首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 974 毫秒
1.
The calyx of Held is a large glutamatergic synapse in the mammalian auditory brainstem. By using brain slice preparations, direct patch-clamp recordings can be made from the nerve terminal and its postsynaptic target (principal neurons of the medial nucleus of the trapezoid body). Over the last decade, this preparation has been increasingly employed to investigate basic presynaptic mechanisms of transmission in the central nervous system. We review here the background to this preparation and summarise key findings concerning voltage-gated ion channels of the nerve terminal and the ionic mechanisms involved in exocytosis and modulation of transmitter release. The accessibility of this giant terminal has also permitted Ca2+-imaging and -uncaging studies combined with electrophysiological recording and capacitance measurements of exocytosis. Together, these studies convey the panopoly of presynaptic regulatory processes underlying the regulation of transmitter release, its modulatory control and short-term plasticity within one identified synaptic terminal.  相似文献   

2.
Beutner D  Voets T  Neher E  Moser T 《Neuron》2001,29(3):681-690
Release of neurotransmitter at the inner hair cell (IHC) afferent synapse is a fundamental step in translating sound into auditory nerve excitation. To study the Ca2+ dependence of the underlying vesicle fusion and subsequent endocytosis, we combined Ca2+ uncaging with membrane capacitance measurements in mouse IHCs. Rapid elevations in [Ca2+]i above 8 microM caused a biphasic capacitance increase corresponding to the fusion of approximately 40,000 vesicles. The kinetics of exocytosis displayed a fifth-order Ca2+ dependence reaching maximal rates of >3 x 10(7) vesicle/s. Exocytosis was always followed by slow, compensatory endocytosis (tau congruent with 15 s). Higher [Ca2+]i increased the contribution of a faster mode of endocytosis with a Ca2+ independent time constant of approximately 300 ms. These properties provide for rapid and sustained transmitter release from this large presynaptic terminal.  相似文献   

3.
Neuronal transmission is an integral part of cellular communication within the brain. Depolarization of the presynaptic membrane leads to vesicle fusion known as exocytosis that mediates synaptic transmission. Subsequent retrieval of synaptic vesicles is necessary to generate new neurotransmitter-filled vesicles in a process identified as endocytosis. During exocytosis, fusing vesicle membranes will result in an increase in surface area and subsequent endocytosis results in a decrease in the surface area. Here, our lab demonstrates a basic introduction to cell-attached capacitance recordings of single endocytic events in the mouse adrenal chromaffin cell. This type of electrical recording is useful for high-resolution recordings of exocytosis and endocytosis at the single vesicle level. While this technique can detect both vesicle exocytosis and endocytosis, the focus of our lab is vesicle endocytosis. Moreover, this technique allows us to analyze the kinetics of single endocytic events. Here the methods for mouse adrenal gland tissue dissection, chromaffin cell culture, basic cell-attached techniques, and subsequent examples of individual traces measuring singular endocytic event are described.  相似文献   

4.
目的 槲皮素是一种广泛分布于药用植物中的黄酮类化合物,传统被认为具有神经保护作用。在本研究中,我们利用位于大鼠脑干的花萼状突触的突触前神经末梢的进行膜片钳记录,研究槲皮素调控突触传递和可塑性的突触前机制。方法 利用全细胞膜片钳结合膜电容记录,在突触后记录微小兴奋性突触后电流(mEPSC),在突触前神经末梢记录钙內流和神经囊泡的释放、回收以及可立即释放库(RRP)的恢复动力学。并且利用纤维刺激在轴突给予5~200 Hz的刺激,诱发突触后EPSC,记录突触后短时程抑制(STD)。结果 100 μmol/L槲皮素不影响突触后mEPSC的振幅、频率以及AMPA受体的动力学特征。在突触前神经末梢,槲皮素不改变钙内流或囊泡的释放,但显著抑制胞吐后的网格蛋白依赖的慢速胞吞。抑制胞吞会导致突触前囊泡动员的减慢,降低RRP的补充速率,并且增强高频刺激下的短时程可塑性STD。结论 本研究为槲皮素调控中枢神经突触传递提供全新的突触前神经机制,槲皮素有助于抑制中枢神经过度兴奋,进而发挥神经保护作用。  相似文献   

5.
Activation of presynaptic ion channels alters the membrane potential of nerve terminals, leading to changes in transmitter release. To study the relationship between resting potential and exocytosis, we combined pre- and postsynaptic electrophysiological recordings with presynaptic Ca(2+) measurements at the calyx of Held. Depolarization of the membrane potential to between -60 mV and -65 mV elicited P/Q-type Ca(2+) currents of < 1 pA and increased intraterminal Ca(2+) by < 100 nM. These small Ca(2+) elevations were sufficient to enhance the probability of transmitter release up to 2-fold, with no effect on the readily releasable pool of vesicles. Moreover, the effects of mild depolarization on release had slow kinetics and were abolished by 1 mM intraterminal EGTA, suggesting that Ca(2+) acted through a high-affinity binding site. Together, these studies suggest that control of resting potential is a powerful means for regulating synaptic function at mammalian synapses.  相似文献   

6.
In chromaffin cells, exocytosis of single granules and properties of the fusion pore--the first connection between vesicular lumen and extracellular space --can be studied by cell-attached patch amperometry, which couples patch-clamp capacitance measurements with simultaneous amperometric recordings of transmitter release. Here we have studied exocytosis of single chromaffin granules and endocytosis of single vesicles in cell-free inside-out membrane patches by patch capacitance measurements and patch amperometry. We excised patches from chromaffin cells by using methods developed for studying properties of single ion channels. With low calcium concentrations in the pipette and bath, the patches showed no spontaneous exocytosis, but exocytosis could be induced in some patches by applying calcium to the cytoplasmic side of the patch. Exocytosis was also stimulated by calcium entry through the patch membrane. Initial conductances of the fusion pore were undistinguishable in cell-attached and excised patch recordings, but the subsequent pore expansion was slower in excised patches. The properties of exocytotic fusion pores in chromaffin cells are very similar to those observed in mast cells and granulocytes. Excised patches provide a tool with which to study the mechanisms of fusion pore formation and endocytosis in vitro.  相似文献   

7.
At presynaptic terminals vesicular membranes are fused into plasma membrane upon exocytosis and retrieved by endocytosis. During a sustained high-frequency transmission, exoendocytic coupling is critical for the maintenance of synaptic transmission. Here, we show that this homeostatic coupling is supported by cGMP-dependent protein kinase (PKG) at the calyx of Held. This mechanism starts to operate after hearing onset during the second postnatal week, when PKG expression becomes upregulated in the brainstem. Pharmacological tests with capacitance measurements revealed that presynaptic PKG?activity is supported by a retrograde signal cascade mediated by NO that is released by activation of postsynaptic NMDA receptors. Activation of PKG also upregulates phosphatidylinositol-4,5-bisphosphate, thereby accelerating endocytosis. Furthermore, presynaptic PKG activity upregulates synaptic fidelity during high-frequency transmission. We conclude that maturation of the PKG-dependent retrograde signal cascade strengthens the homeostatic plasticity for the maintenance of high-frequency synaptic transmission at the fast glutamatergic synapse.  相似文献   

8.
Chemical synapses are specialist points of contact between two neurons, where information transfer takes place. Communication occurs through the release of neurotransmitter substances from small synaptic vesicles in the presynaptic terminal, which fuse with the presynaptic plasma membrane in response to neuronal stimulation. However, as neurons in the central nervous system typically only possess ~ 200 vesicles, high levels of release would quickly lead to a depletion in the number of vesicles, as well as leading to an increase in the area of the presynaptic plasma membrane (and possible misalignment with postsynaptic structures). Hence, synaptic vesicle fusion is tightly coupled to a local recycling of synaptic vesicles. For a long time, however, the exact molecular mechanisms coupling fusion and subsequent recycling remained unclear. Recent work now indicates a unique role for the plasma membrane lipid phosphatidylinositol 4,5-bisphosphate (PIP2), acting together with the vesicular protein synaptotagmin, in coupling these two processes. In this work, we review the evidence for such a mechanism and discuss both the possible advantages and disadvantages for vesicle recycling (and hence signal transduction) in the nervous system. This article is part of a Special Issue entitled Lipids and Vesicular Transport.  相似文献   

9.
The calyx of Held, a large glutamatergic terminal in the mammalian auditory brainstem has been extensively employed to study presynaptic structure and function in the central nervous system. Nevertheless, the nanoarchitecture of presynaptic proteins and subcellular components in the calyx terminal and its relation to functional properties of synaptic transmission is only poorly understood. Here, we use stimulated emission depletion (STED) nanoscopy of calyces in thin sections of aldehyde-fixed rat brain tissue to visualize immuno-labeled synaptic proteins including VGluT1, synaptophysin, Rab3A and synapsin with a lateral resolution of approximately 40 nm. Excitation multiplexing of suitable fluorescent dyes deciphered the spatial arrangement of the presynaptic phospho-protein synapsin relative to synaptic vesicles labeled with anti-VGluT1. Both predominantly occupied the same focal volume, yet may exist in exclusive domains containing either VGluT1 or synapsin immunoreactivity. While the latter have been observed with diffraction-limited fluorescence microscopy, STED microscopy for the first time revealed VGluT1-positive domains lacking synapsins. This observation supports the hypothesis that molecularly and structurally distinct synaptic vesicle pools operate in presynaptic nerve terminals.  相似文献   

10.
Chemical synapses are specialist points of contact between two neurons, where information transfer takes place. Communication occurs through the release of neurotransmitter substances from small synaptic vesicles in the presynaptic terminal, which fuse with the presynaptic plasma membrane in response to neuronal stimulation. However, as neurons in the central nervous system typically only possess ~200 vesicles, high levels of release would quickly lead to a depletion in the number of vesicles, as well as leading to an increase in the area of the presynaptic plasma membrane (and possible misalignment with postsynaptic structures). Hence, synaptic vesicle fusion is tightly coupled to a local recycling of synaptic vesicles. For a long time, however, the exact molecular mechanisms coupling fusion and subsequent recycling remained unclear. Recent work now indicates a unique role for the plasma membrane lipid phosphatidylinositol 4,5-bisphosphate (PIP(2)), acting together with the vesicular protein synaptotagmin, in coupling these two processes. In this work, we review the evidence for such a mechanism and discuss both the possible advantages and disadvantages for vesicle recycling (and hence signal transduction) in the nervous system. This article is part of a Special Issue entitled Lipids and Vesicular Transport.  相似文献   

11.
We have studied exocytosis of single small granules from human neutrophils by capacitance recordings in the cell-attached configuration. We found that 2.2% of the exocytotic events were flickers. The flickers always ended with a downward step. This indicates closing of the fusion pore. During flickering, the fusion pore conductance remained below 1 nS, and no net membrane transfer was detectable. After fusion pore expansion beyond 1 nS the pore expanded irreversibly, leading to rapid full incorporation of the granule/vesicle into the plasma membrane. Following exocytosis of single granules, a capacitance decrease directly related to the preceding increase was observed in 7% of the exocytotic events. This decrease followed immediately after irreversible pore expansion, and is presumably triggered by full incorporation of the vesicle into the patch membrane. The capacitance decrease could be interpreted as endocytosis triggered by exocytosis. However, the gradual decrease could also reflect a decrease in the "free" patch area following incorporation of an exocytosed vesicle. We conclude that non-stepwise capacitance changes must be interpreted with caution, since a number of factors go into determining cell or patch admittance.  相似文献   

12.
The active zone of presynaptic nerve terminals organizes the neurotransmitter release machinery, thereby enabling fast Ca2+‐triggered synaptic vesicle exocytosis. BK‐channels are Ca2+‐activated large‐conductance K+‐channels that require close proximity to Ca2+‐channels for activation and control Ca2+‐triggered neurotransmitter release by accelerating membrane repolarization during action potential firing. How BK‐channels are recruited to presynaptic Ca2+‐channels, however, is unknown. Here, we show that RBPs (for RIM‐binding proteins), which are evolutionarily conserved active zone proteins containing SH3‐ and FN3‐domains, directly bind to BK‐channels. We find that RBPs interact with RIMs and Ca2+‐channels via their SH3‐domains, but to BK‐channels via their FN3‐domains. Deletion of RBPs in calyx of Held synapses decreased and decelerated presynaptic BK‐currents and depleted BK‐channels from active zones. Our data suggest that RBPs recruit BK‐channels into a RIM‐based macromolecular active zone complex that includes Ca2+‐channels, synaptic vesicles, and the membrane fusion machinery, thereby enabling tight spatio‐temporal coupling of Ca2+‐influx to Ca2+‐triggered neurotransmitter release in a presynaptic terminal.  相似文献   

13.
The supply of synaptic vesicles in the nerve terminal is maintained by a temporally linked balance of exo- and endocytosis. Tetanus and botulinum neurotoxins block neurotransmitter release by the enzymatic cleavage of proteins identified as critical for synaptic vesicle exocytosis. We show here that botulinum neurotoxin A is unique in that the toxin-induced block in exocytosis does not arrest vesicle membrane endocytosis. In the murine spinal cord, cell cultures exposed to botulinum neurotoxin A, neither K(+)-evoked neurotransmitter release nor synaptic currents can be detected, twice the ordinary number of synaptic vesicles are docked at the synaptic active zone, and its protein substrate is cleaved, which is similar to observations with tetanus and other botulinal neurotoxins. In marked contrast, K(+) depolarization, in the presence of Ca(2+), triggers the endocytosis of the vesicle membrane in botulinum neurotoxin A-blocked cultures as evidenced by FM1-43 staining of synaptic terminals and uptake of HRP into synaptic vesicles. These experiments are the first demonstration that botulinum neurotoxin A uncouples vesicle exo- from endocytosis, and provide evidence that Ca(2+) is required for synaptic vesicle membrane retrieval.  相似文献   

14.
Presynaptic nerve terminals release neurotransmitters by synaptic vesicle exocytosis. Membrane fusion mediating synaptic exocytosis and other intracellular membrane traffic is affected by a universal machinery that includes SNARE (for “soluble NSF-attachment protein receptor”) and SM (for “Sec1/Munc18-like”) proteins. During fusion, vesicular and target SNARE proteins assemble into an α-helical trans-SNARE complex that forces the two membranes tightly together, and SM proteins likely wrap around assembling trans-SNARE complexes to catalyze membrane fusion. After fusion, SNARE complexes are dissociated by the ATPase NSF (for “N-ethylmaleimide sensitive factor”). Fusion-competent conformations of SNARE proteins are maintained by chaperone complexes composed of CSPα, Hsc70, and SGT, and by nonenzymatically acting synuclein chaperones; dysfunction of these chaperones results in neurodegeneration. The synaptic membrane-fusion machinery is controlled by synaptotagmin, and additionally regulated by a presynaptic protein matrix (the “active zone”) that includes Munc13 and RIM proteins as central components.Synaptic vesicles are uniform organelles of ∼40 nm diameter that constitute the central organelle for neurotransmitter release. Each presynaptic nerve terminal contains hundreds of synaptic vesicles that are filled with neurotransmitters. When an action potential depolarizes the presynaptic plasma membrane, Ca2+-channels open, and Ca2+ flows into the nerve terminal to trigger the exocytosis of synaptic vesicles, thereby releasing their neurotransmitters into the synaptic cleft (Fig. 1). Ca2+ triggers exocytosis by binding to synaptotagmin; after exocytosis, vesicles are re-endocytosed, recycled, and refilled with neurotransmitters. Recycling can occur by multiple parallel pathways, either by fast recycling via local reuse of vesicles (“kiss-and-run” and “kiss-and-stay”), or by slower recycling via an endosomal intermediate (Fig. 1).Open in a separate windowFigure 1.The synaptic vesicle cycle. A presynaptic nerve terminal is depicted schematically as it contacts a postsynaptic neuron. The synaptic vesicle cycle consists of exocytosis (red arrows) followed by endocytosis and recycling (yellow arrows). Synaptic vesicles (green circles) are filled with neurotransmitters (NT; red dots) by active transport (neurotransmitter uptake) fueled by an electrochemical gradient established by a proton pump that acidifies the vesicle interior (vesicle acidification; green background). In preparation to synaptic exocytosis, synaptic vesicles are docked at the active zone, and primed by an ATP-dependent process that renders the vesicles competent to respond to a Ca2+-signal. When an action potential depolarizes the presynaptic membrane, Ca2+-channels open, causing a local increase in intracellular Ca2+ at the active zone that triggers completion of the fusion reaction. Released neurotransmitters then bind to receptors associated with the postsynaptic density (PSD). After fusion pore opening, synaptic vesicles probably recycle via three alternative pathways: local refilling with neurotransmitters without undocking (“kiss-and-stay”), local recycling with undocking (“kiss-and-run”), and full recycling of vesicles with passage through an endosomal intermediate. (Adapted from Südhof 2004.)Due to their small size, synaptic vesicles contain a limited complement of proteins that have been described in detail (Südhof 2004; Takamori et al. 2006). Although the functions of several vesicle components remain to be identified, most vesicle components participate in one of three processes: neurotransmitter uptake and storage, vesicle exocytosis, and vesicle endocytosis and recycling. In addition, it is likely that at least some vesicle proteins are involved in the biogenesis of synaptic vesicles and the maintenance of their exquisite uniformity and stability, but little is known about how vesicles are made, and what determines their size.  相似文献   

15.
Li Y  Zhang ZW 《生理科学进展》1997,28(4):317-321
神经末梢突触囊泡循环包括锚靠、出胞、入胞及囊泡再生等步骤,由囊泡、轴浆及突触前膜的多种蛋白质的级联反应介导,其关键步骤的分子模型的确立,为进一步了解神经系统高级活动奠定了基础。  相似文献   

16.
神经元突触前可塑性的结构及分子基础   总被引:1,自引:0,他引:1  
突触可塑性是神经元间信息传递的重要生理调控机制,它包括突触前可塑性和突触后可塑性.突触前可塑性是指通过对神经递质释放过程的干预、修饰,调节突触强度的过程.突触强度的变化,是通过影响量子的大小,活动区的个数和囊泡释放概率来实现的.而突触前囊泡活动尤为重要:从转运、搭靠、融合至内吞进入下一轮循环,每一步都是由一群互相作用的蛋白质共同完成的.  相似文献   

17.
During constitutive endocytosis, internalized membrane traffics through endosomal compartments. At synapses, endocytosis of vesicular membrane is temporally coupled to action potential-induced exocytosis of synaptic vesicles. Endocytosed membrane may immediately be reused for a new round of neurotransmitter release without trafficking through an endosomal compartment. Using GFP-tagged endosomal markers, we monitored an endosomal compartment in Drosophila neuromuscular synapses. We showed that in conditions in which the synaptic vesicles pool is depleted, the endosome is also drastically reduced and only recovers from membrane derived by dynamin-mediated endocytosis. This suggests that membrane exchange takes place between the vesicle pool and the synaptic endosome. We demonstrate that the small GTPase Rab5 is required for endosome integrity in the presynaptic terminal. Impaired Rab5 function affects endo- and exocytosis rates and decreases the evoked neurotransmitter release probability. Conversely, Rab5 overexpression increases the release efficacy. Therefore, the Rab5-dependent trafficking pathway plays an important role for synaptic performance.  相似文献   

18.
Following the fusion of synaptic vesicles with the presynaptic plasma membrane of nerve terminals by the process of exocytosis, synaptic-vesicle components are recycled to replenish the vesicle pool. Here we use a pH-sensitive green fluorescent protein to measure the residence time of VAMP, a vesicle-associated SNARE protein important for membrane fusion, on the surfaces of synaptic terminals of hippocampal neurons following exocytosis. The time course of VAMP retrieval depends linearly on the amount of VAMP that is added to the plasma membrane, with retrieval occurring between about 4 seconds and 90 seconds after exocytosis, and newly internalized vesicles are rapidly acidified. These data are well described by a model in which endocytosis appears to be saturable, but proceeds with an initial maximum velocity of about one vesicle per second. We also find that, following exocytosis, a portion of the newly inserted VAMP appears on the surface of the axon.  相似文献   

19.
Snake presynaptic neurotoxins with phospholipase A2 activity block nerve terminals in an unknown way. Here, we propose that they enter the lumen of synaptic vesicles following endocytosis and hydrolyse phospholipids of the inner leaflet of the membrane. The transmembrane pH gradient drives the translocation of fatty acids to the cytosolic monolayer, leaving lysophospholipids on the lumenal layer. Such vesicles are highly fusogenic and release neurotransmitter upon fusion with the presynaptic membrane, but cannot be retrieved because of the high local concentration of fatty acids and lysophospholipids, which prevents vesicle neck closure.  相似文献   

20.
Wadel K  Neher E  Sakaba T 《Neuron》2007,53(4):563-575
In order to release neurotransmitter synchronously in response to a presynaptic action potential, synaptic vesicles must be both release competent and located close to presynaptic Ca2+ channels. It has not been shown, however, which of the two is the more decisive factor. We tested this issue at the calyx of Held synapse by combining Ca2+ uncaging and electrophysiological measurements of postsynaptic responses. After depletion of the synaptic vesicles that are responsible for synchronous release during action potentials, uniform elevation of intracellular Ca2+ by Ca2+ uncaging could still elicit rapid release. The Ca2+ sensitivity of remaining vesicles was reduced no more than 2-fold, which is insufficient to explain the slow-down of the kinetics of release (10-fold) observed during a depolarizing pulse. We conclude that recruitment of synaptic vesicles to sites where Ca2+ channels cluster, rather than fusion competence, is a limiting step for rapid neurotransmitter release in response to presynaptic action potentials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号