首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Four populations of Meloidogyne spartinae from the coast of North and South Carolina were identical cytogenetically. Fourteen rod-shaped chromosomes were present in oogonia and spermatogonia, whereas seven bivalents were observed in oocytes and spermatocytes. There were no distinguishable sex chromosomes. Chromosome behavior was similar to that of other Meloidogyne species. A slight deviation in morphology of prometaphase bivalents was attributed to an increase in frequency of chiasmata that may be associated with the obligatorily amphimictic reproduction of this nematode. The anatomy of the oviduct-spermatotheca region and most cytogenetic features studied suggested that M. spartinae can be regarded as a root-knot nematode. Its position in the genus Meloidogyne or Hypsoperine can be decided by taxonomists. Its small chromosome number (n = 7) compared to the larger number (n = 13-19) of other Meloidogyne species suggests that, cytologically, M. spartinae stands closer to the ancestral form from which the prescent day root-knot nematodes have evolved.  相似文献   

2.
Oogenesis and spermatogenesis of seven populations of Meloidogyne graminis and one population of M. ottersoni (formerly Hypsoperine spp.) were of the meiotic type. When males were abundant, reproduction was by amphirnixis. In most greenhouse cultures, however, males were rare and reproduction was by meiotic parthenogenesis. M. graminis and M. ottersoni are closely related to each other and to M. graminicola and M. naasi, but differ in some respect from other Meloidogyne species. It is suggested that these four species be treated together as a group of species, either in the genus Meloidogyne or in the genus Hypsoperine.  相似文献   

3.
Brassicaceous cover crops can be used for biofumigation after soil incorporation of the mowed crop. This strategy can be used to manage root-knot nematodes (Meloidogyne spp.), but the fact that many of these crops are host to root-knot nematodes can result in an undesired nematode population increase during the cultivation of the cover crop. To avoid this, cover crop cultivars that are poor or nonhosts should be selected. In this study, the host status of 31 plants in the family Brassicaceae for the three root-knot nematode species M. incognita, M. javanica, and M. hapla were evaluated, and compared with a susceptible tomato host in repeated greenhouse pot trials. The results showed that M. incognita and M. javanica responded in a similar fashion to the different cover cultivars. Indian mustard (Brassica juncea) and turnip (B. rapa) were generally good hosts, whereas most oil radish cultivars (Raphanus. sativus ssp. oleiferus) were poor hosts. However, some oil radish cultivars were among the best hosts for M. hapla. The arugula (Eruca sativa) cultivar Nemat was a poor host for all three nematode species tested. This study provides important information for chosing a cover crop with the purpose of managing root-knot nematodes.  相似文献   

4.
Studies of oogenesis and spermatogenesis revealed that Meloidogyne nataliei is a diploid, amphimictic species with four (n), relatively large chromosomes, and possibly with an XX ♀-XY ♂ mechanism of sex determination. It differs considerably from all other amphimictic, or meiotically parthenogenetic, species of Meloidogyne which have 13-18 smaller chromosomes and from Meloidogyne (Hypsoperine) spartinae which has seven. Consequently, the taxonomic position of M. nataliei needs to be re-evaluated. The chromosomes of M. nataliei and their behavior during gametogenesis resemble more closely chromosomes of the genus Heterodera than those of the genus Meloidogyne. This resemblance, however, may not imply a closer phyletic relationship of M. nataliei to heteroderid nematodes.  相似文献   

5.
Pasteuria penetrans is a mycelial, endospore-forming, bacterial parasite that has shown great potential as a biological control agent of root-knot nematodes. Considerable progress has been made during the last 10 years in understanding its biology and importance as an agent capable of effectively suppressing root-knot nematodes in field soil. The objective of this review is to summarize the current knowledge of the biology, ecology, and biological control potential of P. penetrans and other Pasteuria members. Pasteuria spp. are distributed worldwide and have been reported from 323 nematode species belonging to 116 genera of free-living, predatory, plant-parasitic, and entomopathogenic nematodes. Artificial cultivation of P. penetrans has met with limited success; large-scale production of endospores depends on in vivo cultivation. Temperature affects endospore attachment, germination, pathogenesis, and completion of the life cycle in the nematode pseudocoelom. The biological control potential of Pasteuria spp. have been demonstrated on 20 crops; host nematodes include Belonolaimus longicaudatus, Heterodera spp., Meloidogyne spp., and Xiphinema diversicaudatum. Pasteuria penetrans plays an important role in some suppressive soils. The efficacy of the bacterium as a biological control agent has been examined. Approximately 100,000 endospores/g of soil provided immediate control of the peanut root-knot nematode, whereas 1,000 and 5,000 endospores/g of soil each amplified in the host nematode and became suppressive after 3 years.  相似文献   

6.
Research was initiated to physically characterize the mitochondrial genomes of several Meloidogyne spp. and host-races, to address questions regarding their systematics and dispersal, and to assess the possibility of developing molecular diagnostics for these nematodes. Techniques were developed for purification and rapid detection of mitochondrial DNA from root-knot nematodes. Mitochondrial DNAs among Meloidogyne spp. were demonstrated to exhibit extensive divergence. The potential for using the rapidly diverging mitochondrial genomes as a diagnostic assay for M. incognita, M. hapla, M. arenaria, and M. javanica is discussed.  相似文献   

7.
To determine the presence and level of root-knot nematode (Meloidogyne spp.) infestation in Southern California bell pepper (Capsicum annuum) fields, soil and root samples were collected in April and May 2012 and analyzed for the presence of root-knot nematodes. The earlier samples were virtually free of root-knot nematodes, but the later samples all contained, sometimes very high numbers, of root-knot nematodes. Nematodes were all identified as M. incognita. A nematode population from one of these fields was multiplied in a greenhouse and used as inoculum for two repeated pot experiments with three susceptible and two resistant bell pepper varieties. Fruit yields of the resistant peppers were not affected by the nematodes, whereas yields of two of the three susceptible pepper cultivars decreased as a result of nematode inoculation. Nematode-induced root galling and nematode multiplication was low but different between the two resistant cultivars. Root galling and nematode reproduction was much higher on the three susceptible cultivars. One of these susceptible cultivars exhibited tolerance, as yields were not affected by the nematodes, but nematode multiplication was high. It is concluded that M. incognita is common in Southern California bell pepper production, and that resistant cultivars may provide a useful tool in a nonchemical management strategy.  相似文献   

8.
Root knot (Meloidogyne spp.) and cyst (Heterodera and Globodera spp.) nematodes infect all important crop species, and the annual economic loss due to these pathogens exceeds $90 billion. We screened the worldwide accession collection with the root-knot nematodes Meloidogyne incognita, M. arenaria and M. hapla, soybean cyst nematode (SCN-Heterodera glycines), sugar beet cyst nematode (SBCN-Heterodera schachtii) and clover cyst nematode (CLCN-Heterodera trifolii), revealing resistant and susceptible accessions. In the over 100 accessions evaluated, we observed a range of responses to the root-knot nematode species, and a non-host response was observed for SCN and SBCN infection. However, variation was observed with respect to infection by CLCN. While many cultivars including Jemalong A17 were resistant to H. trifolii, cultivar Paraggio was highly susceptible. Identification of M. truncatula as a host for root-knot nematodes and H. trifolii and the differential host response to both RKN and CLCN provide the opportunity to genetically and molecularly characterize genes involved in plant-nematode interaction. Accession DZA045, obtained from an Algerian population, was resistant to all three root-knot nematode species and was used for further studies. The mechanism of resistance in DZA045 appears different from Mi-mediated root-knot nematode resistance in tomato. Temporal analysis of nematode infection showed that there is no difference in nematode penetration between the resistant and susceptible accessions, and no hypersensitive response was observed in the resistant accession even several days after infection. However, less than 5% of the nematode population completed the life cycle as females in the resistant accession. The remainder emigrated from the roots, developed as males, or died inside the roots as undeveloped larvae. Genetic analyses carried out by crossing DZA045 with a susceptible French accession, F83005, suggest that one gene controls resistance in DZA045.  相似文献   

9.
Root-knot nematodes (Meloidogyne spp.) are a significant problem in potato (Solanum tuberosum) production. There is no potato cultivar with Meloidogyne resistance, even though resistance genes have been identified in wild potato species and were introgressed into breeding lines. The objectives of this study were to generate stable transgenic potato lines in a cv. Russet Burbank background that carry an RNA interference (RNAi) transgene capable of silencing the 16D10 Meloidogyne effector gene, and test for resistance against some of the most important root-knot nematode species affecting potato, i.e., M. arenaria, M. chitwoodi, M. hapla, M. incognita, and M. javanica. At 35 days after inoculation (DAI), the number of egg masses per plant was significantly reduced by 65% to 97% (P < 0.05) in the RNAi line compared to wild type and empty vector controls. The largest reduction was observed in M. hapla, whereas the smallest reduction occurred in M. javanica. Likewise, the number of eggs per plant was significantly reduced by 66% to 87% in M. arenaria and M. hapla, respectively, compared to wild type and empty vector controls (P < 0.05). Plant-mediated RNAi silencing of the 16D10 effector gene resulted in significant resistance against all of the root-knot nematode species tested, whereas RMc1(blb), the only known Meloidogyne resistance gene in potato, did not have a broad resistance effect. Silencing of 16D10 did not interfere with the attraction of M. incognita second-stage juveniles to roots, nor did it reduce root invasion.  相似文献   

10.
High infection rates of European sea rocket feeder roots by an unknown root-knot nematode were found in a coastal dune soil at Cullera (Valencia) in central eastern Spain. Morphometry, esterase and malate dehydrogenase electrophoretic phenotypes and phylogenetic trees demonstrated that this nematode species differs clearly from other previously described root-knot nematodes. Studies of host-parasite relationships showed a typical susceptible reaction in naturally infected European sea rocket plants and in artificially inoculated tomato (cv. Roma) and chickpea (cv. UC 27) plants. The species is herein described and illustrated and named as Meloidogyne dunensis n. sp. The new root-knot nematode can be distinguished from other Meloidogyne spp. by: (i) perineal pattern rounded-oval, formed of numerous fine dorsal and ventral cuticle striae and ridges, lateral fields clearly visible; (ii) female excretory pore at the level of stylet knobs, EP/ST ratio 1.6; (iii) second-stage juveniles with hemizonid located 1 to 2 annuli anteriorly to excretory pore and long, narrow, tapering tail; and (iv) males with lateral fields composed of four incisures anteriorly and posteriorly, while six distinct incisures are observed for large part at mid-body. Phylogenetic trees derived from distance and maximum parsimony analyses based on 18S, ITS1–5.8S-ITS2 and D2-D3 of 28S rDNA showed that M. dunensis n. sp. can be differentiated from all described root-knot nematode species, and it is clearly separated from other species with resemblance in morphology, such as M. duytsi, M. maritima, M. mayaguensis and M. minor.  相似文献   

11.
Genetic variation within nuclear and mitochondrial DNA of Meloidogyne species and host races has been evaluated for the development of root-knot nematode molecular diagnostics. This review summarizes the distinctive features of several useful DNA-based assays for plant-parasitic nematodes, focusing upon the direct application of these procedures for Meloidogyne detection, identification, and systematics.  相似文献   

12.
Rates of reproduction of root-knot nematodes on corn varied with Meloidogyne species, with different populations of certain species, and with corn cultivars. M. arenaria, M. incognita and M. javanica reproduced at varying rates on all corn cultivars tested. None of the three selections of M. hapla reproduced on corn. Most of the Meloidogyne populations increased more rapidly on ''Coker'' and ''Pioneer'' hybrids than on ''McNair'' hybrids or on open-pollinated varieties or inbreds. Nematodes often reduced root growth, but the differences within given nematode-cultivar treatments were not usually significant. Root growth of ''Coker 911,'' which supported a high rate of reproduction, was affected less than ''Pioneer 309B'' which supported a low rate of nematode reproduction.  相似文献   

13.
Host suitability of olive cultivars Arbequina and Picual to several plant-parasitic nematodes was studied under controlled conditions. Arbequina and Picual were not suitable hosts for the root-lesion nematodes Pratylenchus fallax, P. thornei, and Zygotylenchus guevarai. However, the ring nematode Mesocriconema xenoplax and the spiral nematodes Helicotylenchus digonicus and H. pseudorobustus reproduced on both olive cultivars. The potential of Meloidogyne arenaria race 2, M. incognita race 1, and M. javanica, as well as P. vulnus and P. penetrans to damage olive cultivars, was also assessed. Picual planting stocks infected by root-knot nematodes showed a distinct yellowing affecting the uppermost leaves, followed by a partial defoliation. Symptoms were more severe on M. arenaria and M. javanica-infected plants than on M. incognita-infected plants. Inoculation of plants with 15,000 eggs + second-stage juveniles/pot of these Meloidogyne spp. suppressed the main height of shoot and number of nodes of Arbequina, but not Picual. Infection by each of the two lesion nematodes (5,000 nematodes/pot) or by each of the three Meloidogyne spp. suppressed (P < 0.05) the main stem diameter of both cultivars. On Arbequina, the reproduction rate of Meloidogyne spp. was higher (P < 0.05) than that of Pratylenchus spp.; on Picual, Pratylenchus spp. reproduction was higher (P < 0.05) than that of Meloidogyne spp.  相似文献   

14.
Experiments were conducted in the greenhouse to assess root galling and egg production of three root-knot nematode species, Meloidogyne arenaria, M. incognita, and M. javanica, on several weeds common to Florida agricultural land. Weeds evaluated were Amaranthus retroflexus (redroot pigweed), Cyperus esculentus (yellow nutsedge), Eleusine indica (goosegrass), Portulaca oleracea (common purslane), and Solanum americanum (American black nightshade). Additionally, although it is recommended as a cover crop in southern regions of the U.S., Aeschynomene americana (American jointvetch) was evaluated as a weed following the detection of root galling in a heavy volunteer infestation of an experimental field in southeastern Florida. Weeds were propagated from seed and inoculated with 1000 nematode eggs when plants reached the two true-leaf stage. Tomato (Solanum lycopersicum ‘Rutgers’) was included as a positive control. Aeschynomene americana and P. oleracea roots supported the highest number of juveniles (J2) and had the highest number of eggs/g of root for all three species of Meloidogyne tested. However, though P. oleracea supported very high root levels of the three nematode species tested, its fleshy roots did not exhibit severe gall symptoms. Low levels of apparent galling, combined with high egg production, increase the potential for P. oleracea to support populations of these three species of root-knot nematodes to a degree that may not be appropriately recognized. This research quantifies the impact of P. oleracea as a host for M. arenaria, M. incognita, and M. javanica compared to several other important weeds commonly found in Florida agricultural production, and the potential for A. americana to serve as an important weed host of the three species of root-knot nematode tested in southern regions of Florida.  相似文献   

15.
In the Pacific Northwest, alfalfa (Medicago sativa) is host to two species of root-knot nematodes, including race 2 of the Columbia root-knot nematode (Meloidogyne chitwoodi) and the northern root-knot nematode (Meloidogyne hapla). In addition to the damage caused to alfalfa itself by M. hapla, alfalfa’s host status to both species leaves large numbers of nematodes available to damage rotation crops, of which potato is the most important. A nematode-resistant alfalfa germplasm release, W12SR2W1, was challenged with both nematode species, to determine the correlation, if any, of resistance to nematode reproduction. Thirty genotypes were screened in replicated tests with M. chitwoodi race 2 or M. hapla, and the reproductive factor (RF) was calculated. The distribution of natural log-transformed RF values was skewed for both nematode species, but more particularly for M. chitwoodi race 2, where more than half the genotypes screened were non-hosts. Approximately 30 percent of genotypes were non-hosts or very poor hosts of M. hapla, but RF values for M. hapla on susceptible genotypes were generally much higher than RF values for genotypes susceptible to M. chitwoodi race 2. The Spearman rank correlation was positive (0.52) and significant (p-value = 0.003), indicating there is some relationship between resistance to these two species of root-knot nematode in alfalfa. However the relationship is not strong enough to suggest genetic loci for resistance are identical, or closely linked. Breeding for resistance or immunity will require screening with each species separately, or with different DNA markers if marker-assisted breeding is pursued. A number of genotypes were identified which are non-hosts to both species. These plants will be intercrossed to develop a non-host germplasm.  相似文献   

16.
Phaseolus vulgaris lines with heat-stable resistance to Meloidogyne spp. may be needed to manage root-knot nematodes in tropical regions. Resistance expression before and during the process of nematode penetration and development in resistant genotypes were studied at pre- and postinoculation temperatures of 24 °C and 24 °C, 24 °C and 28 °C, 28 °C and 24 °C, and 28 °C and 28 °C. Resistance was effective at all temperature regimes examined, with fewer nematodes in roots of a resistant line compared with a susceptible line. Preinoculation temperature did not modify resistance expression to later infections by root-knot nematodes. However, postinoculation temperatures affected development of Meloidogyne spp. in both the resistant and susceptible bean lines tested. The more rapid development of nematodes to adults at the higher postinoculation temperature of 28 °C in both bean lines suggests direct temperature effects on nematode development instead of on resistance expression of either of two gene systems. Also, resistance was stable at 30 °C and 32 °C.  相似文献   

17.
18.
Cot curves derived from renaturation kinetics of sheared denatured DNA indicated that the genome of six populations representing the four most common root-knot nematode species (Meloidogyne incognita, M. arenaria, M. javanica, and M. hapla) is composed of 20% repetitive and 80% nonrepetitive sequences of DNA. Cot curves were almost identical, indicating that all populations had a haploid genome of approximately the same size. Calculations from an average Cot curve gave an estimate of 0.51 x 108 nucleotide base pairs for the haploid genome of the four Meloidogyne species. This genome is about 12-13 times larger than the genome of the E. coli strain used as a control.  相似文献   

19.
Pasteuria penetrans is an endospore-forming bacterial parasite of Meloidogyne spp. This organism is among the most promising agents for the biological control of root-knot nematodes. In order to establish the phylogenetic position of this species relative to other endospore-forming bacteria, the 16S ribosomal genes from two isolates of P. penetrans, P-20, which preferentially infects M. arenaria race 1, and P-100, which preferentially infects M. incognita and M. javanica, were PCR-amplified from a purified endospore extraction. Universal primers for the 16S rRNA gene were used to amplify DNA which was cloned, and a nucleotide sequence was obtained for 92% of the gene (1,390 base pairs) encoding the 16S rDNA from each isolate. Comparison of both isolates showed identical sequences that were compared to 16S rDNA sequences of 30 other endospore-forming bacteria obtained from GenBank. Parsimony analyses indicated that P. penetrans is a species within a clade that includes Alicyclobacillus acidocaldarius, A. cycloheptanicus, Sulfobacillus sp., Bacillus tusciae, B. schlegelii, and P. ramosa. Its closest neighbor is P. ramosa, a parasite of Daphnia spp. (water fleas). This study provided a genomic basis for the relationship of species assigned to the genus Pasteuria, and for comparison of species that are parasites of different phytopathogenic nematodes.  相似文献   

20.
Resistance of pepper species (Capsicum annuum, C. baccatum, C. chinense, C. chacoense, and C. frutescens), cultivars and accessions to the root-knot nematodes Meloidogyne incognita race 2 and M. javanica, and their graft compatibility with commercial pepper varieties as rootstocks were evaluated in growth chamber and greenhouse experiments. Most of the plants tested were highly resistant to M. javanica but susceptible to M. incognita. Capsicum annuum AR-96023 and C. frutescens accessions as rootstocks showed moderate and relatively high resistance to M. incognita, respectively. In M. incognita-infested soil in a greenhouse, AR-96023 supported approximately 6-fold less nematode eggs per gram root and produced about 2-fold greater yield compared to a nongrafted commercial variety. The commercial variety grafted on AR-96023 produced a yield as great as the non-grafted variety in the root-knot nematode-free greenhouse. Some resistant varieties and accessions used as rootstocks produced lower yields (P < 0.01) than that of the non-grafted variety in the noninfested greenhouse. Use of rootstocks with nematode-resistance and graft compatibility may be effective for control of root-knot nematodes on susceptible pepper.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号