首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Natural killer T (NKT) cells are a subset of regulatory T lymphocytes that recognize glycolipid antigens presented by the major histocompatibility complex class I-related glycoprotein CD1d. NKT cells have been implicated in regulating the progression of Type 1 diabetes (T1D) in human patients and in an animal model for T1D. In addition, glycolipid agonists of NKT cells have been successful in preventing diabetes in mice, raising enthusiasm for the development of NKT cell-based therapies for T1D.  相似文献   

2.
The glycosphingolipid ??-GalCer has been found to influence mammalian immune system significantly through the natural killer T cells. Unfortunately, the pre-clinical and clinical studies revealed several critical disadvantages that prevented the therapeutic application of ??-GalCer in treating cancer and other diseases. Recently, the detailed illustration of the CD1d/??-GalCer/NKT TCR complex crystal structural, together with other latest structural and biological understanding on glycolipid ligands and NKT cells, provided a new platform for developing novel glycolipid ligands with optimized therapeutic effects. Here, we designed a series of novel aromatic group substituted ??-GalCer analogues. The biological activity of these analogues was characterized and the results showed the unique substitution group manipulated the immune responses of NKT cells. Computer modeling and simulation study indicated the analogues had unique binding mode when forming CD1d/glycolipid/NKT TCR complex, comparing to original ??-GalCer.  相似文献   

3.
Invariant NKT cells are CD1d-restricted T cells specific for glycolipid Ags. Their activation or transgenic enrichment abrogates the development of experimental autoimmune encephalomyelitis (EAE). Herein, we demonstrate that in NKT-enriched mice the protection from EAE is associated with the infiltration of NKT cells in the CNS and the local expression of CD1d. This indicates that the CNS acquires the potential for local glycolipid presentation when exposed to inflammatory stress, permitting the triggering of NKT cells. To address the importance of CD1d-mediated Ag presentation, we used transgenic mice that express CD1d solely in the thymus. Interestingly, enrichment of NKT cells in these mice also conferred resistance to EAE, with an efficacy indistinguishable from that of NKT-enriched CD1d-sufficient mice. This protection was due to an abrogation of the encephalitogenic Th1 and Th17 response in the spleen, revealing that endogenous glycolipid presentation is dispensable for the regulatory function of NKT cells in EAE. Moreover, abrogating extrathymic CD1d expression failed to affect both the recruitment of NKT cells and their effector phenotype. CNS-infiltrating NKT cells were characterized by a cytotoxic IFN-gamma(high)IL-4(low)IL-10(low)granzyme B(high) profile, irrespective of the local expression of CD1d. Glycolipid Ag presentation is therefore dispensable for the control of autoimmune demyelination by NKT cells, underlining the importance of alternative cognate and/or soluble factors in the control of NKT cell function.  相似文献   

4.
Upon entering the liver CD8 T cells encounter large numbers of NKT cells patrolling the hepatocyte (HC) surface facing the perisinusoidal space. We asked whether hepatic NKT cells modulate the priming of CD8 T cells by HC. Hepatic (alpha-galactosyl-ceramide-loaded CD1d dimer binding) NKT cells produce predominantly IL-4 when stimulated with glycolipid-presenting HC but predominantly IFN-gamma when stimulated with glycolipid-presenting dendritic cells. These NKT cells prime naive CD8 T cells to a (K(b)-presented) peptide ligand if they simultaneously recognize a CD1d-binding glycolipid presented to them on the surface of the responding CD8 T cells that they prime. No IL-10-producing CD8 T cells are detected if these T cells are primed by either HC or NKT cells. In contrast, IL-10 is produced by HC-primed CD8 T cells if IFN-beta-producing NKT cells are coactivated by the same HC presenting a glycolipid (in the context of CD1d) and an antigenic peptide (in the context of K(b)). Hence, IL-10-producing CD8 T cells are generated in a type I IFN-dependent manner if the three cell types (CD8 T cells, NKT cells, and ligand-presenting HC) specifically and closely interact. IL-10-producing CD8 T cells generated under these conditions down-modulate IL-2 (and proliferative) responses of naive CD4 or CD8 T cells primed by DC. If in close proximity, NKT cells can thus locally modulate the phenotype of CD8 T cells during their priming by HC thereby limiting the local activation of proinflammatory immune effector cells and protecting the liver against immune injury.  相似文献   

5.
NKT cells are enigmatic lymphocytes that respond to glycolipid Ags presented by CD1d. Although they are key immunoregulatory cells, with a critical role in immunity to cancer, infection, and autoimmune diseases, little is known about how they respond to antigenic challenge. Current theories suggest that NKT cells die within hours of stimulation, implying that their direct impact on the immune system derives from the initial cytokine burst released before their death. Here we show that NKT cell disappearance results from TCR down-regulation rather than apoptosis, and that they expand to many times their normal number in peripheral tissues within 2-3 days of stimulation, before contracting to normal numbers over subsequent days. This expansion is associated with ongoing cytokine production, biased toward a Th1 (IFN-gamma(+) IL-4(-)) phenotype, in contrast to their initial Th0 (IFN-gamma(+)IL-4(+)) phenotype. This study provides critical new insight into how NKT cells can have such a major impact on immune responses, lasting many days beyond the initial stimulation of these cells.  相似文献   

6.
NKT cells that express the semi-invariant TCR are innate-like lymphocytes whose functions are regulated by self and foreign glycolipid ligands presented by the Ag-presenting, MHC class I-like molecule CD1d. Activation of NKT cells in vivo results in rapid release of copious amounts of effector cytokines and chemokines with which they regulate innate and adaptive immune responses to pathogens, certain types of cancers, and self-antigens. The nature of CD1d-restricted ligands, the manner in which they are recognized, and the unique effector functions of NKT cells suggest an immunoregulatory role for this T cell subset. Their ability to respond fast and our ability to steer NKT cell cytokine response to altered lipid ligands make them an important target for vaccine design and immunotherapies against autoimmune diseases. This review summarizes our current understanding of CD1d-restricted ligand recognition by NKT cells and how these innate-like lymphocytes regulate inflammation.  相似文献   

7.
Invariant NKT cells (iNKT cells) recognize CD1d/glycolipid complexes. We demonstrate that the nonglycosidic compound threitolceramide efficiently activates iNKT cells, resulting in dendritic cell (DC) maturation and the priming of Ag-specific T and B cells. Threitolceramide-pulsed DCs are more resistant to iNKT cell-dependent lysis than alpha-galactosylceramide-pulsed DCs due to the weaker affinity of the human iNKT TCR for CD1d/ threitolceramide than CD1d/alpha-galactosylceramide complexes. iNKT cells stimulated with threitolceramide also recover more quickly from activation-induced anergy. Kinetic and functional experiments showed that shortening or lengthening the threitol moiety by one hydroxymethylene group modulates ligand recognition, as human and murine iNKT cells recognize glycerolceramide and arabinitolceramide differentially. Our data broaden the range of potential iNKT cell agonists. The ability of these compounds to assist the priming of Ag-specific immune responses while minimizing iNKT cell-dependent DC lysis makes them attractive adjuvants for vaccination strategies.  相似文献   

8.
Human NKT cells express granulysin and exhibit antimycobacterial activity   总被引:14,自引:0,他引:14  
Human NKT cells are a unique subset of T cells that express an invariant V alpha 24 TCR that recognizes the nonclassical Ag-presenting molecule CD1d. Activation of NKT cells is greatly augmented by the marine sponge-derived glycolipid alpha-galactosylceramide (alpha GalCer). Because human monocyte-derived cells express CD1d and can harbor the intracellular pathogen Mycobacterium tuberculosis, we asked whether the addition of alpha GalCer could be used to induce effector functions of NKT cells against infected monocytes, macrophages, and monocyte-derived dendritic cells. NKT cells secreted IFN-gamma, proliferated, and exerted lytic activity in response to alpha GalCer-pulsed monocyte-derived cells. Importantly, alpha GalCer-activated NKT cells restricted the growth of intracellular M. tuberculosis in a CD1d-dependent manner. NKT cells that exhibited antimycobacterial activity also expressed granulysin, an antimicrobial peptide shown to mediate an antimycobacterial activity through perturbation of the mycobacterial surface. Degranulation of NKT cells resulted in depletion of granulysin and abrogation of antimycobacterial activity. The detection of CD1d in granulomas of tuberculosis patients supports the potential interaction of NKT cells with CD1d-expressing cells at the site of disease activity. These studies provide evidence that alpha Gal Cer-activated CD1d-restricted T cells can participate in human host defense against M. tuberculosis infection.  相似文献   

9.
NKT cells are typically defined as CD1d-dependent T cells that carry an invariant TCR alpha-chain and produce high levels of cytokines. Traditionally, these cells were defined as NK1.1+ T cells, although only a few mouse strains express the NK1.1 molecule. A popular alternative marker for NKT cells has been DX5, an Ab that detects the CD49b integrin, expressed by most NK cells and a subset of T cells that resemble NKT cells. Interpretation of studies using DX5 as an NKT cell marker depends on how well DX5 defines NKT cells. Using a range of DX5 and other anti-CD49b Abs, we reveal major differences in reactivity depending on which Ab and which fluorochrome are used. The brightest, PE-conjugated reagents revealed that while most CD1d-dependent NKT cells expressed CD49b, they represented only a minority of CD49b+ T cells. Furthermore, CD49b+ T cell numbers were near normal in CD1d-/- mice that are completely deficient for NKT cells. CD1d tetramer- CD49b+ T cells differ from NKT cells by their activation and memory marker expression, tissue distribution, and CD4/CD8 coreceptor profile. Interestingly, both NKT cells and CD1d tetramer- CD49b+ T cells produce cytokines, but the latter are clearly biased toward Th1-type cytokines, in contrast to NKT cells that produce both Th1 and Th2 cytokines. Finally, we demonstrate that expression of CD49b by NKT cells does not dramatically alter with age, contrasting with earlier reports proposing DX5 as a maturation marker for NKT cells. In summary, our data demonstrate that DX5/CD49b is a poor marker for identifying CD1d-dependent NKT cells.  相似文献   

10.
Dendritic cells (DC) are key regulators of T cell immunity and tolerance. NKT cells are well-known enhancers of Th differentiation and regulatory T cell function. However, the nature of the DC directing T and NKT cell activation and polarization as well as the role of the respective CD1d Ags presented is still unclear. In this study, we show that peptide-specific CD4(+)IL-10(+) T cell-mediated full experimental autoimmune encephalomyelitis (EAE) protection by TNF-treated semimatured DCs was dependent on NKT cells recognizing an endogenous CD1d ligand. NKT cell activation by TNF-matured DCs induced high serum levels of IL-4 and IL-13 which are absent in NKT cell-deficient mice, whereas LPS plus anti-CD40-treated fully mature DCs induce serum IFN-gamma. In the absence of IL-4Ralpha chain signaling or NKT cells, no complete EAE protection was achieved by TNF-DCs, whereas transfer of NKT cells into Jalpha281(-/-) mice restored it. However, activation of NKT cells alone was not sufficient for EAE protection and early serum Th2 deviation. Simultaneous activation of NKT cells and CD4(+) T cells by the same DC was required for EAE protection. Blocking experiments demonstrated that NKT cells recognize an endogenous glycolipid presented on CD1d on the injected DC. Together, this indicates that concomitant and interdependent presentation of MHC II/self-peptide and CD1d/self-isoglobotrihexosylceramide to T and NKT cells by the same partially or fully matured DC determines protective and nonprotective immune responses in EAE.  相似文献   

11.
Immunotherapy with ligands of natural killer T cells   总被引:6,自引:0,他引:6  
Natural killer T (NKT) cells are innate lymphocytes that share receptor structures and functions with conventional T cells and natural killer cells. NKT cells are specific for glycolipid antigens bound by the major histocompatibility complex class I-like protein CD1d. One striking property of NKT cells is their capacity to rapidly produce large amounts of cytokines in response to T-cell receptor engagement, suggesting that activated NKT cells can modulate adaptive immune responses. Recent pre-clinical studies have revealed significant efficacy of NKT-cell ligands such as the glycolipid alpha-galactosylceramide for treatment of metastatic cancers and infections, and for prevention of autoimmune diseases. These findings suggest that appropriate stimulation of NKT cells could be exploited for prevention or treatment of human diseases.  相似文献   

12.
An understanding of the complex interactions occurring between tumours and the immune system is a prerequisite for the rational design of effective cancer immunotherapies. To date, attention has focused mainly on the role the adaptive immune system plays in controlling tumourigenesis, with conventional T cells, which recognize peptide antigens presented by classical MHC molecules, coming under close scrutiny. Accumulating reports now suggest that an additional T-cell subset, known as CD1d-restricted natural killer T (NKT) cells, also plays a pivotal role in modulating antitumour responses. Found in both humans and mice, CD1d-restricted NKT cells are a highly specialized cell type that, in contrast to conventional T cells, recognize lipid/glycolipid antigens presented by the non-classical MHC molecule CD1d. Several features of NKT cells, including their ability to rapidly produce large quantities of cytokines upon primary stimulation, make them ideal targets for developing anticancer immunotherapies. This intriguing cell type is the focus of this review.  相似文献   

13.
Murine Valpha14(inv)T cells (NKT cells), restricted by the CD1d1 MHC 1b molecules, are a distinctive subset of T cells endowed with pleiotropic functions. CD1d1-restricted NKT cells infiltrate the granulomas induced by the s.c. injection of mycobacterial phosphatidylinositoldimannoside (PIM(2)) but not of its deacylated derivative. NKT cells are detectable as early as 6 hours following the injection. Although the molecular structure of PIM(2) meets the requirements for presentation by CD1d1, Ab blocking and adoptive transfer experiments of wild-type NKT cells into CD1d1(-/-) mice show that CD1d1 expression is not required for the early recruitment of NKT cells to the injection site. This conclusion was confirmed by the finding that IL-12Rbeta(-/-) and CD40(-/-) mice were able to recruit NKT cells after PIM(2) challenge. Moreover, the injection of alpha-galactosylceramide, an NKT cell ligand that is recognized in the context of CD1d1, promoted only a minor recruitment of NKT cells. By contrast, injection of beta-galactosylceramide, a synthetic glycolipid that binds to CD1d1 but does not activate the CD1d/TCR pathway, resulted in the development of large granulomas rich in NKT cells. Finally, local injection of TNF-alpha mimics the effect of glycolipids. It is concluded that NKT cells migrate to and accumulate at inflammatory sites in the same way as other cells of the innate immune system and that migration to and accumulation at inflammatory sites are processes independent of the CD1d1 molecule.  相似文献   

14.
The liver has specific mechanisms to protect itself from infectious agents and to avoid autoimmunity, indicating an important role of the hepatic tissues in antigen presentation and tolerance induction. Since intrahepatic lymphocytes may contribute to the innate immunity and to the liver pathology, it is of interest to analyze the expression of antigen presenting molecules and of the related T cell recognition in liver, and how these change in relation to different diseases. We analyzed the expression of MHC class I, and of CD1-a, -b, -c, and -d proteins on liver tissues from patients with different hepatic diseases. Moreover, in the same patients we studied the intrahepatic and peripheral NKT cell recognition of alpha-galactosyl ceramide antigen in the context of CD1d. Unlike in other tissues, classical MHC class I molecules were poorly expressed in the hepatic compartment, suggesting that inflamed hepatocytes may trigger weak MHC-restricted T cell responses. Nevertheless, we observed a prevalent expression of HLA class I-like CD1d isoform on the hepatocyte surface, indicating that CD1d is the main restriction element in the liver. In patients with viral hepatitis, the intrahepatic CD1d expression parallels the recruitment of CD56+Valpha24Vbeta11+ NKT cells in the liver which recognize CD1d presenting glycolipids such as alpha-galactosyl ceramide, suggesting that the intrahepatic T cell immunity may focus on glycolipid antigens.  相似文献   

15.
In the present report, we characterize a novel T cell subset that shares with the NKT cell lineage both CD1d-restriction and high reactivity in vivo and in vitro to the alpha-galactosylceramide (alpha-GalCer) glycolipid. These cells preferentially use the canonical Valpha14-Jalpha281 TCR-alpha-chain and Vbeta8 TCR-beta segments, and are stimulated by alpha-GalCer in a CD1d-dependent fashion. However, in contrast to classical NKT cells, they lack the NK1.1 marker and express high surface levels of CD1d molecules. In addition, this NK1.1(-) CD1d(high) T subset, further referred to as CD1d(high) NKT cells, can be distinguished by its unique functional features. Although NK1.1(+) NKT cells require exogenous CD1d-presenting cells to make them responsive to alpha-GalCer, CD1d(high) NKT cells can engage their own surface CD1d in an autocrine and/or paracrine manner. Furthermore, in response to alpha-GalCer, CD1d(high) NKT cells produce high amounts of IL-4 and moderate amounts of IFN-gamma, a cytokine profile more consistent with a Th2-like phenotype rather than the Th0-like phenotype typical of NK1.1(+) NKT cells. Our work reveals a far greater level of complexity within the NKT cell population than previously recognized and provides the first evidence for T cells that can be activated upon TCR ligation by CD1d-restricted recognition of their ligand in the absence of conventional APCs.  相似文献   

16.
Ex vivo generated monocyte-derived dendritic cell (moDC)-vaccines have long been touted as promising immunotherapeutic agents for cancer treatment, although the response rate generally remains low. The reasons for this are still unclear and confounded by the diversity in manufacturing protocols that may affect moDC function. Preclinical studies have shown that the stimulatory function of dendritic cells can be improved by engaging invariant NKT cells in vivo through the presentation of the glycolipid alpha-galactosylceramide via CD1d. However, expression of CD1d on moDC has been shown to be negatively correlated with expression of CD1a, which in turn has been suggested to be a surrogate marker for IL-12 secreting type-1 polarized moDC, the preferred functional characteristics for cancer vaccines. Here we challenge this notion by showing that plasma-derived lipids drive functional levels of CD1d expression, while CD1a expression can vary considerably in these cells without being correlated with a loss of polarization or immunogenicity.  相似文献   

17.
18.
Attempts to harness mouse type I NKT cells in different therapeutic settings including cancer, infection, and autoimmunity have proven fruitful using the CD1d-binding glycolipid α-galactosylceramide (α-GalCer). In these different models, the effects of α-GalCer mainly relied on the establishment of a type I NKT cell-dependent immune cascade involving dendritic cell, NK cell, B cell, or conventional CD4(+) and CD8(+) T cell activation/regulation as well as immunomodulatory cytokine production. In this study, we showed that γδ T cells, another population of innate-like T lymphocytes, displayed a phenotype of activated cells (cytokine production and cytotoxic properties) and were required to achieve an optimal α-GalCer-induced immune response. Using gene-targeted mice and recombinant cytokines, a critical need for IL-12 and IL-18 has been shown in the α-GalCer-induced IFN-γ production by γδ T cells. Moreover, this cytokine production occurred downstream of type I NKT cell response, suggesting their bystander effect on γδ T cells. In line with this, γδ T cells failed to directly recognize the CD1d/α-GalCer complex. We also provided evidence that γδ T cells increase their cytotoxic properties after α-GalCer injection, resulting in an increase in killing of tumor cell targets. Moreover, using cancer models, we demonstrated that γδ T cells were required for an optimal α-GalCer-mediated anti-tumor activity. Finally, we reported that immunization of wild-type mice with α-GalCer enhanced the adaptive immune response elicited by OVA, and this effect was strongly mediated by γδ T cells. We conclude that γδ T cells amplify the innate and acquired response to α-GalCer, with possibly important outcomes for the therapeutic effects of this compound.  相似文献   

19.
CD1d function is regulated by microsomal triglyceride transfer protein   总被引:7,自引:0,他引:7  
CD1d is a major histocompatibility complex (MHC) class I-related molecule that functions in glycolipid antigen presentation to distinct subsets of T cells that express natural killer receptors and an invariant T-cell receptor-alpha chain (invariant NKT cells). The acquisition of glycolipid antigens by CD1d occurs, in part, in endosomes through the function of resident lipid transfer proteins, namely saposins. Here we show that microsomal triglyceride transfer protein (MTP), a protein that resides in the endoplasmic reticulum of hepatocytes and intestinal epithelial cells (IECs) and is essential for lipidation of apolipoprotein B, associates with CD1d in hepatocytes. Hepatocytes from animals in which Mttp (the gene encoding MTP) has been conditionally deleted, and IECs in which Mttp gene products have been silenced, are unable to activate invariant NKT cells. Conditional deletion of the Mttp gene in hepatocytes is associated with a redistribution of CD1d expression, and Mttp-deleted mice are resistant to immunopathologies associated with invariant NKT cell-mediated hepatitis and colitis. These studies indicate that the CD1d-regulating function of MTP in the endoplasmic reticulum is complementary to that of the saposins in endosomes in vivo.  相似文献   

20.
Mouse CD1d1 molecules present endogenous glycolipids to NKT cells. Although glycolipid presentation requires CD1d1 transport through the endocytic pathway, the processing requirements for such endogenous Ag presentation by CD1d1 molecules are undefined. We examined CD1d1 Ag presentation to NKT cells by disrupting endocytic trafficking and function in cells expressing normal and mutated CD1d1 expressed by recombinant vaccinia viruses. Consistent with previous studies, we found that preventing CD1d1 localization to endosomes by altering its cytoplasmic targeting sequences abrogated recognition by Valpha14Jalpha281(+) NKT cells without affecting recognition by Valpha14(-) NKT cells. Increasing the pH of acidic compartments by incubating cells with chloroquine or bafilomycin A1 blocked CD1d1 recognition by Valpha14(+) (but not Valpha14(-)) NKT cells without reducing levels of cell surface CD1d1. Similar results were obtained with primaquine, which interferes with the recycling of cell surface glycoproteins. These results suggest that the loading of a subset of glycolipid ligands onto CD1d1 molecules entails the delivery of cell surface CD1d1 molecules and an acidic environment in the endocytic pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号