首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
ATP-citrate lyase and acetyl-CoA carboxylase purified from lactating rat mammary gland are phosphorylated stoichiometrically by the calmodulin-dependent multiprotein kinase from rabbit skeletal muscle. The reactions are completely dependent on the presence of both Ca2+ and calmodulin. ATP-citrate lyase and acetyl-CoA carboxylase are also phosphorylated stoichiometrically by the Ca2+- and phospholipid-dependent protein kinase (protein kinase C) purified from bovine brain. Phosphorylation of these substrates is stimulated 6-fold and 40-fold respectively by Ca2+ and phosphatidylserine. The calmodulin-dependent and phospholipid-dependent protein kinases phosphorylate the same serine residue on ATP-citrate lyase that is phosphorylated by cyclic-AMP-dependent protein kinase. The sequence of the tryptic peptide containing this site on the mammary enzyme is identical with the sequence of the peptide containing the site on ATP-citrate lyase that is phosphorylated in isolated hepatocytes in response to insulin and/or glucagon. The calmodulin-dependent, phospholipid-dependent and cyclic-AMP-dependent protein kinases phosphorylate distinct sites on acetyl-CoA carboxylase. However, one of the three phosphorylated tryptic peptides derived from enzyme treated with the phospholipid-dependent kinase is identical with the major phosphopeptide (T1) derived from enzyme treated with cyclic-AMP-dependent protein kinase. Phosphorylation of acetyl-CoA carboxylase by the phospholipid-dependent protein kinase inactivates acetyl-CoA carboxylase in a similar manner to cyclic-AMP-dependent protein kinase. With either protein kinase slightly greater phosphorylation and inactivation is seen after pretreatment of acetyl-CoA carboxylase with protein phosphatase-2A, but the effects of the protein phosphatase treatment are not completely reversed. Inactivation by the phospholipid-dependent protein kinase is Ca2+- and phospholipid-dependent, is reversed by protein phosphatase-2A, and correlates with the degree of phosphorylation. The relevance of these findings to insulin- and growth-factor-promoted phosphorylation of ATP-citrate lyase and acetyl-CoA carboxylase in intact cells is discussed.  相似文献   

2.
1. We have synthesized two peptides, one based on the exact sequence around the unique site (Ser79) for the AMP-activated protein kinase on rat acetyl-CoA carboxylase (SSMS peptide) and another in which the serine residue corresponding to the site for cyclic-AMP-dependent protein kinase (Ser77) was replaced by alanine (SAMS peptide). 2. Both peptides were phosphorylated with similar kinetics by the AMP-activated protein kinase, but only the SSMS peptide was a substrate for cyclic-AMP-dependent protein kinase. The SAMS peptide was not phosphorylated by any of five other purified protein kinases tested. 3. The Km of AMP-activated protein kinase for the SAMS peptide is higher than that for acetyl-CoA carboxylase, but the Vmax for peptide phosphorylation is 2.5 times higher than that of its parent protein. This peptide therefore gives a convenient and sensitive assay for the AMP-activated protein kinase. 4. Acetyl-CoA-carboxylase kinase and peptide kinase activities copurify through six steps from a post-mitochondrial supernatant of rat liver, showing that the SAMS peptide is a specific substrate for the AMP-activated protein kinase in this tissue. We could not demonstrate AMP-dependence of the kinase activity in crude preparations, apparently due to endogenous AMP remaining bound to the enzyme. However, 8-bromoadenosine 5-monophosphate (Br8AMP) is a partial agonist at the allosteric (AMP) site, and inhibition by 2 mM Br8AMP can be used to test that one is measuring the AMP-stimulated form of the kinase. 5. Using this approach, we have examined the kinase activity in nine different rat tissues, plus a mouse macrophage cell line, and find that there is a correlation between tissues expressing significant levels of peptide kinase activity and those active in the synthesis or storage of lipids. 6. We also use the peptide assay to show that cyclic AMP-dependent protein kinase does not activate purified AMP-activated protein kinase, and does not affect the activation of partially purified AMP-activated protein kinase by endogenous kinase kinase.  相似文献   

3.
1. The phorbol ester 12-O-tetradecanoyl phorbol 13-acetate (TPA) stimulates fatty acid synthesis from glucose in isolated adipocytes with a half-maximal effect at 0.72 microM. In seven batches of cells, the maximal effects of TPA and insulin were 8.5 +/- 1.1-fold and 27.1 +/- 2.1-fold respectively. Insulin also stimulated fatty acid synthesis from acetate 8.9 +/- 0.5-fold (three experiments), but TPA did not significantly increase fatty acid synthesis from this precursor. 2. In contrast to insulin, TPA treatment of isolated adipocytes did not produce an activation of acetyl-CoA carboxylase which was detectable in crude cell extracts. 3. The total phosphate content of acetyl-CoA carboxylase, isolated from adipocytes in the presence of protein phosphatase inhibitors, was estimated by 32P-labelling experiments to be 2.6 +/- 0.1 (5), 3.4 +/- 0.2 (5), and 3.8 +/- 0.2 (3) mol/mol subunit for enzyme from control, insulin- and TPA-treated cells respectively. Insulin and TPA stimulated phosphorylation within the same two tryptic peptides. 4. Purified acetyl-CoA carboxylase is phosphorylated in vitro by protein kinase C at serine residues which are recovered in three tryptic peptides, i.e. peptide T1, which appears to be identical with the peptide Ser-Ser(P)-Met-Ser-Gly-Leu-His-Leu-Val-Lys phosphorylated by cyclic-AMP-dependent protein kinase, and peptides Ta and Tb, which have the sequences Ile-Asp-Ser(P)-Gln-Arg and Lys-Ile-Asp-Ser(P)-Gln-Arg respectively, and which appear to be derived from a single site by alternative cleavages. None of these correspond to the peptides whose 32P-labelling increase in response to insulin or TPA. Peptides Ta/Tb are not significantly phosphorylated in isolated adipocytes, even after insulin or TPA treatment. Peptide T1 is phosphorylated in isolated adipocytes, but this phosphorylation is not altered by insulin or TPA. 5. These results show that TPA mimics the effect of insulin on phosphorylation, but not activation, of acetyl-CoA carboxylase, i.e. that these two events can be dissociated. In addition, phorbol ester stimulates phosphorylation of acetyl-CoA carboxylase in isolated adipocytes, but this is not catalyzed directly by protein kinase C, and acetyl-CoA carboxylase does not appear to be a physiological substrate for this kinase.  相似文献   

4.
The kinetic parameters and phosphorylation state of acetyl-CoA carboxylase were analysed after purification of the enzyme by avidin--Sepharose chromatography from extracts of isolated adipocytes treated with glucagon or adrenaline. The results provide evidence that the mechanism of inhibition of acetyl-CoA carboxylase in adipocytes treated with glucagon [Zammit & Corstorphine (1982) Biochem. J. 208, 783-788] involves increased phosphorylation of the enzyme. Hormone treatment had effects on the kinetic parameters of the enzyme similar to those of phosphorylation of the enzyme in vitro by cyclic AMP-dependent protein kinase. Glucagon treatment of adipocytes led to increased phosphorylation of acetyl-CoA carboxylase in the same chymotryptic peptide as that containing the major site phosphorylated on the enzyme by purified cyclic AMP-dependent protein kinase in vitro [Munday & Hardie (1984) Eur. J. Biochem. 141, 617-627]. The dose--response curves for inhibition of enzyme activity and increased phosphorylation of the enzyme were very similar, with half-maximal effects occurring at concentrations of glucagon (0.5-1 nM) which are close to the physiological range. In general, the patterns of increased 32P-labelling of chymotryptic peptides induced by glucagon or adrenaline were similar, although there were quantitative differences between the effects of the two hormones on individual peptides. The results are discussed in terms of the possible roles of cyclic AMP-dependent and -independent protein kinases in the regulation of acetyl-CoA carboxylase activity and of lipogenesis in white adipose tissue.  相似文献   

5.
1. Acetyl-CoA carboxylase was purified to homogeneity, in the presence of protein phosphatase inhibitors, from rat liver sampled without freeze-clamping. The enzyme was in a highly phosphorylated state (4.8 mol/subunit) of low specific activity, and could be dramatically reactivated by treatment with protein phosphatase-2A. Amino acid sequencing and fast-atom-bombardment mass spectrometry showed that the enzyme was phosphorylated in Ser79, Ser1200 and Ser1215, the three sites known to be phosphorylated in cell-free assays by the AMP-activated protein kinase. 2. The inactive enzyme could also be completely reactivated using a limited treatment with trypsin, which removes the N-terminal segment containing Ser79 and reduces the phosphate content to 3.5 mol/subunit. These results strengthen previous findings that it is phosphorylation at Ser79 by the AMP-activated protein kinase that is responsible for the inactivation, and not the phosphorylation of the 220-kDa core fragment (which contains Ser1200 and Ser1215). 3. Analysis of the phosphorylation state of Ser79 in acetyl-CoA carboxylase from rat liver showed that phosphorylation occurs post mortem if freeze-clamping is not used. The higher phosphorylation observed in extracts made without freeze-clamping correlates with a large increase in AMP and decrease in ATP (presumably caused by hypoxia during removal of the liver), and with increased activity of the AMP-activated protein kinase. These results provide a rational explanation for the post mortem phosphorylation events, and re-emphasize the point that rapid cooling of cells and tissues is essential when measuring the expressed activity of acetyl-CoA carboxylase (as well as 3-hydroxy-3-methylglutaryl-CoA reductase). 4. Using the freeze-clamping procedure, the ratio of 'expressed' activity (measured in the presence of protein phosphatase inhibitors) to 'total' activity (measured after complete dephosphorylation) of rat liver acetyl-CoA carboxylase showed a marked diurnal rhythm, changing from 50% in the active form in the middle of the dark period to less than 10% active in the middle of the light period. The very low activity in the light period was associated with a high level of phosphorylation in Ser79. This diurnal rhythm is very similar to that previously described for the phosphorylation of 3-hydroxy-3-methylglutaryl-CoA reductase, another substrate for the AMP-activated protein kinase. Neither the activity of the AMP-activated protein kinase nor the content of AMP, ADP or ATP changed between the dark or light periods.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

6.
1. We have sequenced two tryptic/chymotryptic peptides (TC3 and TC3a) containing a third site phosphorylated on rat acetyl-CoA carboxylase by the AMP-activated protein kinase. Comparison with the complete sequence of rat acetyl-CoA carboxylase predicted from the cDNA sequence [López-Casillas et al. (1988) Proc. Natl Acad. Sci. USA 85, 5784-5788] shows that this site corresponds to Ser1215. 2. Comparison of the cDNA sequence with previous amino acid sequence data identifies the other two sites for the AMP-activated protein kinase as Ser79 and Ser1200. A total of eight serine residues phosphorylated in vitro by six protein kinases can now be identified: six of these (Ser23, Ser25, Ser29, Ser77, Ser79 and Ser95) are clustered in the amino terminal region, while two (Ser1200 and Ser1215) are located in the central region. 3. Prior phosphorylation of Ser77 and Ser1200 by cyclic-AMP-dependent protein kinase prevents subsequent phosphorylation of Ser79 and Ser1200, but not Ser1215, by the AMP-activated protein kinase. Phosphorylation of Ser1215 under these conditions is not associated with a change in enzyme activity. 4. Limited trypsin treatment of native acetyl-CoA carboxylase selectively cleaves off the highly phosphorylated amino-terminal region containing Ser79. 5. Phosphorylation at Ser79 and Ser1200 by the AMP-activated protein kinase dramatically decreases Vmax and increases the A0.5 for citrate. Phosphorylation at Ser77 and Ser1200 by cyclic-AMP-dependent protein kinase causes more modest changes in the A0.5 for citrate and the Vmax. Dephosphorylation, or removal of the amino-terminal region containing Ser77/79 using trypsin, reverses all of these effects. 6. These results suggest that the effects of the AMP-activated protein kinase on acetyl-CoA carboxylase activity are mediated entirely by phosphorylation of Ser79, and not Ser1200 and Ser1215. The smaller effects of cyclic-AMP-dependent protein kinase are mediated by phosphorylation of Ser77.  相似文献   

7.
We have examined the sites phosphorylated on acetyl-CoA carboxylase by three protein kinases which have been shown to inactivate the enzyme, i.e. cyclic-AMP-dependent protein kinase, acetyl-CoA carboxylase kinase-2 (ACK2, purified from rat mammary gland) and the AMP-activated protein kinase (formerly called acetyl-CoA carboxylase kinase-3, purified from rat liver). Each protein kinase phosphorylates two out of three sites (termed 1-3) which have been established by amino acid sequencing. The two sites phosphorylated by each kinase can be recovered on separate peptides, TC1 and TC2, derived by combined digestion of the native enzyme by trypsin and chymotrypsin: TC1 = Ser-2Ser(P)-Met-3Ser(P)-Gly-Leu; TC2 = Arg-Met-1Ser(P)-Phe- Cyclic-AMP-dependent protein kinase phosphorylates sites 1 and 2 exclusively, whereas the AMP-activated protein kinase phosphorylates sites 1 and 3, plus at least one other minor site. ACK2 phosphorylates site 1 and, more slowly, an unidentified site(s) within TC1. We have also established the structures of the single major phosphopeptides (T1 and C1 respectively) which are recovered by HPLC after acetyl-CoA carboxylase phosphorylated by cyclic-AMP-dependent protein kinase is digested with trypsin or chymotrypsin alone. T1 is related to TC1, and has the structure: Ser-Ser(P)-Met-Ser-Gly-Leu-His-Leu-Val-Lys. C1 is identical with TC2. We have carried out studies on the correlation of the activity of acetyl-CoA carboxylase with the occupancy of sites 1, 2 and 3 during phosphorylation by each of the three protein kinases. The results suggest that phosphorylation of site 3 is primarily responsible for the large decrease in Vmax produced by the AMP-activated protein kinase, while phosphorylation of site 1 may be primarily responsible for the increase in A0.5 for citrate and more modest depression of Vmax produced by cyclic-AMP-dependent protein kinase and ACK2. Our results emphasize that amino acid sequence information is essential in the unequivocal interpretation of data from phosphopeptide mapping experiments and allow a more complete interpretation of previous data on phosphorylation of acetyl-CoA carboxylase in intact cells. They also open the way to experiments which could establish the physiological roles of these protein kinases in the control of fatty acid synthesis.  相似文献   

8.
We have examined the sites phosphorylated on acetyl-CoA carboxylase in response to insulin in isolated adipocytes. Two tryptic peptides derived from the enzyme become more radioactive after treatment of 32P-labelled cells with insulin. One of these (T4a) accounts for a large part of the total increase in phosphate observed after insulin treatment, and comigrates with the peptide containing the sites phosphorylated in vitro by casein kinase-2. The other may correspond to the 'I' site peptide originally described by Brownsey and Denton in 1982: labelling of this peptide is stimulated at least threefold by insulin treatment, but it is a minor phosphopeptide and, even after insulin treatment, accounts for only about 2.5% of the enzyme-bound phosphate (equivalent to less than 0.1 mol phosphate/mol 240-kDa subunit). Two other major tryptic phosphopeptides (T1 and T4b) labelled in adipocytes do not change significantly in response to insulin, and comigrate with peptides containing sites phosphorylated in vitro by cyclic-AMP-dependent protein kinase and calmodulin-dependent multiprotein kinase respectively. We have sequenced peptides T4a and T4b from acetyl-CoA carboxylase derived from control and insulin-treated adipocytes, and also after phosphorylation in vitro with casein kinase-2 and the calmodulin-dependent multiprotein kinase. The results show that T4a and T4b are forms of the same peptide containing phosphate groups on different serine residues: Phe-Ile-Ile-Gly-Ser4-Val-Ser5-Gln-Asp-Asn-Ser6-Glu-Asp -Glu-Ile-Ser-Asn-Leu-. Site 5 was phosphorylated by the calmodulin-dependent protein kinase and site 6 by casein kinase-2. Migration in the T4a position was exclusively associated with phosphorylation in site 6, irrespective of the presence of phosphate in sites 4 and 5. Sites 5 and 6 were partially phosphorylated in control adipocytes, and there were also small amounts of phosphate in site 4. On stimulation with insulin, phosphorylation appeared to occur primarily at site 6, thus accounting for the increase in 32P-labelling of T4a. We were unable to isolate sufficient quantities of the other insulin-sensitive peptide to determine its sequence. Our results are consistent with the idea that insulin activates either casein kinase-2, or a protein kinase which has the same specificity as casein kinase-2. The function of this modification is not clear, since phosphorylation by casein kinase-2 has no direct effect on acetyl-CoA carboxylase activity.  相似文献   

9.
Three cyclic AMP-independent acetyl-CoA carboxylase kinases (A, B1 and B2) have been isolated from lactating rat mammary gland, using phosphocellulose chromatography, high performance gel filtration, and affinity chromatography on casein-Sepharose and phosvitin-Sepharose. These protein kinases have been identified with previously described kinases by the following criteria. Kinase A phosphorylates the same sites on rabbit mammary acetyl-CoA carboxylase as acetyl-CoA carboxylase kinase 2, which was originally described as a contaminant of rabbit mammary acetyl-CoA carboxylase purified by the poly(ethylene glycol)procedure. Kinase A will henceforth be referred to as acetyl-CoA carboxylase kinase-2. Kinase B1 has been identified with casein kinase II by its heparin sensitivity, elution behaviour on phosphocellulose, molecular mass, substrate specificity and subunit composition. Kinase B2 has been identified with casein kinase I by its elution behaviour on phosphocellulose, molecular mass, substrate specificity and subunit composition. The three kinases phosphorylate distinct sites on acetyl-CoA carboxylase. Phosphorylation by either casein kinase I or II does not affect enzyme activity. However, acetyl-CoA carboxylase kinase 2 inactivates acetyl-CoA carboxylase reversibly, in an identical manner to cyclic-AMP-dependent protein kinase, and phosphorylates sites located on identical peptides. Acetyl-CoA carboxylase kinase-2 can, however, be distinguished from the free catalytic subunit of cyclic-AMP-dependent protein kinase by its molecular mass, its substrate specificity, its elution behaviour on phosphocellulose, and its complete lack of sensitivity to the protein inhibitor of cyclic-AMP-dependent protein kinase. We also present evidence that phosphorylation of acetyl-CoA carboxylase by cyclic-AMP-dependent protein kinase occurs directly and not via a bicyclic cascade system as proposed by other laboratories.  相似文献   

10.
Acetyl-CoA carboxylase (EC 6.4.1.2) has been isolated from rat liver by an avidin-affinity chromatography technique. This preparation has a specific activity of 1.17 +/- 0.06 U/mg and appears as a major (240,000 dalton) and minor (140,000 dalton) band on SDS-polyacrylamide gel electrophoresis. Enzyme isolated by this technique can incorporate 1.09 +/- 0.07 mol phosphate per mol enzyme (Mr = 480,000) when incubated with the catalytic subunit of the cyclic AMP-dependent protein kinase at 30 degrees C for 1 h. The associated activity loss under these conditions is 57 +/- 4.0% when the enzyme is assayed in the presence of 2.0 mM citrate. Less inactivation is observed when the enzyme is assayed in the presence of 5.0 mM citrate. The specific protein inhibitor of the cyclic AMP-dependent protein kinase blocks both the protein kinase stimulated phosphorylation and inactivation of acetyl-CoA carboxylase. The phosphorylated, inactivated rat liver carboxylase can be partially dephosphorylated and reactivated by incubation with a partially purified protein phosphatase. Preparations of acetyl-CoA carboxylase also contained an endogenous protein kinase(s) which incorporated 0.26 +/- 0.11 mol phosphate per mol carboxylase (Mr = 480,000) accompanied by a 26 +/- 9% decline in activity. We have additionally confirmed that the rat mammary gland enzyme, also isolated by avidin affinity chromatography, can be both phosphorylated and inactivated upon incubation with the cyclic AMP-dependent kinase.  相似文献   

11.
A T Sim  D G Hardie 《FEBS letters》1988,233(2):294-298
Acetyl-CoA carboxylase purified from isolated hepatocytes is activated dramatically by protein phosphatase treatment, concomitant with a reduction of the phosphate content from 3.7 to 1.1 mol/subunit. Glucagon treatment of the cells produces a further inactivation of the enzyme that is totally reversed by phosphatase treatment, and is associated with an increase in phosphate content of 0.8 mol/subunit, distributed in two peptides which contain the sites phosphorylated in vitro by the cyclic AMP-dependent and AMP-activated protein kinases. Sequencing of these peptides shows that the low activity of acetyl-CoA carboxylase is due to phosphorylation by the AMP-activated protein kinase, and not cyclic AMP-dependent protein kinase, even after glucagon treatment.  相似文献   

12.
The catalytic subunit of cyclic AMP-dependent protein kinase stimulates the inactivation of acetyl-coenzyme A (CoA) carboxylase by acetyl-CoA carboxylase kinase. The stimulated inactivation of carboxylase is due to activation of carboxylase kinase by the catalytic subunit. Activation of carboxylase kinase activity is accompanied by the incorporation of 0.6 mol of phosphate per mole of carboxylase kinase. Addition of the regulatory subunit of cyclic AMP-dependent protein kinase prevents the activation of carboxylase kinase. Phosphorylation and activation of carboxylase kinase has no effect on the Km for ATP, but decreases the Km for acetyl-CoA carboxylase from 93 to 45 nm. Inactivation of carboxylase by the carboxylase kinase requires the presence of coenzyme A even when the activated carboxylase kinase is used. Acetyl-CoA carboxylase is not phosphorylated or inactivated by the catalytic subunit of cyclic AMP-dependent protein kinase.  相似文献   

13.
Exercise increases AMPK (AMP-activated protein kinase) activity in human and rat adipocytes, but the underlying molecular mechanisms and functional consequences of this activation are not known. Since adrenaline (epinephrine) concentrations increase with exercise, in the present study we hypothesized that adrenaline activates AMPK in adipocytes. We show that a single bout of exercise increases AMPKalpha1 and alpha2 activities and ACC (acetyl-CoA carboxylase) Ser79 phosphorylation in rat adipocytes. Similarly to exercise, adrenaline treatment in vivo increased AMPK activities and ACC phosphorylation. Pre-treatment of rats with the beta-blocker propranolol fully blocked exercise-induced AMPK activation. Increased AMPK activity with exercise and adrenaline treatment in vivo was accompanied by an increased AMP/ATP ratio. Adrenaline incubation of isolated adipocytes also increased the AMP/ATP ratio and AMPK activities, an effect blocked by propranolol. Adrenaline incubation increased lipolysis in isolated adipocytes, and Compound C, an AMPK inhibitor, attenuated this effect. Finally, a potential role for AMPK in the decreased adiposity associated with chronic exercise was suggested by marked increases in AMPKalpha1 and alpha2 activities in adipocytes from rats trained for 6 weeks. In conclusion, both acute and chronic exercise are significant regulators of AMPK activity in rat adipocytes. Our findings suggest that adrenaline plays a critical role in exercise-stimulated AMPKalpha1 and alpha2 activities in adipocytes, and that AMPK can function in the regulation of lipolysis.  相似文献   

14.
The effects of adrenergic agonists on acetyl-CoA carboxylase and fatty acid synthesis were studied in isolated rat hepatocytes from mature rats (300 to 350 g). Norepinephrine and phenylephrine inactivate acetyl-CoA carboxylase activity and inhibit fatty acid synthesis. The effects of both norepinephrine and phenylephrine were blocked by the alpha-adrenergic receptor blockers, phentolamine and phenoxybenzamine, and unaffected by the beta-receptor blocker propranolol. This inactivation was not mimicked by the beta-agonist isoproterenol. The measurable increase in cyclic AMP levels caused by norepinephrine and phenylephrine was abolished by the alpha-antagonist phentolamine and diminished by the beta-antagonist propranolol. Calcium depletion potentiated the increase in cyclic AMP levels by phenylephrine but abolished the phenylephrine inactivation of the carboxylase. The inactivation of acetyl-CoA carboxylase by phenylephrine was correlated with an increase in the incorporation of [32P]phosphate into the enzyme. Thus, catecholamines and their agonists promote phosphorylation and inactivation of acetyl-CoA carboxylase through the alpha-adrenergic receptor, and the inactivation requires calcium.  相似文献   

15.
The effects of citrate and cyclic AMP on the rate and degree of phosphorylation and inactivation of rat liver acetyl-CoA carboxylase were examined. High citrate concentrations (10 to 20 mM), which are generally used to stabilize and activate the enzyme, inhibit phosphorylation and inactivation of carboxylase. At lower concentrations of citrate, the rate and degree of phosphorylation are increased. Furthermore, phosphorylation and enzyme inactivation are affected by cyclic AMP under these conditions. At high citrate concentrations, cyclic AMP has little or no effect on inactivation and phosphorylation of acetyl-CoA carboxylase. Phosphorlation and inactivation of carboxylase is accompanied by depolymerization of the polymeric form of the enzyme into intermediate and protomeric forms. Depolymerization of carboxylase requires the transfer of the gamma-phosphate group from ATP to carboxylase. Inactivation occurs in the absence of CO2, which indicates that phosphorylation of the enzyme is the cause of inactivation and depolymerization, i.e. carboxylation of the enzyme is not responsible for inactivation of the enzyme.  相似文献   

16.
Superose 6 chromatography was used to separate rapidly the polymeric and dimeric forms of acetyl-CoA carboxylase. With preparations of acetyl-CoA carboxylase purified by Sepharose-avidin chromatography, it is shown that citrate promotes polymerization and that the extent of polymerization is diminished, but not eliminated, after phosphorylation by cyclic-AMP-dependent protein kinase. After exposure of rat epididymal adipose tissue to insulin, evidence was obtained for a marked increase in polymerization. The polymeric form, which was active in the absence of citrate, exhibited increased phosphorylation, particularly on a tryptic peptide designated the I-peptide in an earlier study [Brownsey & Denton (1982) Biochem. J. 202, 77-86]. In contrast, in tissue exposed to the beta-agonist isoprenaline, most of the phosphorylated acetyl-CoA carboxylase appeared to be in the dimeric form if chromatography was carried out in the absence of citrate, whereas in the presence of citrate the degree of polymerization was diminished.  相似文献   

17.
The effects of adenosine 3':5'-monophosphate (cyclic AMP) on the phosphorylation of membrane proteins in intact rabbit and human erythrocytes were investigated. The addition of cyclic AMP to intact human or rabbit erythrocytes results in an increase in the incorporation of ortho[32P]phosphate into several membrane protein components which are known to serve as substrates for the cyclic-AMP-dependent protein kinases. Thus this increase in protein phsophorylation is probably due to the activation of either soluble or membrane-bound cyclic-AMP-dependent protein kinases. Incubation of human erythrocytes in the presence of ortho [32P]phosphate and cyclic AMP also leads to the phosphorylation of a membrane protein component, band 7, which has not been previously detected in the autophosphorylation of isolated ghosts. Since rabbit erythrocyte membranes do not contain any cyclic-AMP-dependent protein kinase, the results suggest that cytoplasmic kinases also play a role in the phosphorylation of membrane proteins in intact cells.  相似文献   

18.
The glycogen-bound form of protein phosphatase-1 (termed protein phosphatase-1G) is composed of the catalytic (C) subunit complexed to a glycogen-binding (G) subunit that anchors the enzyme to glycogen [Str?lfors et al. (1985) Eur. J. Biochem. 149, 295-303]. Incubation of purified protein phosphatase-1G with cyclic-AMP-dependent protein kinase and MgATP, which leads to stoichiometric phosphorylation of the G-subunit [Caudwell et al. (1986) FEBS Lett. 194, 85-90], was found to promote the release of the phosphatase from glycogen; similar observations were made using glycogen-protein particle preparations. An intravenous injection of adrenaline decreased protein phosphatase-1 activity associated with the glycogen-protein particles by 50% with a corresponding increase in the amount present in the cytosol. By contrast, adrenaline did not affect the distribution of glycogen synthase or glycogen phosphorylase which remained entirely bound to glycogen in these experiments. The specific release of protein phosphatase-1 from glycogen may facilitate its inactivation by inhibitor-1 in the cytosol, thereby preventing dephosphorylation of the glycogen metabolising enzymes. Translocation of protein phosphatase-1 may represent a novel mechanism for the activation of glycogenolysis and inhibition of glycogen synthesis by adrenaline.  相似文献   

19.
Phosphorylation site 2 on bovine hormone-sensitive lipase (HSL), which is phosphorylated in vitro by the AMP-activated protein kinase, has been found also to be phosphorylated in vitro by glycogen synthase kinase-4. Peptide mapping of HSL phosphorylated in vitro and in isolated adipocytes demonstrates that this site corresponds to the basal phosphorylation site on HSL, which is phosphorylated in intact adipocytes in the absence of lipolytic stimuli. Site 2 has been proposed to have an antilipolytic role in that phosphorylation at this site greatly reduces subsequent phosphorylation (at site 1) and activation of HSL by cyclic-AMP-dependent protein kinase. Further evidence for an antilipolytic role of site 2 has been obtained using a synthetic peptide based on the sequence around sites 1 and 2. Phosphorylation of the peptide at site 2 totally prevents the subsequent phosphorylation of site 1 and vice versa.  相似文献   

20.
1. A new rapid method for the purification of fat-cell acetyl-CoA carboxylase is described; the key step is sedimentation after specific polymerization by citrate. 2. Incubation of epididymal fat-pads or isolated fat-cells with insulin or adrenaline leads to a rapid increase or decrease respectively in the activity of acetyl-CoA carboxylase measured in fresh tissue extracts. The persistence of the effect of insulin through high dilution of tissue extracts and through purification involving precipitation with (NH4)2SO4 suggests that the enzyme undergoes a covalent modification after exposure of intact tissue to the hormone. The opposed effects of insulin and adrenaline are not adequately explained through modification of a common site on acetyl-CoA carboxylase, since these hormones bring about qualitatively different alterations in the kinetic properties of the enzyme measured in tissue extracts. 3. The state of phosphorylation of acetyl-CoA carboxylase within intact fat-cells exposed to insulin was determined, and results indicate a small but consistent rise in overall phosphorylation of the Mr-230000 subunit after insulin treatment. 4. Acetyl-CoA carboxylase from fat-cells previously incubated in medium containing [32P]phosphate was purified by immunoprecipitation and then digested with performic acid and trypsin before separation of the released phosphopeptides by two-dimensional analysis. Results obtained show that the exposure of fat-cells to insulin leads to a 5-fold increase in incorporation of 32P into a peptide which is different from those most markedly affected after exposure of fat-cells to adrenaline. 5. These studies indicate that the activation of acetyl-CoA carboxylase in cells incubated with insulin is brought about by the increased phosphorylation of a specific site on the enzyme, possibly catalysed by the membrane-associated cyclic AMP-independent protein kinase described by Brownsey, Belsham & Denton [(1981) FEBS Lett. 124, 145-150].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号