who lived in their present homes for at least 15 yr. The pilot study consisted of an in-home interview, spot and 24-h magnetic field waveforms and broadband recordings, ground currents, wire coding, and personal 24-h broadband measurements. From the regression analyses, the model that best predicted personal magnetic field exposures included 24-h measurements in the bedroom and in the most lived-in room; as well as ground current test loads taken at the center of this most lived in room (r(2)=86%). The addition of other variables in this regression model yielded only small and nonsignificant increases in r(2). As a direct result of this pilot, EBCLIS will include ground current measurements in its protocol, which have not previously been collected as part of an epidemiologic study. Ground currents may be important because they may be richer in 180 Hz components than are the other currents in a power system. EBCLIS will have the opportunity to examine the ground-current hypothesis in the context of female breast cancer.  相似文献   

    5.
    Occupational, environmental, or domestic exposure of human beings to extremely low-frequency (50- or 60-Hz) electric and magnetic fields varies continuously over time. In epidemiological studies of possible health effects, exposures over long durations must be aggregated in terms of simple summary indices. However, there are many different, biologically plausible, ways of aggregating the data. While awake, each of 20 electric utility personnel and 16 office workers had provided minute-by-minute measures of incident electric (V/m) and magnetic (muT) fields over a 7-day period via personal dosimeters. Once the measures were aggregated as means, medians, peaks, and other indices, intercorrelations between all index pairs were calculated; correlation matrices are presented for the utility and office workers both by group and when pooled. Product-moment coefficients (r) greater that .80 were found between the time-weighted arithmetic mean (TWA) and indices that explicitly emphasize short but highly intense exposures, such as peak values and time above thresholds. Medians and geometric means were less highly correlated with the TWA. Use of only a few indices, perhaps the TWA alone, may sacrifice but little statistical power in most epidemiological studies of utility workers exposed to ELF fields. However, correlations between electric-field strength and magnetic-field density were generally quite weak, as were correlations of either with high-frequency transients; these findings underscore the need to measure each of these variables in epidemiological studies. Indices of exposure incurred outside the workplace were less strongly correlated, which may indicate the need to use several indices in general-population studies.  相似文献   

    6.
    Our lack of knowledge about the biological mechanisms of 50 Hz magnetic fields makes it hard to improve exposure assessment. To provide better information about these exposure measures, we use multidimensional analysis techniques to examine the relations between different exposure metrics for a group of subjects. We used a combination of a two stage Principal Component Analysis (PCA) followed by an ascending hierarchical classification (AHC) to identify a set of measures that would capture the characteristics of the total exposure. This analysis gives an indication of the aspects of the exposure that are important to capture to get a complete picture of the magnetic field environment. We calculated 44 metrics of exposure measures from 16 exposed EDF employees and 15 control subjects, containing approximately 20,000 recordings of magnetic field measurements, taken every 30 s for 7 days with an EMDEX II dosimeter. These metrics included parameters used routinely or occasionally and some that were new. To eliminate those that expressed the least variability and that were most highly correlated to one another, we began with an initial Principal Component Analysis (PCA). A second PCA of the remaining 12 metrics enabled us to identify from the foreground 82.7% of the variance: the first component (62.0%) was characterized by central tendency metrics, and the second (20.7%) by dispersion characteristics. We were able to use AHC to divide the entire sample (of individuals) into four groups according to the axes that emerged from the PCA. Finally, discriminant analysis tested the discriminant power of the variables in the exposed/control classification as well as those from the AHC classification. The first showed that two subjects had been incorrectly classified, while no classification error was observed in the second. This exploratory study underscores the need to improve exposure measures by using at least two dimensions: intensity and dispersion. It also indicates the usefulness of constructing a typology of magnetic field exposures.  相似文献   

    7.
    Epidemiologic studies examining the risk of cancer among occupational groups exposed to electric fields (EF) and or magnetic fields (MF) have relied on traditional summaries of exposure such as the time weighted arithmetic or geometric mean exposure. Findings from animal and cellular studies support the consideration of alternative measures of exposure capable of capturing threshold and intermittent measures of field strength. The main objective of this study was to identify a series of suitable exposure metrics for an ongoing cancer incidence study in a cohort of Ontario electric utility workers. Principal components analysis (PCA) and correlational analysis were used to explore the relationships within and between series of EF and MF exposure indices. Exposure data were collected using personal monitors worn by a sample of 820 workers which yielded 4247 worker days of measurement data. For both EF and MF, the first axis of the PCA identified a series of intercorrelated indices that included the geometric mean, median and arithmetic mean. A considerable portion of the variability in EF and MF exposures were accounted for by two other principal component axes. The second axes for EF and MF exposures were representative of the standard deviation (standard deviation) and thresholds of field measures. To a lesser extent, the variability in the exposure variable was explained by time dependent indices which consisted of autocorrelations at 5 min lags and average transitions in field strength. Our results suggest that the variability in exposure data can only be accounted for by using several exposure indices, and consequently, a series of metrics should be used when exploring the risk of cancer owing to MF and EF exposure in this cohort. Furthermore, the poor correlations observed between indices of MF and EF reinforce the need to be take both fields into account when assessing the risk of cancer in this occupational group. Bioelectromagnetics 19:140–151, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

    8.
    Wang JH  Zuo XN  Gohel S  Milham MP  Biswal BB  He Y 《PloS one》2011,6(7):e21976
    Graph-based computational network analysis has proven a powerful tool to quantitatively characterize functional architectures of the brain. However, the test-retest (TRT) reliability of graph metrics of functional networks has not been systematically examined. Here, we investigated TRT reliability of topological metrics of functional brain networks derived from resting-state functional magnetic resonance imaging data. Specifically, we evaluated both short-term (<1 hour apart) and long-term (>5 months apart) TRT reliability for 12 global and 6 local nodal network metrics. We found that reliability of global network metrics was overall low, threshold-sensitive and dependent on several factors of scanning time interval (TI, long-term>short-term), network membership (NM, networks excluding negative correlations>networks including negative correlations) and network type (NT, binarized networks>weighted networks). The dependence was modulated by another factor of node definition (ND) strategy. The local nodal reliability exhibited large variability across nodal metrics and a spatially heterogeneous distribution. Nodal degree was the most reliable metric and varied the least across the factors above. Hub regions in association and limbic/paralimbic cortices showed moderate TRT reliability. Importantly, nodal reliability was robust to above-mentioned four factors. Simulation analysis revealed that global network metrics were extremely sensitive (but varying degrees) to noise in functional connectivity and weighted networks generated numerically more reliable results in compared with binarized networks. For nodal network metrics, they showed high resistance to noise in functional connectivity and no NT related differences were found in the resistance. These findings provide important implications on how to choose reliable analytical schemes and network metrics of interest.  相似文献   

    9.
    Residential magnetic field (MF) measurements were performed for the first time in a representative sample of French dwellings. Exposure levels were assessed by two methods: indoor and outdoor measurements. Linear and logistic regression models were used to determine factors associated with the time-weighted average (TWA) home MF. TWA magnetic field magnitudes were approximately log-normally distributed with geometric means under 0.010 microT for both indoor and outdoor measurements. Only 5% of the dwellings presented indoor MF levels greater than 0.120 microT (1.2 mG). Both indoor and outdoor MF variations were explained by three factors: wiring configuration, the dwelling's location (i.e., urban or rural), and housing characteristics (individual houses or apartment building). The reliability of outdoor spot measurements with 30-min bedroom recordings was assessed by an intraclass correlation coefficient. The measurements were accurate in rural areas and small towns. In urban centers, local MF variations spoil the outdoor measurement's reliability. If indoor measurements are taken as the reference method, the use of outdoor instead of indoor measurement leads to an important decrease in statistical power. Further assessment of MF near high power transmission lines is necessary to evaluate the usefulness of outdoor spot recordings near such lines. The urban MF environment also has to be explored to identify extraneous sources.  相似文献   

    10.
    This investigation was undertaken because biological studies to evaluate the effects of intermediate frequency magnetic fields are insufficient. White Leghorn fertile eggs (60/group) were either exposed to a 20 kHz, 1.1 mT(rms) sinusoidal magnetic field or sham‐exposed during the first 2, 7, or 11 days of embryogenesis. Lower dose exposures at 0.011 and 0.11 mT(rms) for 2 days were also conducted to elucidate possible dose–response relationships. Additional eggs given all‐trans‐retinoic acid, a teratogen, were exposed to the 1.1 mT(rms) magnetic field for the same periods to investigate the modification of embryotoxicity. After exposure, embryos were examined for mortality and developmental abnormalities. Developmental stage, number of somite pairs, and other developmental endpoints were also evaluated. Experiments were triplicated and conducted in a blind fashion. No exposure‐related changes were found in any of the endpoints in intact embryos exposed to1.1 mT(rms) or to the lower doses of 0.11 and 0.011 mT(rms) magnetic fields. Retinoic acid administration produced embryotoxic responses, which were embryonic death and developmental abnormalities, in 40–60% of embryos in the sham‐exposed groups. The magnitude of these responses was not changed significantly by the magnetic field exposures. Under the present experimental conditions, exposure to 20 kHz magnetic field up to 1.1 mT(rms) was not embryotoxic in the chick and did not potentiate the embryotoxic action of retinoic acid. Bioelectromagnetics 30:573–582, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

    11.
    Epidemiological investigation of the impact of climate change on human health, particularly chronic diseases, is hindered by the lack of exposure metrics that can be used as a marker of climate change that are compatible with health data. Here, we present a surrogate exposure metric created using a 30-year baseline (1960–1989) that allows users to quantify long-term changes in exposure to frequency of extreme heat events with near unabridged spatial coverage in a scale that is compatible with national/state health outcome data. We evaluate the exposure metric by decade, seasonality, area of the country, and its ability to capture long-term changes in weather (climate), including natural climate modes. Our findings show that this generic exposure metric is potentially useful to monitor trends in the frequency of extreme heat events across varying regions because it captures long-term changes; is sensitive to the natural climate modes (ENSO events); responds well to spatial variability, and; is amenable to spatial/temporal aggregation, making it useful for epidemiological studies.  相似文献   

    12.
    The binding properties of the G-protein coupled receptor (GPCR) serotonin 5-HT1B receptor were studied under exposure to AC (50 and 400 Hz) and DC magnetic fields (MF) in rat brain membranes. This was an attempt at replicating the positive findings of Massot et al. In saturation experiments using [3H]5-HT, 1-h exposures at 1.1 mT(rms) 50 Hz caused statistically significant increases in both the K(D) and B(max) binding parameters, from 1.74 +/- 0.3 to 4.51 +/- 0.86 nM and from 1428 +/- 205 to 2137 +/- 399 CPM, respectively, in good agreement with previous results. Exposure of the membranes at 400 Hz 0.675 mT(rms) did not elicit a larger increase in K(D) in spite of a much larger induced current density. DC fields (1.1 and 11 mT) had a lesser effect compared to AC fields at low values of K(Dsham), but decreased the affinity at higher values of K(Dsham). Modeling of the receptor-ligand-G protein interactions using the extended ternary complex model yielded good fits for all our data and that of Massot et al., showing that the AC field may act by decreasing the ability of the G-protein to alter the ligand-receptor affinity. The hypothesis is that the bipolar nature of the AC field explains the different nature of the effects observed with AC and DC exposures. These findings constitute one of the few documented pieces of evidence for cell-free effects of DC and extremely low frequency (ELF) AC MFs in the mT range.  相似文献   

    13.
    1. Properly assessing temporal patterns is a central issue in ecology in order to understand ecosystem processes and their mechanisms. Mast seeding has traditionally been described as a reproductive behavior consisting of highly variable and synchronized reproductive events. The most common metric used to measure temporal variability and thus infer masting behavior, the coefficient of variation (CV), however, has been repeatedly suggested to improperly estimate temporal variability. Biases of CV estimates are especially problematic for non‐normally distributed data and/or data sets with a high number of zeros.
    2. Some recent studies have already adopted new metrics to measure temporal variability, but most continue to use CV. This controversy has started a strong debate about what metrics to use.
    3. We here summarize the problems of CV when assessing temporal variability, particularly across data sets containing a large number of zeros, and highlight the benefits of using other metrics of temporal variability, such as proportional variability (PV) and consecutive disparity (D). We also suggest a new way to look at reproductive behavior, by separating temporal variability from frequency of reproduction, to allow better comparison of data sets with different characteristics.
    4. We suggest future studies to properly describe the temporal patterns in fully scientific and measurable terms that do not lead to confusion, such as variability and frequency of reproduction, using robust and fully comparable metrics.
      相似文献   

    14.
    According to the European Water Framework Directive, waterbodies have to be classified on the basis of their ecological status using biological quality elements, such as macroinvertebrates. This needs to take into consideration the influence of natural variation (both spatial and temporal) of reference biological communities as this may obscure the effects caused by anthropogenic disturbance. We studied the influence of among-habitat and temporal (seasonal and interannual) changes on the macroinvertebrate communities of an Iberian shallow lake and the variability of 21 measures potentially useful for bioindication purposes. Two series of data were examined: (a) macroinvertebrate samples taken on four occasions over an annual cycle were used to assess the effects of seasonality and among-habitat variability; (b) macroinvertebrate samples collected in three consecutive summers were used to assess interannual variability. Coefficients of variation, expressed as percentage, were used to quantify the effect of among-habitat and temporal variability on the selected metrics. According to our results, % Insecta, Shannon–Wiener diversity index and the qualitative taxonomic metrics (measures based on number of taxa) were robust in terms of temporal (seasonal and interannual) and among-habitat variability. Abundance ratio and some metrics based on functional feeding groups were highly variable. Therefore, qualitative taxonomic metrics may be promising tools in biomonitoring programs of Mediterranean shallow lakes due to their comparatively low variability.  相似文献   

    15.
    16.
    Current limits for exposures to nonionizing electromagnetic fields (EMF) are set, based on relatively short-term exposures. Long-term exposures to weak EMF are not addressed in the current guidelines. Nevertheless, a large and growing amount of evidence indicates that long-term exposure to weak fields can affect biological systems and might have effects on human health. If they do, the public health issues could be important because of the very large fraction of the population worldwide that is exposed. We also discuss research that needs to be done to clarify questions about the effects of weak fields. In addition to the current short-term exposure guidelines, we propose an approach to how weak field exposure guidelines for long-term exposures might be set, in which the responsibility for limiting exposure is divided between the manufacturer, system operator, and individual being exposed. Bioelectromagnetics. © 2020 Bioelectromagnetics Society  相似文献   

    17.
    1. A spatially‐extensive data set of stream macroinvertebrate communities from 49 northern New Zealand sites sampled over a 10‐year period was analysed to assess relationships between the environment (catchment land‐cover, landscape position and regional‐scale weather patterns), and (i) community persistence and stability based on the constancy of species occurrence (presence–absence) and abundance (per cent composition), respectively and (ii) the temporal variability of various community condition metrics. 2. No significant relationship was evident between community stability or persistence within sites and a gradient of increasing land‐use stress (LUS) based on types of upstream land‐cover, with interannual mean similarities at all sites falling within the standard deviations recorded at long‐term reference sites. In contrast, condition metrics were inversely related to LUS. Land‐use appeared to be a key factor influencing community composition among sites whereas climate influenced stability and persistence within sites. 3. Three response trajectories of community variability to increasing LUS were distinguished based on the coefficient of variation of mean interannual similarities, such that (i) persistence and stability appeared to be more variable at developed sites with low LUS and at sites with high stress relative to the variability experienced naturally, but similar to the natural range at intermediate levels of stress (‘sinusoidal response’); (ii) variability in Ephemeroptera, Plecoptera and Trichoptera metrics increased at low‐to‐moderate stress and then accelerated rapidly at highly developed sites (‘stepped‐exponential response’) and (iii) variability in a pollution tolerance metric increased rapidly and then maintained a similar level of variability along the remaining stress gradient (‘plateau response’). 4. The results of this study have implications for biomonitoring approaches that assume high temporal persistence and stability of communities to define site impairment. Misclassifications caused by interannual variability could lead to misinterpretation of site condition, if conclusions are based on single annual surveys. Temporal variability in stability and persistence may help distinguish low levels of impairment where a predominantly healthy fauna experiences increased environmental fluctuations.  相似文献   

    18.
    Lake phytoplankton are adopted world-wide as a sensitive indicator of water quality. European environmental legislation, the EU Water Framework Directive (WFD), formalises this, requiring the use of phytoplankton to assess the ecological status of lakes and coastal waters. Here we provide a rigorous assessment of a number of proposed phytoplankton metrics for assessing the ecological quality of European lakes, specifically in response to nutrient enrichment, or eutrophication, the most widespread pressure affecting lakes. To be useful indicators, metrics must have a small measurement error relative to the eutrophication signal we want them to represent among lakes of different nutrient status. An understanding of variability in metric scores among different locations around a lake, or due to sampling and analytical variability can also identify how best this measurement error is minimised.To quantify metric variability, we analyse data from a multi-scale field campaign of 32 European lakes, resolving the extent to which seven phytoplankton metrics (including chlorophyll a, the most widely used metric of lake quality) vary among lakes, among sampling locations within a lake and through sample replication and processing. We also relate these metrics to environmental variables, including total phosphorus concentration as an indicator of eutrophication.For all seven metrics, 65–96% of the variance in metric scores was among lakes, much higher than variability occurring due to sampling/sample processing. Using multi-model inference, there was strong support for relationships between among-lake variation in three metrics and differences in total phosphorus concentrations. Three of the metrics were also related to mean lake depth. Variability among locations within a lake was minimal (<4%), with sub-samples and analysts accounting for much of the within-lake metric variance. This indicates that a single sampling location is representative and suggests that sub-sample replication and standardisation of analyst procedures should result in increased precision of ecological assessments based upon these metrics.For three phytoplankton metrics being used in the WFD: chlorophyll a concentration, the Phytoplankton Trophic Index (PTI) and cyanobacterial biovolume, >85% of the variance in metric scores was among-lakes and total phosphorus concentration was well supported as a predictor of this variation. Based upon this study, we can recommend that these three proposed metrics can be considered sufficiently robust for the ecological status assessment of European lakes in WFD monitoring schemes.  相似文献   

    19.
    1. Biodiversity, water quality and ecosystem processes in streams are known to be influenced by the terrestrial landscape over a range of spatial and temporal scales. Lumped attributes (i.e. per cent land use) are often used to characterise the condition of the catchment; however, they are not spatially explicit and do not account for the disproportionate influence of land located near the stream or connected by overland flow. 2. We compared seven landscape representation metrics to determine whether accounting for the spatial proximity and hydrological effects of land use can be used to account for additional variability in indicators of stream ecosystem health. The landscape metrics included the following: a lumped metric, four inverse‐distance‐weighted (IDW) metrics based on distance to the stream or survey site and two modified IDW metrics that also accounted for the level of hydrologic activity (HA‐IDW). Ecosystem health data were obtained from the Ecological Health Monitoring Programme in Southeast Queensland, Australia and included measures of fish, invertebrates, physicochemistry and nutrients collected during two seasons over 4 years. Linear models were fitted to the stream indicators and landscape metrics, by season, and compared using an information‐theoretic approach. 3. Although no single metric was most suitable for modelling all stream indicators, lumped metrics rarely performed as well as other metric types. Metrics based on proximity to the stream (IDW and HA‐IDW) were more suitable for modelling fish indicators, while the HA‐IDW metric based on proximity to the survey site generally outperformed others for invertebrates, irrespective of season. There was consistent support for metrics based on proximity to the survey site (IDW or HA‐IDW) for all physicochemical indicators during the dry season, while a HA‐IDW metric based on proximity to the stream was suitable for five of the six physicochemical indicators in the post‐wet season. Only one nutrient indicator was tested and results showed that catchment area had a significant effect on the relationship between land use metrics and algal stable isotope ratios in both seasons. 4. Spatially explicit methods of landscape representation can clearly improve the predictive ability of many empirical models currently used to study the relationship between landscape, habitat and stream condition. A comparison of different metrics may provide clues about causal pathways and mechanistic processes behind correlative relationships and could be used to target restoration efforts strategically.  相似文献   

    20.
    Many diffusion parameters and indices (e.g., fractional anisotropy [FA] and mean diffusivity [MD]) have been derived from diffusion magnetic resonance imaging (MRI) data. These parameters have been extensively applied as imaging markers for localizing white matter (WM) changes under various conditions (e.g., development, degeneration and disease). However, the vast majority of the existing parameters is derived from intra-voxel analyses and represents the diffusion properties solely within the voxel unit. Other types of parameters that characterize inter-voxel relationships have been largely overlooked. In the present study, we propose a novel inter-voxel metric referred to as the local diffusion homogeneity (LDH). This metric quantifies the local coherence of water molecule diffusion in a model-free manner. It can serve as an additional marker for evaluating the WM microstructural properties of the brain. To assess the distinguishing features between LDH and FA/MD, the metrics were systematically compared across space and subjects. As an example, both the LDH and FA/MD metrics were applied to measure age-related WM changes. The results indicate that LDH reveals unique inter-subject variability in specific WM regions (e.g., cerebral peduncle, internal capsule and splenium). Furthermore, there are regions in which measurements of age-related WM alterations with the LDH and FA/MD metrics yield discrepant results. These findings suggest that LDH and FA/MD have different sensitivities to specific WM microstructural properties. Taken together, the present study shows that LDH is complementary to the conventional diffusion-MRI markers and may provide additional insights into inter-subject WM variability. Further studies, however, are needed to uncover the neuronal mechanisms underlying the LDH.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号