首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lipopolysaccharide (LPS)-induced reactive oxygen species (ROS) generation and the concomitant decline in the ratio of reduced glutathione (GSH) to oxidized glutathione (GSSG) were demonstrated in human monocyte-derived dendritic cells (DC). Further, their relation to the maturation of DC, characterized by the production of cytokines, up-regulation of cell surface molecules and allo-stimulatory capacity, was examined. The LPS-induced ROS generation was demonstrated using electron paramagnetic resonance spectroscopy in intact cells, and was also confirmed using laser scanning confocal microscopy. The GSH/GSSG was assesed using a glutathione assay kit. When the DC were treated with alpha-phenyl-tert-butylnitrone, the ROS generation was attenuated, but the declined GSH/GSSG was not attenuated, and only cytokine production was suppressed among the above-mentioned maturation characteristics. When the DC were treated with glutathione monoethyl ester, both the ROS generation and the declined GSH/GSSG were attenuated, and the maturation characteristics were all suppressed. These findings suggest that the LPS-induced ROS generation and the concomitant decline in GSH/GSSG occur in human monocyte-derived DC and that the former is involved in cytokine production, while the latter is involved in the up-regulation of cell surface molecules and allo-stimulatory capacity. Since the cytokine production and the allo-stimulatory capacity of DC play an important role in inflammatory and immune responses, differential regulation of the ROS generation and the declined GSH/GSSG may be useful as therapeutic tools in diseases where both responses become entangled, such as sepsis and graft-versus-host disease.  相似文献   

2.
In the present study we report the preventive effect of apocynin, an active constituent of the Himalayan herb Picrorhiza kurrooa, on cyclooxygenase-2 (Cox-2) synthesis and activity in human adherent monocytes exposed to serum treated zymosan (STZ) and phorbol myristate acetate (PMA). Apocynin markedly decreases the intracellular reduced/oxidized glutathione ratio (GSH/GSSG) and prevents nuclear factor-kappaB (NF-kappaB) activation in stimulated monocytes. Moreover, it reduces intracellular reactive oxygen species (ROS) generation, NADPH oxidase activity in monocyte homogenates and translocation of p47phox subunit in monocyte membranes. p47phox levels are also reduced in lysates of apocynin-treated monocytes. The inhibition of Cox-2 by apocynin is completely abrogated by GSH provision. Results from this study indicate that apocynin inhibits Cox-2 synthesis and activity induced in monocytes by an increased oxidative tone and provide an explanation for the protective effect exerted by this compound in numerous cell and animal models of inflammation. Attenuation of NADPH oxidase derived ROS coupled with GSH/GSSG reduction and suppression of NF-kappaB activation are highlighted as the molecular mechanisms responsible for Cox-2 inhibition.  相似文献   

3.
4.
5.
Innate immune cells recognize pathogens by detecting molecular patterns that are distinct from those of the host. One such pattern is unmethylated CpG dinucleotides, which are common in bacterial DNA but not in vertebrate genomes. Macrophages respond to such CpG motifs in bacterial DNA or synthetic oligodeoxynucleotides (ODN) by inducing NF-kappaB and secreting proinflammatory cytokines, such as interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-alpha), but the mechanisms regulating this have been unclear. CpG ODN-stimulated cells produce reactive oxygen species (ROS) and have a decreased ratio of intracellular glutathione/glutathione disulfide (GSH/GSSG), indicating a shift to a more oxidized intracellular redox state. To determine whether this may play a role in mediating the CpG-induced macrophage activation, the GSH/GSSG redox state was manipulated in the murine macrophagelike cell line RAW264.7. Treatment of cells with BCNU to inhibit glutathione reductase (GR) enhanced the CpG-induced intracellular oxidation and decreased the GSH/GSSG, with increased activation of NF-kappaB and a doubling in the CpG-induced production of IL-6 and TNF-alpha. Experimental manipulation of the intracellular GSSG concentration during inhibition of cellular prooxidant production demonstrated that increased intracellular GSSG is a primary signal that is directly or indirectly required for CpG-induced NF-kappaB activation but is not in itself sufficient to trigger this in the absence of CpG ODN. These data suggest the existence of a second CpG-induced intracellular signal, independent of GSSG, mediating the activation of innate immunity by bacterial DNA.  相似文献   

6.
Essex DW  Li M 《Biochemistry》2003,42(1):129-136
Sulfhydryl and disulfide metabolism in platelet function has recently reemerged as a focus of platelet research. In this study we tested the effect of redox buffer on platelet aggregation and the effect of reduced glutathione (GSH) and platelet activation on sulfhydryl exposure in the platelet fibrinogen receptor, alpha IIb beta 3. In the presence of subthreshold concentrations of agonist, physiologic concentrations of GSH (10 microM) stimulated platelet aggregation and secretion. These effects were found with more than one platelet agonist and with different low molecular weight thiols, including homocysteine. The effect of low molecular weight thiols was reproduced with the peptide LSARLAF which directly activates platelets through alpha IIb beta 3, suggesting that the mechanism is at the level of this integrin. After determining optimal sulfhydryl labeling conditions for alpha IIb beta 3 (5 mM EDTA, 37 degrees C, 60 min), we found that GSH (10 microM) generated sulfhydryls in the beta 3 subunit. To determine if the requirement was for reducing equivalents or for a redox potential (ratio of GSH to GSSG), aggregation was further studied with the addition of low concentrations of GSSG to the GSH. With a ratio of GSH/GSSG of 5/1, similar to that of blood, the addition of GSSG potentiated the stimulatory effect as compared to GSH alone. This indicates that, for potentiation of aggregation, GSH is not simply reducing disulfide bonds; there is rather a requirement for a certain redox potential. Additional studies performed in the absence of added glutathione showed an increase in sulfhydryl labeling in the beta 3 subunit during platelet activation. Finally, we show that vicinal dithiols of platelet surface proteins are involved in the sulfhydryl-dependent pathways of platelet activation. In summary, these data imply that the redox potential of blood regulates activation of the alpha IIb beta 3 integrin and together with other reports in the literature suggest that disulfide bond cleavage with sulfhydryl generation in beta 3 is involved in activation of this receptor.  相似文献   

7.
Mitochondrial membrane potential (DeltaPsi(m)) depolarization contributes to cell death and electrical and contractile dysfunction in the post-ischemic heart. An imbalance between mitochondrial reactive oxygen species production and scavenging was previously implicated in the activation of an inner membrane anion channel (IMAC), distinct from the permeability transition pore (PTP), as the first response to metabolic stress in cardiomyocytes. The glutathione redox couple, GSH/GSSG, oscillated in parallel with DeltaPsi(m) and the NADH/NAD(+) redox state. Here we show that depletion of reduced glutathione is an alternative trigger of synchronized mitochondrial oscillation in cardiomyocytes and that intermediate GSH/GSSG ratios cause reversible DeltaPsi(m) depolarization, although irreversible PTP activation is induced by extensive thiol oxidation. Mitochondrial dysfunction in response to diamide occurred in stages, progressing from oscillations in DeltaPsi(m) to sustained depolarization, in association with depletion of GSH. Mitochondrial oscillations were abrogated by 4'-chlorodiazepam, an IMAC inhibitor, whereas cyclosporin A was ineffective. In saponin-permeabilized cardiomyocytes, the thiol redox status was systematically clamped at GSH/GSSG ratios ranging from 300:1 to 20:1. At ratios of 150:1-100:1, DeltaPsi(m) depolarized reversibly, and a matrix-localized fluorescent marker was retained; however, decreasing the GSH/GSSG to 50:1 irreversibly depolarized DeltaPsi(m) and induced maximal rates of reactive oxygen species production, NAD(P)H oxidation, and loss of matrix constituents. Mitochondrial GSH sensitivity was altered by inhibiting either GSH uptake, the NADPH-dependent glutathione reductase, or the NADH/NADPH transhydrogenase, indicating that matrix GSH regeneration or replenishment was crucial. The results indicate that GSH/GSSG redox status governs the sequential opening of mitochondrial ion channels (IMAC before PTP) triggered by thiol oxidation in cardiomyocytes.  相似文献   

8.
Our recent study has demonstrated that cellular redox imbalance can directly initiate apoptosis in a mitotic competent PC-12 cell line without the involvement of reactive oxygen species (ROS). However, whether cell apoptosis induced by ROS is, in fact, mediated by a loss of redox balance caused by the oxidant is unresolved. The linkage between oxidant-mediated apoptosis and the induction of cellular redox was examined in PC-12 cells using the oxidant, tert-butylhydroperoxide (TBH). TBH caused cell apoptosis in 24 h that was preceded by an early increase (30 min) in oxidized glutathione (GSSG). Pretreatment with N-acetyl cysteine prevented TBH-induced GSSG increases and cell apoptosis. Altered Bax/BcL-2 expression and release of mitochondrial cytochrome c occurred post-redox imbalance and was kinetically linked to caspase-3 activation and poly ADP-ribose polymerase cleavage. Moreover, cell apoptosis was attenuated by inhibition of caspase-9, but not caspase-8, and blockade of mitochondrial ROS generation and permeability transition pore attenuated caspase 3 activation and cell apoptosis. Collectively, these results show that TBH-induced GSSG elevation is associated with the disruption of mitochondrial integrity, activation of caspase-3 and cell apoptosis. This redox induction of the apoptotic cascade was dissociated from cellular GSH efflux.  相似文献   

9.
The glutathione (GSH)/glutathione disulfide (GSSG) redox couple is involved in several physiologic processes in plants under both optimal and stress conditions. It participates in the maintenance of redox homeostasis in the cells. The redox state of the GSH/GSSG couple is defined by its reducing capacity and the half-cell reduction potential, and differs in the various organs, tissues, cells, and compartments, changing during the growth and development of the plants. When characterizing this redox couple, the synthesis, degradation, oxidation, and transport of GSH and its conjugation with the sulfhydryl groups of other compounds should be considered. Under optimal growth conditions, the high GSH/GSSG ratio results in a reducing environment in the cells which maintains the appropriate structure and activity of protein molecules because of the inhibition of the formation of intermolecular disulfide bridges. In response to abiotic stresses, the GSH/GSSG ratio decreases due to the oxidation of GSH during the detoxification of reactive oxygen species (ROS) and changes in its metabolism. The lower GSH/GSSG ratio activates various defense mechanisms through a redox signalling pathway, which includes several oxidants, antioxidants, and stress hormones. In addition, GSH may control gene expression and the activity of proteins through glutathionylation and thiol-disulfide conversion. This review discusses the size and redox state of the GSH pool, including their regulation, their role in redox signalling and defense processes, and the changes caused by abiotic stress.  相似文献   

10.
11.
12.
A decrease in total glutathione, and aberrant mitochondrial bioenergetics have been implicated in the pathogenesis of Parkinson's disease. Our previous work exemplified the importance of glutathione (GSH) in the protection of mesencephalic neurons exposed to malonate, a reversible inhibitor of mitochondrial succinate dehydrogenase/complex II. Additionally, reactive oxygen species (ROS) generation was an early, contributing event in malonate toxicity. Protection by ascorbate was found to correlate with a stimulated increase in protein-glutathione mixed disulfide (Pr-SSG) levels. The present study further examined ascorbate-glutathione interactions during mitochondrial impairment. Depletion of GSH in mesencephalic cells with buthionine sulfoximine potentiated both the malonate-induced toxicity and generation of ROS as monitored by dichlorofluorescein diacetate (DCF) fluorescence. Ascorbate completely ameliorated the increase in DCF fluorescence and toxicity in normal and GSH-depleted cultures, suggesting that protection by ascorbate was due in part to upstream removal of free radicals. Ascorbate stimulated Pr-SSG formation during mitochondrial impairment in normal and GSH-depleted cultures to a similar extent when expressed as a proportion of total GSH incorporated into mixed disulfides. Malonate increased the efflux of GSH and GSSG over time in cultures treated for 4, 6 or 8 h. The addition of ascorbate to malonate-treated cells prevented the efflux of GSH, attenuated the efflux of GSSG and regulated the intracellular GSSG/GSH ratio. Maintenance of GSSG/GSH with ascorbate plus malonate was accompanied by a stimulation of Pr-SSG formation. These findings indicate that ascorbate contributes to the maintenance of GSSG/GSH status during oxidative stress through scavenging of radical species, attenuation of GSH efflux and redistribution of GSSG to the formation of mixed disulfides. It is speculated that these events are linked by glutaredoxin, an enzyme shown to contain both dehydroascorbate reductase as well as glutathione thioltransferase activities.  相似文献   

13.
It has been reported that the bioactive intermediate metabolites of trazodone might cause hepatotoxicity. This study was designed to investigate the exact mechanism of hepatocellular injury induced by trazodone as well as the protective effects of taurine and/or melatonin against this toxicity. Freshly isolated rat hepatocytes were used. Trazodone was cytotoxic and caused cell death with LC50 of 300 µm within 2 h. Trazodone caused an increase in reactive oxygen species (ROS) formation, malondialdehyde accumulation, depletion of intracellular reduced glutathione (GSH), rise of oxidized glutathione disulfide (GSSG), and a decrease in mitochondrial membrane potential, which confirms the role of oxidative stress in trazodone‐induced cytotoxicity. Preincubation of hepatocytes with taurine prevented ROS formation, lipid peroxidation, depletion of intracellular reduced GSH, and increase of oxidized GSSG. Taurine could also protect mitochondria against trazodone‐induced toxicity. Administration of melatonin reduced the toxic effects of trazodone in isolated rat hepatocytes. © 2013 Wiley Periodicals, Inc. J BiochemMol Toxicol 27:457‐462, 2013; View this article online at wileyonlinelibrary.com . DOI 10.1002/jbt.21509  相似文献   

14.
We previously showed that tert-butyl hydroperoxide (TBH) induced apoptosis in na?ve rat pheochromocytoma (nPC12) cells that correlated with cellular redox imbalance and mitochondrial apoptotic signaling. In this study, we tested the hypothesis that differentiation of nPC12 cells results in altered susceptibility to TBH utilizing a model of differentiated PC12 (dPC12) cells induced by nerve growth factor. TBH (100 microM) induced dPC12 apoptosis (12% at 24 h) at levels lower than na?ve cells (35%). This resistance was associated with elevated GSH, NADPH (reduced nicotinamide adenine dinucleotide phosphate), TBH metabolism, redox enzyme activities, reduced cellular GSH/GSSG (glutathione disulfide) status and preservation of mitochondrial membrane potential. Altering cellular GSH with ethacrynic acid or N-acetylcysteine, respectively, exacerbated or protected against dPC12 apoptosis. dPC12 apoptosis was mediated by caspase-9 and -3 activation and apoptosis protease activator protein-1 (Apaf-1) expression. These results show that nPC12 transition to dPC12 cells afforded protection against oxidative challenge due to maintenance of reduced GSH/GSSG and decreased Apaf-1 expression.  相似文献   

15.
Concentration changes of reduced glutathione (GSH) and oxidized glutathione (GSSG) were studied by fluorometric assay witho-phthalaldehyde to clarify the relationship between seizure mechanism and the glutathione redox state. In cerebellum the GSH/GSSG ratio was significantly decreased in the interictal stage of E1 mice (stimulated group), but in ddY mice this ratio was decreased before convulsions induced by pentylenetetrazol and during submaximal ECS. No change was found in the GSH/GSSG ratio of the cerebellum during and after convulsions induced by pentylenetetrazol and maximal ECS. GSH levels in cerebrum in the interictal stage of E1 mice (stimulated group) were lower compared to control E1 mice. In ddY mice submaximal ECS increased GSSG levels in cerebrum so that the GSH/GSSG ratio was decreased.  相似文献   

16.
The effect of thioredoxin peroxidases on the protection of Ca(2+)-induced inner mitochondrial membrane permeabilization was studied in the yeast Saccharomyces cerevisiae using null mutants for these genes. Since deletion of a gene can promote several other effects besides the absence of the respective protein, characterizations of the redox state of the mutant strains were performed. Whole cellular extracts from all the mutants presented lower capacity to decompose H(2)O(2) and lower GSH/GSSG ratios, as expected for strains deficient for peroxide-removing enzymes. Interestingly, when glutathione contents in mitochondrial pools were analyzed, all mutants presented lower GSH/GSSG ratios than wild-type cells, with the exception of DeltacTPxI strain (cells in which cytosolic thioredoxin peroxidase I gene was disrupted) that presented higher GSH/GSSG ratio. Low GSH/GSSG ratios in mitochondria increased the susceptibility of yeast to damage induced by Ca(2+) as determined by membrane potential and oxygen consumption experiments. However, H(2)O(2) removal activity appears also to be important for mitochondria protection against permeabilization because exogenously added catalase strongly inhibited loss of mitochondrial potential. Moreover, exogenously added recombinant peroxiredoxins prevented inner mitochondrial membrane permeabilization. GSH/GSSG ratios decreased after Ca(2+) addition, suggesting that reactive oxygen species (ROS) probably mediate this process. Taken together our results indicate that both mitochondrial glutathione pools and peroxide-removing enzymes are key components for the protection of yeast mitochondria against Ca(2+)-induced damage.  相似文献   

17.
AIMS: Our objective was to investigate if oxidative stress is involved in the neural damage caused by lidocaine. MAIN METHODS: Male Wistar rats were used. The control group received 0.9% saline ip and the treated group received a single 60 mg/kg lidocaine dose ip. On days 1, 2, 5, and 10 after dosing, ten rats were sacrificed and their brains were quickly removed. The amygdala and hippocampus were dissected. Five samples were used to determine lipid peroxidation, reactive oxygen species (ROS), reduced glutathione (GSH), and oxidized glutathione (GSSG). Another five were used to measure antioxidant activities of glutathione peroxidase (GPX), catalase, Cu-Zn SOD (superoxide dismutase), Mn SOD, and total SOD. KEY FINDINGS: Ten days after injection of lidocaine, lipid peroxidation increases in the hippocampus because the ROS are enhanced from day 5, whereas in the amygdala lipid peroxidation and the ROS were enhanced only on the first day postinjection. Lidocaine causes an increased concentration of GSH and GSSG in the hippocampus from the first day. In the amygdala the GSH and GSSG content were increased at day 10. In the hippocampus the catalase activity was enhanced, whereas the total SOD and Cu-Zn SOD activities were decreased. In the amygdala the lidocaine enhances the activities of catalase and GPX, but no SOD isoenzymes were modified. SIGNIFICANCE: In this research we demonstrated that lidocaine affects the redox environment and promotes increases of the oxidative markers both in the hippocampus and amygdala but in a different pattern.  相似文献   

18.
Sun L  Gu L  Wang S  Yuan J  Yang H  Zhu J  Zhang H 《PloS one》2012,7(3):e32503
The activation of group I metabotropic glutamate receptor (group I mGlus) has been shown to produce neuroprotective or neurotoxic effects. In this study, we investigated the effects of N-acetylcysteine (NAC), a precursor of the antioxidant glutathione, on group I mGlus activation in apoptosis of glial C6 and MN9D cell lines, and a rat model of Parkinson's disease (PD). We demonstrated that NAC protected against apoptosis through modulation of group I mGlus activity. In glial C6 cells, NAC promoted phosphorylation of ERK induced by (s)-3,5-dihydroxy-phenylglycine (DHPG), an agonist of group I mGlus. NAC enhanced the group I mGlus-mediated protection from staurosporine (STS)-induced apoptosis following DHPG treatment. Moreover, in rotenone-treated MN9D cells and PD rat model, NAC protected against group I mGlus-induced toxicity by compromising the decrease in phosphorylation of ERK, phosphorylation or expression level of TH. Furthermore, the results showed that NAC prohibited the level of ROS and oxidation of cellular GSH/GSSG (E(h)) accompanied by activated group I mGlus in the experimental models. Our results suggest that NAC might act as a regulator of group I mGlus-mediated activities in both neuroprotection and neurotoxicity via reducing the oxidative stress, eventually to protect cell survival. The study also suggests that NAC might be a potential therapeutics targeting for group I mGlus activation in the treatment of PD.  相似文献   

19.
Post-translational modifications (PTMs) induced conformational changes of proteins can cause their activation or inactivation. Neutrophils clear pathogen through phagocytosis and oxidative burst generation, while participate in inflammation through sustained and uncontrolled generation of ROS. In activated PMNs, cytosolic NOX-2 subunit p47phox following phosphorylation interacts with p67phox, p40phox and along with Rac2 translocate to the membrane. Phosphorylation of p47phox subunit occurs in both short spurts as well as sustained ROS generation, suggesting towards the unidentified molecular mechanism(s) driving these two diverse outcomes by various stimuli. The present study demonstrates that in PMA or NO treated neutrophils a subunit of NOX2, p47phox gets glutathionylated to sustain ROS generation along with a decrease in catalase, Grx-1 activity and change in GSH/GSSG ratio. Surprisingly, fMLP treated cells neither showed sustained ROS production nor glutathionylation of p47phox. S-Glutathionylation was always secondary to phosphorylation of p47phox and inhibition of glutathionylation did not alter phosphorylation but specifically impaired sustained ROS production. Interestingly, forced S-glutathionylation of p47phox converted the fMLP induced ROS generation into sustained release of ROS. We then identified the glutathionylation susceptible cysteine residues of p47phox by LC-MS/MS with IAM switch mapping. Site-directed mutagenesis of cysteine residues further mitigated p47phox S-glutathionylation. Thus, we demonstrate that p47phox S-glutathionylation plays an essential key role in the sustained ROS generation by human neutrophils.  相似文献   

20.
This in vitro study compares the frequency of redox cycling between alloxan and dialuric acid at different initial ratios of glutathione and alloxan. Alloxan oxidizes GSH to GSSG. The rate of GSH oxidation at a given initial GSH concentration of 2.0 mmol/L depends on the initial concentration of alloxan added. The higher the concentration of alloxan in relation to the initial concentration of GSH, the faster GSH oxidation proceeds, as well as oxygen consumption, and therefore, formation of reactive oxygen species. The highest rates of GSH oxidation, i.e. GSSG formation, were found at concentration ratios of between 2.0 mmol/L GSH and 0.2 and 0.04 mmol/L alloxan, respectively. Because 0.04 mmol/L alloxan oxidizes 2.0 mmol/L GSH completely, a frequency of at least 25 cycles between alloxan and dialuric acid within 3 hours can be assumed. During each redox cycle, two molecules of GSH are oxidized to one molecule of GSSG, and during each cycle one molecule of oxygen is reduced simultaneously to one molecule of hydrogen peroxide. In total, therefore, one molecule of alloxan oxidizes at least 50 molecules of GSH and forms about 25 molecules of hydrogen peroxide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号