共查询到20条相似文献,搜索用时 11 毫秒
1.
The thrombin peptide, TP508, enhances cytokine release and activates signaling events 总被引:1,自引:0,他引:1
Naldini A Carraro F Baldari CT Paccani SR Bernini C Keherly MJ Carney DH 《Peptides》2004,25(11):1917-1926
The thrombin peptide, TP508, accelerates tissue repair and initiates a cascade of cellular events. We have previously shown that alpha-thrombin induces cytokine expression in human mononuclear cells. We, therefore, investigated the possibility that TP508 might activate cytokine production and intracellular signaling pathways associated with cytokine activation. Our results show that TP508 induces cytokine expression in human mononuclear cells. TP508 treatment enhances extracellular signal-regulated kinase (Erk1/2) activities in U937 cells, as well as Erk1/2 and p38 activation in Jurkat T cells. These data support the hypothesis that TP508 may accelerate tissue repair through the activation of the inflammatory response. 相似文献
2.
3.
Naito AT Sumida T Nomura S Liu ML Higo T Nakagawa A Okada K Sakai T Hashimoto A Hara Y Shimizu I Zhu W Toko H Katada A Akazawa H Oka T Lee JK Minamino T Nagai T Walsh K Kikuchi A Matsumoto M Botto M Shiojima I Komuro I 《Cell》2012,149(6):1298-1313
Wnt signaling plays critical roles in development of various organs and pathogenesis of many diseases, and augmented Wnt signaling has recently been implicated in mammalian aging and aging-related phenotypes. We here report that complement C1q activates canonical Wnt signaling and promotes aging-associated decline in tissue regeneration. Serum C1q concentration is increased with aging, and Wnt signaling activity is augmented during aging in the serum and in multiple tissues of wild-type mice, but not in those of C1qa-deficient mice. C1q activates canonical Wnt signaling by binding to Frizzled receptors and subsequently inducing C1s-dependent cleavage of the ectodomain of Wnt coreceptor low-density lipoprotein receptor-related protein 6. Skeletal muscle regeneration in young mice is inhibited by exogenous C1q treatment, whereas aging-associated impairment of muscle regeneration is restored by C1s inhibition or C1qa gene disruption. Our findings therefore suggest the unexpected role of complement C1q in Wnt signal transduction and modulation of mammalian aging. 相似文献
4.
A cell-cell signaling peptide activates the PlcR virulence regulon in bacteria of the Bacillus cereus group 总被引:7,自引:0,他引:7
PlcR is a pleiotropic regulator that activates the expression of genes encoding various virulence factors, such as phospholipases C, proteases and hemolysins, in Bacillus thuringiensis and Bacillus cereus. Here we show that the activation mechanism is under the control of a small peptide: PapR. The papR gene belongs to the PlcR regulon and is located 70 bp downstream from plcR. It encodes a 48-amino-acid peptide. Disruption of the papR gene abolished expression of the PlcR regulon, resulting in a large decrease in hemolysis and virulence in insect larvae. We demonstrated that the PapR polypeptide was secreted, then reimported via the oligopeptide permease Opp. Once inside the cell, a processed form of PapR, presumably a pentapeptide, activated the PlcR regulon by allowing PlcR to bind to its DNA target. This activating mechanism was found to be strain specific, with this specificity determined by the first residue of the penta peptide. 相似文献
5.
Staphylococcal protein A promotes osteoclastogenesis through MAPK signaling during bone infection 下载免费PDF全文
Yuan Wang Xin Liu Ce Dou Zhen Cao Chuan Liu Shiwu Dong Jun Fei 《Journal of cellular physiology》2017,232(9):2396-2406
Bone infection is a common and serious complication in the orthopedics field, which often leads to excessive bone destruction and non‐union. Osteoclast is the only type of cells which have the function of bone resorption. Its over activation is closely related to excessive bone loss. Staphylococcus aureus (S. aureus) is a major pathogen causing bone infection, which can produce a large number of strong pathogenic substances staphylococcal protein A (SPA). However, few studies were reported about the effects of SPA on osteoclastogenesis. In our study, we observed that S. aureus activated osteoclasts and promoted bone loss in bone infection specimens. Then, we investigated the effects of SPA on RANKL‐induced osteoclastogenesis in vitro, the results revealed that SPA promoted osteoclastic differentiation and fusion, and enhanced osteoclastic bone resorption. In addition, we also showed that SPA upregulated the expression of NFATc1 and c‐FOS through the activation of MAPK signaling to promote osteoclastogenesis. Our findings might help us better understand the pathogenic role of S. aureus in bone infection and develop new therapeutic strategies for infectious bone diseases. 相似文献
6.
Cellular activities are primarily initiated, modulated and sustained by multifunctional molecules (cytokines and growth factors) that are secreted into the extracellular space and that signal through membrane-bound, high-affinity receptors. In contrast to the fairly well understood mechanisms that mediate the specificity of signal transduction within the confined and compartmentalized environment of the cell, significantly less is known about the mechanisms that regulate the availability of signaling molecules in the extracellular milieu. Recent findings have implicated the participation of extracellular protein macroaggregates in signaling events controlling patterning and morphogenesis. The results suggest a functional coupling between the tissue-specific organization of collagenous and elastic macroaggregates and their ability to perform instructive as well as structural functions. These observations open the way to a novel understanding in these poorly understood and critically important areas of cell and developmental biology. 相似文献
7.
8.
9.
《Biochimica et Biophysica Acta (BBA)/General Subjects》2016,1860(9):1922-1928
BackgroundThe EphA2 receptor tyrosine kinase is known to promote cancer cell malignancy in the absence of activation by ephrin ligands. This behavior depends on high EphA2 phosphorylation on Ser897 and low tyrosine phosphorylation, resulting in increased cell migration and invasiveness. We have previously shown that EphA2 forms dimers in the absence of ephrin ligand binding, and that dimerization of unliganded EphA2 can decrease EphA2 Ser897 phosphorylation. We have also identified a small peptide called YSA, which binds EphA2 and competes with the naturally occurring ephrin ligands.MethodsHere, we investigate the effect of YSA on EphA2 dimer stability and EphA2 function using quantitative FRET techniques, Western blotting, and cell motility assays.ResultsWe find that the YSA peptide stabilizes the EphA2 dimer, increases EphA2 Tyr phosphorylation, and decreases both Ser897 phosphorylation and cell migration.ConclusionsThe experiments demonstrate that the small peptide ligand YSA reduces EphA2 Ser897 pro-tumorigenic signaling by stabilizing the EphA2 dimer.General significanceThis work is a proof-of-principle demonstration that EphA2 homointeractions in the plasma membrane can be pharmacologically modulated to decrease the pro-tumorigenic signaling of the receptor. 相似文献
10.
Wooten DK Xie X Bartos D Busche RA Longmore GD Watowich SS 《The Journal of biological chemistry》2000,275(34):26566-26575
Hematopoietic cell development and function is dependent on cytokines and on intercellular interactions with the microenvironment. Although the intracellular signaling pathways stimulated by cytokine receptors are well described, little is known about the mechanisms through which these pathways modulate hematopoietic cell adhesion events in the microenvironment. Here we show that cytokine-activated Stat3 stimulates the expression and function of cell surface adhesion molecules in the myeloid progenitor cell line 32D. We generated an erythropoietin receptor (EpoR) isoform (ER343/401-S3) that activates Stat3 rather than Stat5 by substituting the Stat3 binding/activation sequence motif from gp130 for the sequences surrounding tyrosines 343 and 401 in the receptor cytoplasmic region. Activation of Stat3 leads to homotypic cell aggregation, increased expression of intercellular adhesion molecule 1 (ICAM-1), CD18, and CD11b, and activation of signaling through CD18-containing integrins. Unlike the wild type EpoR, ER343/401-S3 is unable to support long term Epo-dependent proliferation in 32D cells. Instead, Epo-treated ER343/401-S3 cells undergo G(1) arrest and express elevated levels of the cyclin-dependent kinase inhibitor p27(Kip1). Sustained activation of Stat3 in these cells is required for their altered morphology and growth properties since constitutive SOCS3 expression abrogates homotypic cell aggregation, signaling through CD18-containing integrins, G(1) arrest, and accumulation of p27(Kip1). Collectively, our results demonstrate that cytokine-activated Stat3 stimulates the expression and function of cell surface adhesion molecules, indicating that a role for Stat3 is to regulate intercellular contacts in myeloid cells. 相似文献
11.
Rintoul RC Buttery RC Mackinnon AC Wong WS Mosher D Haslett C Sethi T 《Molecular biology of the cell》2002,13(8):2841-2852
CD98, an early marker of T-cell activation, is an important regulator of integrin-mediated adhesion events. Previous studies suggest that CD98 is coupled to both cellular activation and transformation and is involved in the pathogenesis of viral infection, inflammatory disease, and cancer. Understanding of the molecular mechanisms underlying CD98 activity may have far-reaching practical applications in the development of novel therapeutic strategies in these disease states. Using small cell lung cancer cell lines, which are nonadherent, nonpolarized, and highly express CD98, we show that, in vitro, under physiological conditions, CD98 is constitutively associated with beta1 integrins regardless of activation status. Cross-linking CD98 with the monoclonal antibody 4F2 stimulated phosphatidylinositol (PI) 3-kinase, PI(3,4,5)P(3), and protein kinase B in the absence of integrin ligation or extracellular matrix engagement. Furthermore, cross-linking CD98 promoted anchorage-independent growth. Using fibroblasts derived from beta1 integrin null stem cells (GD25), wild-type GD25beta1, or GD25 cells expressing a mutation preventing beta1 integrin-dependent FAK phosphorylation, we demonstrate that a functional beta1 integrin is required for CD98 signaling. We propose that by cross-linking CD98, it acts as a "molecular facilitator" in the plasma membrane, clustering beta1 integrins to form high-density complexes. This results in integrin activation, integrin-like signaling, and anchorage-independent growth. Activation of PI 3-kinase may, in part, explain cellular transformation seen on overexpressing CD98. These results may provide a paradigm for events involved in such diverse processes as inflammation and viral-induced cell fusion. 相似文献
12.
13.
Inoue D Numasaki M Watanabe M Kubo H Sasaki T Yasuda H Yamaya M Sasaki H 《Biochemical and biophysical research communications》2006,347(4):852-858
The effects of IL-17A on mucin production and growth of airway epithelial cells were examined. Histological and immunohistochemical analyses revealed that IL-17A increased the mucin production and number of tracheal epithelial cells in air-liquid interface cultures. The biological property of IL-17A to stimulate the mucin production by tracheal epithelial cells was determined using an ELISA. The mitogenic effect of IL-17A on tracheal epithelial cells was confirmed with Calcein-AM assay. The growth-stimulatory effect of IL-17A was dose-dependent and mediated via the ERK MAP kinase pathway. Inhibitors of MEK abrogated the mitogenic effect of IL-17A, whereas an inhibitor of p38 or JNK displayed no significant inhibitory effect. Moreover, relatively lower doses of IL-13 also significantly increased the growth of tracheal epithelial cells through a distinct signaling pathway from that of IL-17A. These findings provide the first evidence that IL-17A stimulates the growth of airway epithelial cells through the ERK MAP kinase pathway. 相似文献
14.
15.
Hosaka K Rayner SE von der Weid PY Zhao J Imtiaz MS van Helden DF 《American journal of physiology. Heart and circulatory physiology》2006,290(2):H813-H822
The effects of calcitonin gene-related peptide (CGRP) on constriction frequency, smooth muscle membrane potential (V(m)), and endothelial V(m) of guinea pig mesenteric lymphatics were examined in vitro. CGRP (1-100 nM) caused an endothelium-dependent decrease in the constriction frequency of perfused lymphatic vessels. The endothelium-dependent CGRP response was abolished by the CGRP-1 receptor antagonist CGRP-(8-37) (1 microM) and pertussis toxin (100 ng/ml). This action of CGRP was also blocked by the nitric oxide (NO) synthase inhibitor N(G)-nitro-L-arginine (L-NNA; 10 microM), an action that was reversed by the addition of L-arginine (100 microM). cGMP, adenylate cyclase, cAMP-dependent protein kinase (PKA), and ATP-sensitive K+ (K+(ATP)) channels were all implicated in the endothelium-dependent CGRP response because it was abolished by methylene blue (20 microM), 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (10 microM), dideoxyadenosine (10 microM), N-[2-(p-bromociannamylamino)-ethyl]-5-isoquinolinesulfonamide-dichloride (H89; 1 microM) and glibenclamide (10 microM). CGRP (100 nM), unlike acetylcholine, did not alter endothelial intracellular Ca2+ concentration or V(m). CGRP (100 nM) hyperpolarized the smooth muscle V(m), an effect inhibited by L-NNA, H89, or glibenclamide. CGRP (500 nM) also caused a decrease in constriction frequency. However, this was no longer blocked by CGRP-(8-37). CGRP (500 nM) also caused smooth muscle hyperpolarization, an action that was now not blocked by L-NNA (100 microM). It was most likely mediated by the activation of the cAMP/PKA pathway and the opening of K+(ATP) channels because it was abolished by H89 or glibenclamide. We conclude that CGRP, at low to moderate concentrations (i.e., 1-100 nM), decreases lymphatic constriction frequency primarily by the stimulation of CGRP-1 receptors coupled to pertussis toxin-sensitive G proteins and the release of NO from the endothelium or enhancement of the actions of endogenous NO. At high concentrations (i.e., 500 nM), CGRP also directly activates the smooth muscle independent of NO. Both mechanisms of activation ultimately cause the PKA-mediated opening of K+(ATP) channels and resultant hyperpolarization. 相似文献
16.
17.
Ferland C Flamand N Davoine F Chakir J Laviolette M 《Journal of immunology (Baltimore, Md. : 1950)》2004,173(7):4417-4424
Increased eosinophil counts are a major feature of asthmatic airways. Eosinophil recruitment requires migration through epithelium and tissue extracellular matrix by activation of proteases. We assessed the capacity of IL-16, a CD4(+) cell chemotactic factor, to induce migration of eosinophils through a reconstituted basement membrane and evaluated the proteases, mediators, and receptors involved in this migration. IL-16 added to lower chambers of Invasion Chambers elicited eosinophil migration through Matrigel. This effect was decreased by inhibition of the plasminogen-plasmin system (Abs against urokinase plasminogen activator receptor or plasminogen depletion), but not by anti-matrix metalloproteinase-9 Abs. Abs against CD4 also inhibited IL-16-induced eosinophil migration. At the baseline level, few eosinophils (4.6% positive cells with a mean fluorescence of 0.9) expressed surface membrane CD4, while most permeabilized eosinophils (68% positive cells with a mean fluorescence of 18) express the CD4 Ag. TNF-pretreatment increased surface membrane CD4(+) expression by 6-fold as previously described, and increased IL-16-induced cell migration by 2.2-fold. Incubation of eosinophils with IL-16 also increased surface membrane CD4 expression by 5.4-fold, supporting the role of CD4 as receptor for IL-16. Abs against CCR3, eotaxin, or RANTES blocked IL-16-induced migration. In conclusion, IL-16 promotes eosinophil migration in vitro, by activating the plasminogen-plasmin system and increasing the membrane expression of its receptor. This effect is initiated via CD4 and mediated via the release of CCR3 ligand chemokines. Interestingly, most eosinophils express intracellular CD4. Hence, IL-16 may play an important role in the recruitment of blood eosinophils to the bronchial mucosa of asthmatics. 相似文献
18.
Yu-Jung Chang Che-Ming Hsu Chia-Hua Lin Michael Shiang-Cheng Lu Linyi Chen 《Biochimica et Biophysica Acta (BBA)/General Subjects》2013
Background
Neurotrophins are important regulators for neural development and regeneration. Nerve growth factor (NGF) therapy has been tested in various models of neural injury and degeneration. However, whether NGF can reach target tissues and maintain effective concentration for a certain period of time remains uncertain. To facilitate neural regeneration, we investigate the possibility of combining NGF and electrical stimulation (ES) in promoting neurite outgrowth, an essential process during neural regeneration.Methods
PC12 cells were seeded on collagen and indium tin oxide (ITO)-coated area on the transparent conductive devices. Cells were then subjected to the combination of ES and NGF treatment. Neurite outgrowth was compared.Results
Our findings suggest that ES of 100 mV/mm together with NGF provides optimal effect on neurite outgrowth of PC12 cells. ES increases NGF-induced neurite length but reduces neurite branching, indicative of its primary effect on neurite elongation instead of initiation. One mechanism that ES enhances neurite outgrowth is through increasing NGF-induced phosphorylation of ERK1/2 (pERK1/2) and expression of Egr1 gene. ES has previously been demonstrated to increase the activity of protein kinase C (PKC). Our result indicates that activating PKC further increases NGF-induced pERK1/2 and thus neurite outgrowth.Conclusion
It is likely that ES promotes NGF-induced neurite outgrowth through modulating the activity of ERK1/2.General significance
Findings from this study suggest that combining ES and NGF provides a promising strategy for promoting neurite outgrowth. 相似文献19.
YY1 activates Msx2 gene independent of bone morphogenetic protein signaling 总被引:1,自引:0,他引:1 下载免费PDF全文
Tan DP Nonaka K Nuckolls GH Liu YH Maxson RE Slavkin HC Shum L 《Nucleic acids research》2002,30(5):1213-1223
Msx2 is a homeobox gene expressed in multiple embryonic tissues which functions as a key mediator of numerous developmental processes. YY1 is a bi-functional zinc finger protein that serves as a repressor or activator to a variety of promoters. The role of YY1 during embryogenesis remains unknown. In this study, we report that Msx2 is regulated by YY1 through protein–DNA interactions. During embryogenesis, the expression pattern of YY1 was observed to overlap in part with that of Msx2. Most notably, during first branchial arch and limb development, both YY1 and Msx2 were highly expressed, and their patterns were complementary. To test the hypothesis that YY1 regulates Msx2 gene expression, P19 embryonal cells were used in a number of expression and binding assays. We discovered that, in these cells, YY1 activated endogenous Msx2 gene expression as well as Msx2 promoter–luciferase fusion gene activity. These biological activities were dependent on both the DNA binding and activation domains of YY1. In addition, YY1 bound specifically to three YY1 binding sites on the proximal promoter of Msx2 that accounted for this transactivation. Mutations introduced to these sites reduced the level of YY1 transactivation. As bone morphogenetic protein type 4 (BMP4) regulates Msx2 expression in embryonic tissues and in P19 cells, we further tested whether YY1 is the mediator of this BMP4 activity. BMP4 did not induce the expression of YY1 in early mouse mandibular explants, nor in P19 cells, suggesting that YY1 is not a required mediator of the BMP4 pathway in these tissues at this developmental stage. Taken together, these findings suggest that YY1 functions as an activator for the Msx2 gene, and that this regulation, which is independent of the BMP4 pathway, may be required during early mouse craniofacial and limb morphogenesis. 相似文献
20.
Rina Fujihara Naoyuki Uchida Toshiaki Tameshige Nozomi Kawamoto Yugo Hotokezaka Takumi Higaki Rüdiger Simon Keiko U Torii Masao Tasaka Mitsuhiro Aida 《Plant Biotechnology》2021,38(3):317
The shoot organ boundaries have important roles in plant growth and morphogenesis. It has been reported that a gene encoding a cysteine-rich secreted peptide of the EPIDERMAL PATTERNING FACTOR-LIKE (EPFL) family, EPFL2, is expressed in the boundary domain between the two cotyledon primordia of Arabidopsis thaliana embryo. However, its developmental functions remain unknown. This study aimed to analyze the role of EPFL2 during embryogenesis. We found that cotyledon growth was reduced in its loss-of-function mutants, and this phenotype was associated with the reduction of auxin response peaks at the tips of the primordia. The reduced cotyledon size of the mutant embryo recovered in germinating seedlings, indicating the presence of a factor that acted redundantly with EPFL2 to promote cotyledon growth in late embryogenesis. Our analysis suggests that the boundary domain between the cotyledon primordia acts as a signaling center that organizes auxin response peaks and promotes cotyledon growth. 相似文献