首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In-vitro methods were developed to test fungi for production of metabolites affecting nematode egg hatch and mobility of second-stage juveniles. Separate assays were developed for two nematodes: root-knot nematode (Meloidogyne incognita) and soybean cyst nematode (Heterodera glycines). For egg hatch to be successfully assayed, eggs must first be surface-disinfested to avoid the confounding effects of incidental microbial growth facilitated by the fungal culture medium. Sodium hypochlorite was more effective than chlorhexidine diacetate or formaldehyde solutions at surface-disinfesting soybean cyst nematode eggs from greenhouse cultures. Subsequent rinsing with sodium thiosulfate to remove residual chlorine from disinfested eggs did not improve either soybean cyst nematode hatch or juvenile mobility. Soybean cyst nematode hatch in all culture media was lower than in water. Sodium hypochlorite was also used to surface-disinfest root-knot nematode eggs. In contrast to soybean cyst nematode hatch, root-knot nematode hatch was higher in potato dextrose broth medium than in water. Broth of the fungus Fusarium equiseti inhibited root-knot nematode egg hatch and was investigated in more detail. Broth extract and its chemical fractions not only inhibited egg hatch but also immobilized second-stage juveniles that did hatch, confirming that the fungus secretes nematode-antagonistic metabolites.  相似文献   

2.
The first internally transcribed spacer region (ITS1) from cyst nematode species (Heteroderidae) was compared by nucleotide sequencing and PCR-RFLP. European, Asian, and North American isolates of five heterodefid species were examined to assess intraspecific variation. PCR-RFLP patterns of amplified ITS1 DNA from pea cyst nematode, Heterodera goettingiana, from Northern Ireland were identical with patterns from Washington State. Sequencing demonstrated that ITS1 heterogeneity existed within individuals and between isolates, but did not result in different restriction patterns. Three Indian and two U.S. isolates of the corn cyst nematode, Heterodera zeae, were compared. Sequencing detected variation among ITS1 clones from the same individual, between individuals, and between isolates. PCR-RFLP detected several restriction site differences between Indian and U.S. isolates. The basis for the restriction site differences between isolates from India and the U.S. appeared to be the result of additional, variant ITS1 regions amplified from the U.S. isolates, which were not found in the three India isolates. PCR-RFLP from individuals of the U.S. isolates created a composite pattern derived from several ITS1 types. A second primer set was specifically designed to permit discrimination between soybean (H. glycines) and sugar beet (H. schachtii) cyst nematodes. Fok I digestion of amplified product from soybean cyst nematode isolates displayed a uniform pattern, readily discernible from the pattern of sugar beet and clover cyst nematode (H. trifolii).  相似文献   

3.
The presence of wheat germ agglutinin (WGA) on the cuticular surface of the seed gall nematodes Anguina agrostis and Anguina tritici was demonstrated, and the nature of its binding was examined. Crude extracts from the cuticles of A. tritici agglutinated human red blood cells, and only N-acetylglucosamine (GlucNAc) inhibited the agglutination. Distribution of the lectin was visualized by treating live infective juveniles (J2) with rabbit anti-WGA antibody and staining with fluorescein isothiocyanate (FITC)-conjugated goat anti-rabbit IgG. The lectin bound to the outer cuticular surface of the whole body wall. Pretreatment with GlucNAc oligomers did not reduce the fluorescence created by the anti-WGA-WGA binding, indicating at least a partial nonspeciflc adhesion of the WGA to the nematode surface. Proteolytic enzyme pretreatments diminished the fluorescence, whereas lipase and periodate pretreatments increased the fluorescence. Adult females and males were labeled only on the head and tail, whereas eggs were not labeled at all. It was concluded that the WGA on the J2 cuticle originates from the host.  相似文献   

4.
Numbers of cyst and root-knot nematodes and percentage parasitism by the nematophagous fungus Hirsutella rhossiliensis were quantified in microplots over 2 years. The microplots contained either sugarbeets in loam infested with Heterodera schachtii or tomatoes in sand infested with Meloidogyne javanica. The fungus was added to half of the microplots for each crop. Although H. rhossiliensis established in both microplot soils, the percentage of nematodes parasitized did not increase with nematode density and nematode numbers were not affected by the fungus. The results indicate that long-term interactions between populations of the fungus and cyst or root-knot nematodes will not result in biological control.  相似文献   

5.
In-situ Hybridization to Messenger RNA in Heterodera glycines   总被引:3,自引:0,他引:3  
A method is presented for in-situ hybridization to mRNA in second-stage juveniles (J2) of the soybean cyst nematode Heterodera glycines. The protocol was developed using a digoxigenin-labeled RNA probe transcribed from cDNA of a cellulase gene that was known to be expressed in the subventral esophageal glands of H. glycines. Formaldehyde-fixed J2 were cut into sections with a vibrating razor blade to make the inside of the nematodes accessible for probing. These nematode fragments then were hybridized in suspension with riboprobe, and labeled with an alkaline phosphatase-conjugated antibody to digoxigenin. Staining with nitroblue tetrazolium and bromo-chloro-indolyl phosphate revealed a highly specific hybridization signal to mRNA within the cytoplasm of the subventral gland cells, using this specific antisense probe. This in-situ hybridization protocol will be useful for the characterization and identification of esophageal gland secretion genes in plant-parasitic nematodes, among other applications.  相似文献   

6.
A total of 66 plants in 50 species were inoculated with eggs and juveniles of soybean cyst nematode, Heterodera glycines. Roots were stained and observed for penetration and development of the nematode. Twenty-six plants were not penetrated; twenty-three were penetrated, but there was no development of the nematode; eight were penetrated with some nematode development; two were penetrated and had considerable nematode development, but few nematodes, if any, matured; and seven were penetrated with many nematodes maturing. The penetration of nonhosts may imply some susceptibility and that populations eventually would build up on the penetrated plants. Plants not penetrated may be useful as rotation plants because no reproduction would occur.  相似文献   

7.
Reproduction of the corn cyst nematode (Heterodera zeae) and its effect on growth of corn (Zea mays) was studied in plant growth chambers at 24, 27, 30, 33, and 36 C. Reproduction of H. zeae increased directly with increase in temperature from 24 to 36 C. Fifteen-cm-d pots of corn seedlings inoculated with a mixture of 5,000 eggs + J2 and maintained for 8 weeks in growth chambers contained an average of 7,042 cysts + females at 36 C, but only 350 cysts + females at 24 C. Fresh weights of plants without nematodes were highest at 27 C and lowest at 36 C. Nematodes suppressed plant fresh weight by an average of 30% at 27 C and by 27% at 33 C but did not suppress plant weight at 36 C. Heterodera zeae has the highest reported temperature optimum for reproduction of any cyst nematode.  相似文献   

8.
Greenhouse and field experiments were conducted to determine the effects of phenamiphos and/or alachlor on early growth of soybean, root morphology, and infection and resurgence of Heterodera glycines (race 1). All tests were planted to ''Ransom'' soybeans. In greenhouse experiments without nematodes, root growth was inhibited at 5 days by alachlor treatments and at 10 days by phenamiphos treatments; with nematodes, phenamiphos treatments enhanced root growth. Phenamiphos also suppressed early penetration of soybean roots by H. glycines in the greenhouse. Early soybean growth parameters among treatments were generally similar in the field. Nematode penetration was limited with treatments containing phenamiphos at one location. Plants treated with only alachlor had less nematode infection than did the control; however, plants treated with herbicide/nematicide combinations had more nematode penetration than did plants treated with phenamiphos alone. Alterations of root growth and interference with the efficacy of phenamiphos are two processes by which alachlor may enhance soybean susceptibility or suitability to H. glycines.  相似文献   

9.
The plant parasitic nematodes Helicotylenchus multicinctus, Meloidogyne javanica, Tylenchulus semipenetrans, and Xiphinema index, differing in their host specificity and parasitic habits, were analyzed as to their cuticle surface sialyl, galaclosyl, and/or N-acetylgalactosaminyl residues. The procedure involved the selective oxidation of sialic acid and galactose/N-acetylgal-actosamine residues using periodate and galactose oxidase, respectively, to form reactive aldehyde groups. These functional groups were coupled directly with a new hydrazide-containing compound, the fluorescent reagent lissamine rhodamine-β-alanine hydrazide, or they were utilized to introduce DPN-groups to the nematode cuticle. The distribution of the DNP-tagged glycoconjugates was visualized by treating the nematodes with rabbit anti-DNP antibody and staining with fluorescein isothiocyanate (FITC)-labeled goat antirabbit IgG. Sialo residues were observed along the entire outer body wall of the first three aforementioned nematodes, but there were some differences in reaction among the various life stages within the species. In X. index, sialo residues were sited in the tail and head areas, mainly on the lips, oral opening, amphid apertures and stylet. Galactose oxidase treatments revealed galactose on N-acytylgalactosamine residues on T. sentipenetrans and X. index, but there were no indications that their presence was dependent on the developmental stage. Trypsin, pronase, and neuraminidase pretreatment completely abolished the fluorescence in T. semipenetrans but did not alter the sialo residue binding reaction in H. multicinctus or M. javanica, indicating possible differences in the outer body wall saccharide structure and composition between these nematodes. The existence and nature of sugar residues on the cuticle surface of nematodes could contribute to an understanding of the specific recognition by phytophagous nematodes of their host, and perhaps also of the virus transmission mechanism in those nematodes which serve as vectors.  相似文献   

10.
Tobacco, eastern black nightshade, and tomato were grown for 3 to 13 weeks to assess differences in invasion, development, and soil density of Globodera tabacum tabacum (tobacco cyst nematode) in field plots and microplots over three seasons. Tobacco cyst nematodes invaded roots of resistant and susceptible tobacco, nightshade, and tomato. Nematode development was fastest in nightshade and slowest in tomato, and few adults developed in roots of nematode-resistant tobacco. Soil populations of tobacco cyst nematodes were reduced up to 80% by destroying nightshade or susceptible tobacco grown for 3 to 6 weeks. Nematode populations were reduced up to 96% by destroying tomato or resistant tobacco grown for 3 to 6 weeks. Timing of crop destruction was less critical with tomato and resistant tobacco, as nematode populations did not increase after 13 weeks of growth. These studies demonstrate that trap cropping, through crop destruction, can significantly reduce G. t. tabacum populations.  相似文献   

11.
Short-term greenhouse studies with soybean (Glycine max cv. Bragg) were used to examine interactions between the soybean cyst nematode (Heterodera glycines) and two other common pests of soybean, the stem canker fungus (Diaporthe phaseolorum var. caulivora) and the soybean looper (Pseudoplusia includens), a lepidopterous defoliator. Numbers of cyst nematode juveniles in roots and numbers of cysts in soil and roots were reduced on plants with stem cankers. Defoliation by soybean looper larvae had the opposite effect; defoliation levels of 22 and 64% caused stepwise increases in numbers of juveniles and cysts in both roots and soil, whereas numbers of females in roots decreased. In two experiments, stem canker length was reduced 40 and 45% when root systems were colonized by the soybean cyst nematode. The absence of significant interactions among these pests indicates that the effects of soybean cyst nematode, stem canker, and soybean looper on plant growth and each other primarily were additive.  相似文献   

12.
The effects of host genotype and initial nematode population densities (Pi) on yield of soybean and soil population densities of Heterodera glycines (Hg) race 3 and Meloidogyne incognita (Mi) race 3 were studied in a greenhouse and field microplots in 1983 and 1984. Centennial (resistant to Hg and Mi), Braxton (resistant to Mi, susceptible to Hg), and Coker 237 (susceptible to Hg and Mi) were planted in soil infested with 0, 31, or 124 eggs of Hg and Mi, individually and in all combinations, per 100 cm³ soil. Yield responses of the soybean cultivars to individual and combined infestations of Hg and Mi were primarily dependent on soybean resistance or susceptibility to each species separately. Yield of Centennial was stimulated or unaffected by nematode treatments, yield of Braxton was suppressed by Hg only, and yield suppressions caused by Hg and Mi were additive and dependent on Pi for Coker 237. Other plant responses to nematodes were also dependent on host resistance or susceptibility. Population densities of Mi second-stage juveniles (J2) in soil were related to Mi Pi and remained constant in the presence of Hg for all three cultivars. Population densities of Hg J2 on the two Hg-susceptible Cultivars, Braxton and Coker 237, were suppressed in the presence of Mi at low Hg Pi.  相似文献   

13.
A survey was conducted to determine the assemblage and abundance of plant-parasitic nematodes and their associations with soil factors in organically farmed fields in Minnesota. A total of 31 soil samples were collected from southeast (SE), 26 samples from southwest (SW), 28 from west-central (WC), and 23 from northwest (NW) Minnesota. The assemblage and abundance of plant-parasitic nematodes varied among the four regions. The soybean cyst nematode, Heterodera glycines, the most destructive pathogen of soybean, was detected in 45.2, 88.5, 10.7, and 0% of organically farmed fields with relative prominence (RP) values of 10.3, 26.5, 0.6, and 0 in the SE, SW, WC, and NW regions, respectively. Across the four regions, other common genera of plant-parasitic nematodes were Helicotylenchus (42.6, RP value, same below), Pratylenchus (26.9), Tylenchorhynchus and related genera (9.4), Xiphinema (5.6), and Paratylenchus (5.3). Aphelenchoides, Meloidogyne, Hoplolaimus, Mesocriconema, and Trichodorus were also detected at low frequencies and/or low population densities. The similarity index of plant-parasitic nematodes between two regions ranged from 0.44 to 0.71 and the similarity increased with decreasing distance between regions. The densities of most plant-parasitic nematodes did not correlate with measured soil factors (organic matter, pH, texture). However, the densities of Pratylenchus correlated negatively with % sand, and Xiphinema was correlated negatively with soil pH.  相似文献   

14.
Root knot (Meloidogyne spp.) and cyst (Heterodera and Globodera spp.) nematodes infect all important crop species, and the annual economic loss due to these pathogens exceeds $90 billion. We screened the worldwide accession collection with the root-knot nematodes Meloidogyne incognita, M. arenaria and M. hapla, soybean cyst nematode (SCN-Heterodera glycines), sugar beet cyst nematode (SBCN-Heterodera schachtii) and clover cyst nematode (CLCN-Heterodera trifolii), revealing resistant and susceptible accessions. In the over 100 accessions evaluated, we observed a range of responses to the root-knot nematode species, and a non-host response was observed for SCN and SBCN infection. However, variation was observed with respect to infection by CLCN. While many cultivars including Jemalong A17 were resistant to H. trifolii, cultivar Paraggio was highly susceptible. Identification of M. truncatula as a host for root-knot nematodes and H. trifolii and the differential host response to both RKN and CLCN provide the opportunity to genetically and molecularly characterize genes involved in plant-nematode interaction. Accession DZA045, obtained from an Algerian population, was resistant to all three root-knot nematode species and was used for further studies. The mechanism of resistance in DZA045 appears different from Mi-mediated root-knot nematode resistance in tomato. Temporal analysis of nematode infection showed that there is no difference in nematode penetration between the resistant and susceptible accessions, and no hypersensitive response was observed in the resistant accession even several days after infection. However, less than 5% of the nematode population completed the life cycle as females in the resistant accession. The remainder emigrated from the roots, developed as males, or died inside the roots as undeveloped larvae. Genetic analyses carried out by crossing DZA045 with a susceptible French accession, F83005, suggest that one gene controls resistance in DZA045.  相似文献   

15.
The interactions of Heterodera glycines at four egg inoculum levels (0, 100, 1,000, and 10,000 per pot) and three cyst levels (0, 100, and 200 per pot) and Calonectria crotalariae at 500, 5,000, and 50,000 microsclerotia per pot were evaluated on soybean. At the two lowest nematode egg levels, the presence of C. crotalariae did not affect nematode reproduction. At 10,000 eggs per pot, however, nematode reproduction was increased significantly at each microsclerotial level. The increase in nematode reproduction was stepwise at 500 and 5,000 microsclerotia per pot but declined at 50,000 microsclerotia per pot. Similar results were obtained when cysts rather than eggs were used as nematode inoculum. The nematode x fungus interaction significantly affected 60-day plant growth parameters of both Lee 74 and Centennial soybean. The nematode x fungus interaction was antagonistic to plant roots and significantly influenced root injury ratings. The presence of C. crotalariae in tissues of stock plants or plants used as race differentials did not alter the analysis of this population as race 3.  相似文献   

16.
The occurrence ofchlamydospores of Glomus fasciculatum (Gf) within cysts of the soybean cyst nematode, Heterodera glycines, and the effects of vesicular-arbuscular mycorrhizae on nematode population dynamics and soybean (Glycine max) plant growth were investigated. Chlamydospores occupied 1-24% of cysts recovered from field soil samples. Hyphae of Missouri isolate Gfl penetrated the female nematode cuticle shortly after she ruptured the root epidermis. Convoluted hyphae filled infected eggs, and sporogenesis occurred within infected eggs. G. microcarpum, G. mosseae, and two isolates of Gf were inoculated with H. glycines on plants of ''Essex'' soybeans. Each of the two Gf isolates infected about 1% of the nematode eggs in experimental pot cuhures. The Gfl isolate decreased the number of first-generation adult females 26%, compared with the nonmycorrhizal control. The total numbers of first-generation plus second-generation adult females were similar for both Gf isolates and 29-41% greater than the nonmycorrhizal control. Soybean plants with Gf and H. glycines produced more biomass than did nonmycorrhizal plants with nematodes, but only Gfl delayed leaf senescence.  相似文献   

17.
We determined the effects of crop residue on the persistence of an entomopathogenic nematode, Steinernema carpocapsae. During 2 consecutive years, nematodes were applied at rates of 2.5 × 10₄ and 1.0 × 10⁵ infective juveniles/m² to small field plots planted with corn. Nematode persistence was monitored by exposing Galleria mellonella larvae to soil samples from plots with and without crop residue (approximately 75% coverage of soybean stubble). Persistence of S. carpocapsae was significantly greater in crop residue plots than in plots without residue. In crop residue plots that received the higher rate of nematode application, larval mortality did not significantly decrease during the study period (3 to 5 days) and remained above 85%. In nematode-treated plots without crop residue, however, larval mortality fell from over 96% to below 11% and 35% in the first and second trials, respectively. The increased crop residue may have benefited nematode persistence through protection from desiccation or ultraviolet light. We conclude that increased ground cover in cropping systems (e.g., due to reduced tillage) may lead to increased insect pest suppression with entomopathogenic nematodes.  相似文献   

18.
The population density of Helicotylenchus lobus and the percentage of the population with spores of Pasteuria penetrans were determined for 10 monthly intervals in naturally infested turf grass soil at Riverside, California. The percentage of nematodes with attached spores ranged from 40% to 67%. No relationship was found between nematode density and the percentage of nematodes with spores. The mean and maximum numbers of spores adhering per nematode with at least one spore ranged from 2 to 8 and 7 to 66, respectively. The mean number of spores per nematode (based on total number of H. lobus) was correlated with the percentage of nematodes with spores. Spores adhered to both adult and juvenile H. lobus. Between 9% and 32% of the nematodes with spores had been penetrated and infected by the bacterium. Many infected nematodes were dead, but mature spores were also observed within living adult and juvenile H. lobus that exhibited no apparent reduction in viability and motility. Spore and central endospore diameters of this P. penetrans isolate were larger than those reported for the type isolate from Meloidogyne incognita, but transmission and scanning electron microscopy did not reveal significant morphological differences between the two isolates. Spores of the isolate associated with H. lobus did not adhere to juveniles of M. incognita.  相似文献   

19.
Population dynamics of Heterodera glycines (SCN) were influenced by initial nematode population density in soil, soybean root growth pattern, soil type, and environmental conditions in two field experiments. Low initial populations (Pi) of SCN increased more rapidly during the growing season than high Pi and resulted in greater numbers of nematodes at harvest. Egg and juvenile (J2) populations increased within 2-6 weeks after planting when early-season soil temperatures were 20 C and above and were delayed by soil temperatures of 17 C or below in May and early June. Frequencies of occurrence and number of nematodes decreased with increasing depth and distance from center of the soybean row. Spatial pattern of SCN paralleled that of soybean roots. Higher clay content in the subsoil 30-45 cm deep in one field restricted soil penetration by roots, indirectly influencing vertical distribution of SCN. Shoot dry weight was a good indicator of the effect of SCN on seed yield. Root dry weight was poorly correlated with soybean growth and yield. The relationship of yield (seed weight) to Pi was best described by a quadratic equation at one site, but did not fit any regression model tested at the second site.  相似文献   

20.
A new cyst nematode species, Globodera ellingtonae, was recently described from populations in Oregon and Idaho. This nematode has been shown to reproduce on potato. Because of this nematode’s close relationship to the potato cyst nematodes, G. rostochiensis and G. pallida, an understanding of the risk of its potential spread, including prediction of potential geographical distribution, is required. To determine the development of G. ellingtonae under different temperatures, we conducted growth chamber experiments over a range of temperatures (10.0°C to 26.5°C) and tracked length of time to various developmental stages, including adult females bearing the next generation of eggs. Both the time to peak population densities of G. ellingtonae life stages and their duration in roots generally increased with decreasing temperature. Regression of growth rate to second-stage (J2) and third-stage (J3) juveniles on temperature yielded different base temperatures: 6.3°C and 4.4°C for J2 and J3, respectively. Setting a base temperature of 6°C allowed calculation of the degree-days (DD6) over which different life stages occurred. The largest population densities of J2 were found in roots between 50 and 200 DD6. Population densities of J3 peaked between 200 and 300 DD6. Adult males were detected in soil starting at 300 to 400 DD6 and remained detectable for approximately 500 DD6. By 784 to 884 DD6, half of the eggs in adult females contained vermiform juveniles. Given the similarity in temperature ranges for successful development between G. ellingtonae and G. rostochiensis, G. ellingtonae populations likely could survive in the same geographic range in which G. rostochiensis now occurs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号