首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Gap junctions coordinate processes ranging from muscle contraction to ovarian follicle development. Here we show that the gap junction protein Zero population growth (Zpg) is required for germ cell differentiation in the Drosophila ovary. In the absence of Zpg the stem cell daughter destined to differentiate dies. The zpg phenotype is novel, and we used this phenotype to genetically dissect the process of stem cell maintenance and differentiation. Our findings suggest that germ line stem cells differentiate upon losing contact with their niche, that gap junction mediated cell-cell interactions are required for germ cell differentiation, and that in Drosophila germ line stem cell differentiation to a cystoblast is gradual.  相似文献   

2.
The generation of epithelial cell polarity is a key process during development. Although the induction and orientation of cell polarity by cell-cell and cell-extracellular matrix (ECM) interactions is well established, the molecular mechanisms by which signals from the ECM control cell polarity in developing epithelial tissues remain poorly understood. Here, we have used the follicular epithelium of the Drosophila ovary to investigate the role that integrins, the main cell-ECM receptors, play in the establishment of apicobasal polarity. Mature follicle cells have an apical side facing the germ line and a basal side in contact with a basement membrane. Our results show that integrins - presumably via interactions with the basement membrane - play a reinforcing role in follicle cell polarization, as they are required to establish and/or maintain follicle cell membrane asymmetry only when contact with the germ line is prevented. We suggest that the primary cue for polarization of the follicular epithelium is contact with the germline cells. In addition, while interfering with apical and lateral polarization cues leads to apoptosis, we show here that inhibition of contact with the basement membrane mediated by integrins does not affect cell survival. Finally, we provide evidence to suggest that integrins are required to orientate epithelial polarity in vivo.  相似文献   

3.
4.
We examined the roles of the extracellular domains of a gap junction protein and a cell adhesion molecule in gap junction and adherens junction formation by altering cell interactions with antibody Fab fragments. Using immunoblotting and immunocytochemistry we demonstrated that Novikoff cells contained the gap junction protein, connexin43 (Cx43), and the cell adhesion molecule, A-CAM (N-cadherin). Cells were dissociated in EDTA, allowed to recover, and reaggregated for 60 min in media containing Fab fragments prepared from a number of antibodies. We observed no cell-cell dye transfer 4 min after microinjection in 90% of the cell pairs treated with Fab fragments of antibodies for the first or second extracellular domain of Cx43, the second extracellular domain of connexin32 (Cx32) or A-CAM. Cell-cell dye transfer was detected within 30 s in cell pairs treated with control Fab fragments (pre-immune serum, antibodies to the rat major histocompatibility complex or the amino or carboxyl termii of Cx43). We observed no gap junctions by freeze-fracture EM and no adherens junctions by thin section EM between cells treated with the Fab fragments that blocked cell-cell dye transfer. Gap junctions were found on approximately 50% of the cells in control samples using freeze-fracture EM. We demonstrated with reaggregated Novikoff cells that: (a) functional interactions of the extracellular domains of the connexins were necessary for the formation of gap junction channels; (b) cell interactions mediated by A-CAM were required for gap junction assembly; and (c) Fab fragments of antibodies for A-CAM or connexin extracellular domains blocked adherens junction formation.  相似文献   

5.
Apoptosis, a genetically programmed cell death, allows for homeostasis and tissue remodelling during development of all multi-cellular organisms. Phagocytes swiftly recognize, engulf and digest apoptotic cells. Yet, to date the molecular mechanisms underlying this phagocytic process are still poorly understood. To delineate the molecular mechanisms of apoptotic cell clearance in Drosophila, we have carried out a deficiency screen and have identified three overlapping phagocytosis-defective mutants, which all delete the fly homologue of the ced-12 gene, known as Dmel\ced12. As anticipated, we have found that Dmel\ced-12 is required for apoptotic cell clearance, as for its C. elegans and mammalian homologues, ced-12 and elmo, respectively. However, the loss of Dmel\ced-12 did not solely account for the phenotypes of all three deficiencies, as zygotic mutations and germ line clones of Dmel\ced-12 exhibited weaker phenotypes. Using a nearby genetically interacting deficiency, we have found that the polycystic kidney disease 2 gene, pkd2, which encodes a member of the TRPP channel family, is also required for phagocytosis of apoptotic cells, thereby demonstrating a novel role for PKD2 in this process. We have also observed genetic interactions between pkd2, simu, drpr, rya-r44F, and retinophilin (rtp), also known as undertaker (uta), a gene encoding a MORN-repeat containing molecule, which we have recently found to be implicated in calcium homeostasis during phagocytosis. However, we have not found any genetic interaction between Dmel\ced-12 and simu. Based on these genetic interactions and recent reports demonstrating a role for the mammalian pkd-2 gene product in ER calcium release during store-operated calcium entry, we propose that PKD2 functions in the DRPR/RTP pathway to regulate calcium homeostasis during this process. Similarly to its C. elegans homologue, Dmel\Ced-12 appears to function in a genetically distinct pathway.  相似文献   

6.
Cell migration is an essential process in organ development, differentiation, and wound healing, and it has been hypothesized that gap junctions play a pivotal role in these cell processes. However, the changes in gap junctions and the capacity for cell communication as cells migrate are unclear. To monitor gap junction plaques during cell migration, adrenocortical cells were transfected with cDNA encoding for the connexin 43-green fluorescent protein. Time-lapse imaging was used to analyze cell movements and concurrent gap junction plaque dynamics. Immunocytochemistry was used to analyze gap junction morphology and distribution. Migration was initiated by wounding the cell monolayer and diffusional coupling was demonstrated by monitoring Lucifer yellow dye transfer and fluorescence recovery after photobleaching (FRAP) in cells at the wound edge and in cells located some distance from the wound edge. Gap junction plaques were retained at sites of contact while cells migrated in a "sheet-like" formation, even when cells dramatically changed their spatial relationship to one another. Consistent with this finding, cells at the leading edge retained their capacity to communicate with contacting cells. When cells detached from one another, gap junction plaques were internalized just prior to cell process detachment. Although gap junction plaque internalization clearly was a method of gap junction removal during cell separation, cells retained gap junction plaques and continued to communicate dye while migrating.  相似文献   

7.
Retraction of the blood clot by nucleated cells contributes both to hemostasis and to tissue remodeling. Although plasma fibronectin (FN) is a key component of the clot, its role in clot retraction is unclear. In this report, we demonstrate that the incorporation of FN into fibrin matrices significantly improves clot retraction by nucleated cells expressing the integrin alpha(5)beta(1). Further, we show that FN-fibrin clots support increased cell spreading when compared with fibrin matrices. To determine the structural requirements for FN in this process, recombinant FN monomers deficient in ligand binding or fibrin cross-linking were incorporated into fibrin clots. We show that recombinant FN monomers support clot retraction by Chinese hamster ovary cells expressing the integrin alpha(5)beta(1). This process depends on both the Arg-Gly-Asp (RGD) and the synergy cell-binding sites and on covalent FN-fibrin binding, demonstrating that cross-linking within the clot is important for cell-FN interactions. These data show that alpha(5)beta(1) can bind to FN within a clot to promote clot retraction and support cell shape change. This provides strong evidence that alpha(5)beta(1)-FN interactions may contribute to the cellular events required for wound contraction.  相似文献   

8.
Previous studies have indicated an intimate linkage between gap junction and adherens junction formation. It was suggested this could reflect the close membrane-membrane apposition required for junction formation. In NIH3T3 cells, we observed the colocalization of connexin43 (Cx43alpha1) gap junction protein with N-cadherin, p120, and other N-cadherin-associated proteins at regions of cell-cell contact. We also found that Cx43alpha1, N-cadherin, and N-cadherin-associated proteins were coimmunoprecipitated by antibodies to either Cx43alpha1, N-cadherin, or various N-cadherin-associated proteins. These findings suggest that Cx43alpha1 and N-cadherin are coassembled in a multiprotein complex containing various N-cadherin-associated proteins. Studies using siRNA knockdown indicated that cell surface expression of Cx43alpha1 required N-cadherin, and conversely, N-cadherin cell surface expression required Cx43alpha1. Pulse-chase labeling and cell surface biotinylation experiments indicated that in the absence of N-cadherin, Cx43alpha1 cell surface trafficking is blocked. Surprisingly, siRNA knockdown of p120, an N-cadherin-associated protein known to modulate cell surface turnover of N-cadherin, reduced N-cadherin cell surface expression without altering Cx43alpha1 expression. These observations suggest that in contrast to the coregulated cell surface trafficking of Cx43alpha1 and N-cadherin, N-cadherin turnover at the cell surface may be regulated independently of Cx43alpha1. Functional studies showed gap junctional communication is reduced and cell motility inhibited with N-cadherin or Cx43alpha1 knockdown, consistent with the observed loss of both gap junction and cadherin contacts with either knockdown. Overall, these studies indicate that the intracellular coassembly of connexin and cadherin is required for gap junction and adherens junction formation, a process that likely underlies the intimate association between gap junction and adherens junction formation.  相似文献   

9.
NE-4C, a p53-deficient, immortalized neuroectodermal progenitor cell line, was used to investigate the role and importance of cellular interactions in neural commitment and differentiation. NE-4C cells give rise to neurons and astrocytes in the presence of all-trans retinoic acid, if they can establish intercellular contacts. Aggregation per se, however, was insufficient to induce large-scale neuron formation. In the absence of RA, the majority of the aggregated cells died. For neuron formation, therefore, concerted actions of RA and cellular interaction were needed. Electron microscopic and electrophysiological studies revealed that gap junctions were formed between the cells. Persistent blockage of communication via gap junctions with gap junction blockers, however, had no effects on neuron formation. If cell-to-cell connections were disrupted on the fourth day after induction, the rate of neuron production increased significantly. The contact interactions formed between already committed progenitor cells seemed to hinder the formation of novel neurons. The process resembled the phenomenon called "lateral inhibition" first observed in the course of neurogenesis in Drosophila. Our results indicate that NE-4C cells provide a useful model system to investigate the role of contact communication during some early steps of neurogenesis.  相似文献   

10.
Mitochondrial DNA (mtDNA) mutations are a cause of human disease and are proposed to have a role in human aging. Clonally expanded mtDNA point mutations have been detected in replicating tissues and have been shown to cause respiratory chain (RC) defects. The effect of these mutations on other cellular functions has not been established. Here, we investigate the consequences of RC deficiency on human colonic epithelial stem cells and their progeny in elderly individuals. We show for the first time in aging human tissue that RC deficiency attenuates cell proliferation and increases apoptosis in the progeny of RC deficient stem cells, leading to decreased crypt cell population.  相似文献   

11.
The role of gap junction membrane channels in development   总被引:11,自引:0,他引:11  
In most developmental systems, gap junction-mediated cell-cell communication (GJC) can be detected from very early stages of embryogenesis. This usually results in the entire embryo becoming linked as a syncytium. However, as development progresses, GJC becomes restricted at discrete boundaries, leading to the subdivision of the embryo into communication compartment domains. Analysis of gap junction gene expression suggests that this functional subdivision of GJC may be mediated by the differential expression of the connexin gene family. The temporal-spatial pattern of connexin gene expression during mouse embryogenesis is highly suggestive of a role for gap junctions in inductive interactions, being regionally restricted in distinct developmentally significant domains. Using reverse genetic approaches to manipulate connexin gene function, direct evidence has been obtained for the connexin 43 (Cx43) gap junction gene playing a role in mammalian development. The challenges in the future are the identification of the target cell populations and the cell signaling processes in which Cx43-mediated cell-cell interactions are critically required in mammalian development. Our preliminary observations suggest that neural crest cells may be one such cell population.  相似文献   

12.
Vimentin function in lymphocyte adhesion and transcellular migration   总被引:2,自引:0,他引:2  
Although the adhesive interactions of leukocytes with endothelial cells are well understood, little is known about the detailed mechanisms underlying the actual migration of leukocytes across the endothelium (diapedesis). Leukocytes have been shown to use both paracellular and transcellular routes for transendothelial migration. Here we show that peripheral blood mononuclear cells (PBMCs; T- and B-lymphocytes) preferentially use the transcellular route. The intermediate filaments of both endothelial cells and lymphocytes formed a highly dynamic anchoring structure at the site of contact between these two cell types. The initiation of this process was markedly reduced in vimentin-deficient (vim(-/-)) PBMCs and endothelial cells. When compared with wild-type PBMCs, vim(-/-) PBMCs showed a markedly reduced capacity to home to mesenteric lymph nodes and spleen. Furthermore, endothelial integrity was compromised in vim(-/-) mice, demonstrating that intermediate filaments also regulate the barrier that governs leukocyte extravasation. Absence of vimentin resulted in highly aberrant expression and distribution of surface molecules critical for homing (ICAM-1 and VCAM-1 on endothelial cells and integrin-beta1 on PBMCs). These data show that intermediate filaments are active in lymphocyte adhesion and transmigration.  相似文献   

13.
Direct cell-cell communication in the blood-forming system   总被引:1,自引:0,他引:1  
In mammals, bone marrow is the principal tissue where blood is formed during adult life. Paracrine factors are generally considered to control this process but there is considerable evidence that gap junctions are present in haemopoietic tissues. Gap junctions have been implicated in developmental and patterning roles, and we set out to characterize the cells which are coupled, and to provide evidence for their role(s) in blood cell formation. Direct cell-cell communication, shown by dye-transfer, occurs between haemopoietic cells and certain stromal cells. In culture these stromal cells form a mat in which they retain their dye-coupling properties. Freeze-fracture electron microscopy confirms that this coupling is via gap junctions. When haemopoietic cells are cultured on top of these mats dye spreads upwards from the stromal cells into the haemopoietic cells above. Experiments in which haemopoietic cells were cultured alone, with stromal cell conditioned medium, or in direct contact with stromal cell underlays, were therefore carried out. The results of these experiments provide evidence that gap junctional communication may be playing a vital role in maintaining populations of precursor cells which would otherwise differentiate into end cells, leading to the ultimate demise of the system.  相似文献   

14.
Bone development and remodeling depend on complex interactions between bone-forming osteoblasts and other cells present within the bone microenvironment, particularly endothelial cells that may be pivotal members of a complex interactive communication network in bone. While cell cooperation was previously established between Human OsteoProgenitor cells (HOP) and Human Umbilical Vein Endothelial Cells (HUVEC) the aim of our study was to investigate if this interaction is specific to Human Endothelial cell types (ECs) from different sources. Osteoblastic cell differentiation analysis performed using different co-culture models with direct contact revealed that Alkaline Phosphatase (Al-P) activity was only increased by the direct contact of HOP with human primary vascular endothelial cell types including endothelial precursor cells (EPCs) isolated from blood cord, endothelial cells from Human Saphen Vein (HSV) while a transformed cell line, the Human Bone Marrow Endothelial Cell Line (HBMEC) did not modify osteoblastic differentiation of HOP. Because connexin 43, a specific gap junction protein, seemed to be involved in HUVEC/HOP cell cooperation, expression by RT-PCR and immunocytochemistry of this gap junctional protein was investigated in EPCs, HSV and HBMEC. Both endothelial cells are positive to this protein and the disruption of gap junction communication using 18alpha-glycyrrhetinic acid treatment decreased the positive effect of these endothelial co-cultures on HOP differentiation as was previously demonstrated for HUVEC and HOP co-cultures. These data seem to indicate that this cross talk between HOP and ECs, through gap junction communication constitutes an additional concept in cell differentiation control.  相似文献   

15.
In order to be competitive on the energy market, organic solar cells with higher efficiency are needed. To date, polymer solar cells have retained the lead with efficiencies of up to 8%. However, research on small molecule solar cells has been catching up throughout recent years and is showing similar efficiencies, however, only for more sophisticated multilayer device configurations. In this work, a simple, highly efficient, vacuum‐processed small molecule solar cell based on merocyanine dyes – traditional colorants that can easily be mass‐produced and purified – is presented. In the past, merocyanines have been successfully introduced in solution‐processed as well as vacuum‐processed devices, demonstrating efficiencies up to 4.9%. Here, further optimization of devices is achieved while keeping the same simple layer stack, ultimately leading to efficiencies beyond the 6% mark. In addition, physical properties such as the charge carrier transport and the cell performance under various light intensities are addressed.  相似文献   

16.
Cohesin is required for ES cell self-renewal and iPS-mediated reprogramming of somatic cells. This may indicate a special role for cohesin in the regulation of pluripotency genes, perhaps by mediating long-range chromosomal interactions between gene regulatory elements. However, cohesin is also essential for genome integrity, and its depletion from cycling cells induces DNA damage responses. Hence, the failure of cohesin-depleted cells to establish or maintain pluripotency gene expression could be explained by a loss of long-range interactions or by DNA damage responses that undermine pluripotency gene expression. In recent work we began to disentangle these possibilities by analyzing reprogramming in the absence of cell division. These experiments showed that cohesin was not specifically required for reprogramming, and that the expression of most pluripotency genes was maintained when ES cells were acutely depleted of cohesin. Here we take this analysis to its logical conclusion by demonstrating that deliberately inflicted DNA damage - and the DNA damage that results from proliferation in the absence of cohesin - can directly interfere with pluripotency and reprogramming. The role of cohesin in pluripotency and reprogramming may therefore be best explained by essential cohesin functions in the cell cycle.  相似文献   

17.
The process of biological growth and the associated generation of residual stress has previously been considered as a driving mechanism for tissue buckling and pattern selection in numerous areas of biology. Here, we develop a two-dimensional thin plate theory to simulate the growth of cultured intestinal epithelial cells on a deformable substrate, with the goal of elucidating how a tissue engineer might best recreate the regular array of invaginations (crypts of Lieberkühn) found in the wall of the mammalian intestine. We extend the standard von Kármán equations to incorporate inhomogeneity in the plate’s mechanical properties and surface stresses applied to the substrate by cell proliferation. We determine numerically the configurations of a homogeneous plate under uniform cell growth, and show how tethering to an underlying elastic foundation can be used to promote higher-order buckled configurations. We then examine the independent effects of localised softening of the substrate and spatial patterning of cellular growth, demonstrating that (within a two-dimensional framework, and contrary to the predictions of one-dimensional models) growth patterning constitutes a more viable mechanism for control of crypt distribution than does material inhomogeneity.  相似文献   

18.
DNA double strand breaks (DSBs) can be rejoined directly by the nonhomologous end-joining (NHEJ) pathway of repair. Nucleases and polymerases are required to promote accurate NHEJ when the terminal bases of the DSB are damaged. The same enzymes also participate in imprecise rejoining and joining of incompatible ends, important mutagenic events. Previous work has shown that the Pol X family polymerase Pol4 is required for some but not all NHEJ events that require gap filling in Saccharomyces cerevisiae. Here, we systematically analyzed DSB end configurations and found that gaps on both strands and overhang polarity are the principal factors that determine whether a joint requires Pol4. DSBs with 3'-overhangs and a gap on each strand strongly depended on Pol4 for repair, DSBs with 5'-overhangs of the same sequence did not. Pol4 was not required when 3'-overhangs contained a gap on only one strand, however. Pol4 was equally required at 3'-overhangs of all lengths within the NHEJ-dependent range but was dispensable outside of this range, indicating that Pol4 is specific to NHEJ. Loss of Pol4 did not affect the rejoining of DSBs that utilized a recessed microhomology or DSBs bearing 5'-hydroxyls but no gap. Finally, mammalian Pol X polymerases were able to differentially complement a pol4 mutation depending on the joint structure, demonstrating that these polymerases can participate in yeast NHEJ but with distinct properties.  相似文献   

19.
In situ electroporation of adherent cells provides significant advantages with respect to electroporation systems for suspension cells, such as causing minimal stress to cultured cells and simplifying and saving several steps within the process. In this study, a new electrode assembly design is shown and applied to in situ electroporate adherent cell lines growing in standard multiwell plates. We designed an interdigitated array of electrodes patterned on copper with printed circuit board technology and covered with nickel/gold. Small interelectrode distances were used to achieve effective electroporation with low voltages. Epoxy-based microseparators were constructed to avoid direct contact with the cells and to create more uniform electric fields. The device was successful in the electropermeabilization of two different adherent cell lines, C2C12 and HEK 293, as assessed by the intracellular delivery of the fluorescent dextran FD20S. Additionally, as a collateral effect, we observed cell electrofusion in HEK 293 cells, thus making this device also useful for performing cell fusion. In summary, we show the effectiveness of this minimally invasive device for electroporation of adherent cells cultured in standard multiwell plates. The cheap technologies used in the fabrication process of the electrode assembly indicate potential use as a low-cost, disposable device.  相似文献   

20.
A microfluidic device in polydimethylsiloxane (PDMS) consisting of an eight lines micro-injection array integrated in a base flow channel has been realized. The device is assembled from multiple PDMS parts, which have been moulded using notably micromachined masters in SU-8 photoresist. In contact with a planar substrate, up to eight independent laminar flow lines with cross-sections of 100 x 200 microm(2) can be generated. Dedicated for the application of pharmaceutical compounds to electrogenic cells in vitro, this device was tested with a neuronal cell line, Mz1-cells. These were cultured on lines of laminin deposited onto polystyrene substrates by microcontact printing. We were able to inject into this culture multiple lines of coloured PBS in parallel to the orientation of cellular growth. No mixing between the individual flow lines did occur.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号