首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为进一步明确家蚕Bombyx mori变态期间消化系统的生理功能以及溶茧酶的来源器官,通过透射电镜观察和酶活性检测,对家蚕蛹 成虫变态期中肠和涎腺的超微结构、水解酶活力以及中肠内容物的变化进行了观察和分析。结果表明: 蛹第7日到羽化前1日家蚕中肠细胞和刚羽化成虫的涎腺细胞中,均可观察到大量的分泌泡、分泌颗粒、微绒毛等分泌细胞的结构特征以及活跃的分泌现象。潜成虫的中肠和涎腺中都存在活性较高的水解酶活力,其中每毫克中肠组织中蛋白酶活力、酯酶活力和纤溶酶活力分别为726 U、751 U和263 U,每毫克涎腺组织中上述3种酶的活力分别为603 U、523 U和147 U,说明中肠和涎腺可能都具有分泌溶茧酶的功能。家蚕蛹期中肠内容物的主要成分是蛋白质、脂质和糖,三者占内含物总量的95%以上,其中蛋白质含量占78.8%~80.2%。中肠内容物的重量在刚化蛹时为20.1~21.9 mg/头,化蛹后7日内无明显变化,化蛹第9日内容物重量减少63.01%~66.17%,到成虫羽化时已所剩无几,可能是因内容物被消化吸收所致。据此推测,在家蚕变态期中肠还具有贮存和释放营养物质的功能,而溶茧酶的另一个功能可能是分解消化中肠内容物。  相似文献   

2.
Gamete activation factor (GAF) induces exflagellation of Plasmodium microgametes. We found GAF in the salivary glands of female mosquitoes, Anopheles stephensi. The exflagellation was induced in a concentration-dependent manner in the supernatant of salivary gland's crude homogenate. The exflagellation-inducing activity in the salivary gland was higher than that in the midgut and the head. GAF in the salivary glands was found to be heat stable and low molecular weight (<3000 molecular weight). Analysis of the supernatant by capillary electrophoresis and UV absorbance profile showed that the salivary glands contained xanthurenic acid, which was previously identified as GAF in the head of A. stephensi. The exflagellation-inducing activity in the salivary gland declined immediately after a blood meal, implying that GAF was in the saliva, and was delivered into the midgut together with the blood and induced exflagellation in the midgut.  相似文献   

3.
The pistachio green stink bug, Brachynema germari, has 3–5 generations per year and causes severe damages to pistachio crops in Iran. Physiological digestive processes, such as digestive carbohydrases, can be used to design new strategies in IPM programs for controlling this pest. The enzyme α-amylase digests starch during the initial stage of digestion. Complete breakdown of carbohydrates takes place in the midgut where α- and β-glucosidic activities are highest. Alpha-amylase and α- and β-glucosidase activities were found in the midgut and salivary glands of pistachio green stink bug adults. Overall enzyme activities were significantly higher in the midgut than in salivary glands. The highest α-amylase and α- and β-glucosidase activities were in section v3, whereas the lowest activities were in section v4. Vmax was higher and Km was lower in the midgut than in the salivary glands for these enzymes. In the pistachio green stink bug, the optimal pH was pH 5–6.5 and the optimal temperature was 30 °C to 35 °C for these enzymes. Alpha-amylase activity in the midgut and salivary glands decreased as the concentrations of MgCl2, EDTA and SDS increased. Enzyme activities in both midgut and salivary glands increased in the presence of NaCl, CaCl2, and KCl. NaCl had a negative effect on alpha-amylase extracted from salivary glands.  相似文献   

4.
Xanthurenic acid (XA), produced as a byproduct during the biosynthesis of insect eye pigment (ommochromes), is a strong inducer of Plasmodium gametogenesis at very low concentrations. In previous studies, it was shown that XA is present in Anopheles stephensi (Diptera: Culicidae) mosquito salivary glands and that during blood feeding the mosquitoes ingested their own saliva into the midgut. Considering these two facts together, it is therefore likely that XA is discharged with saliva during blood feeding and is swallowed into the midgut where it exerts its effect on Plasmodium gametocytes. However, the quantities of XA in the salivary glands and midgut are unknown. In this study, we used high performance liquid chromatography with electrochemical detection to detect and quantify XA in the salivary glands and midgut. Based on the results of this study, we found 0.28+/-0.05 ng of XA in the salivary glands of the mosquitoes, accounting for 10% of the total XA content in the mosquito whole body. The amounts of XA in the salivary glands reduced to 0.13+/-0.06 ng after mosquitoes ingested a blood meal. Approximately 0.05+/-0.01 ng of XA was detected in the midgut of nonblood fed An. stephensi mosquitoes. By adding synthetic tryptophan as a source of XA into larval rearing water (2 mM) or in sugar meals (10 mM), we evaluated whether XA levels in the mosquito (salivary glands, midgut, and whole body) were boosted and the subsequent effect on infectivity of Plasmodium berghei in the treated mosquito groups. A female specific increase in XA content was observed in the whole body and in the midgut of mosquito groups where tryptophan was added either in the larval water or sugar meals. However, XA in the salivary glands was not affected by tryptophan addition to larval water, and surprisingly it reduced when tryptophan was added to sugar meals. The P. berghei oocyst loads in the mosquito midguts were lower in mosquitoes fed tryptophan treated sugar meals than in mosquitoes reared on tryptophan treated larval water. Our results suggest that mosquito nutrition may have a significant impact on whole body and midgut XA levels in mosquitoes. We discuss the observed parasite infectivity results in relation to XA's relationship with malaria parasite development in mosquitoes.  相似文献   

5.
Activity of α-amylase was revealed in the midgut and salivary glands of the wheat and barley pentatomid pest, A. acuminata. The activity was determined in salivary gland more than those in midgut. Optimal activity of the enzyme occurred at 40°C. Optimal pH activity in salivary gland (pH = 6) was more than those in the midgut (pH = 4.5). pH stability analysis of the enzyme showed that the enzyme is more stable at slightly acidic pHs than those at acidic and alkaline pHs. However, α-amylase is more stable at acidic pH in long period of time. Temperature stability analysis determined the enzyme was remarkably active over a broad range of temperature (5–40°C). α-Amylase activity was decreased after addition of MgCl2, Tris, Triton X-100, CuSO4, SDS, urea and CaCl2. The salts NaCl and KCl increased the enzyme activity from midgut and salivary glands. Zymogram analysis of midgut and salivary gland extract showed at least two bands of amylase activity in the midgut and salivary glands.  相似文献   

6.
Protease activities in the secreted saliva, salivary glands and midgut of the green mirid, Creontiades dilutus, were investigated. The saliva and salivary glands had more protease activity than the midgut, but no differences in protease activity levels were detected between male and female mirids, adult mirids and third instar nymphs, or between fed and starved mirids.In the salivary glands, chymotrypsin-like serine proteases predominated, as characterised by inhibitor specificity, basic pH optima, and hydrolysis of N-benzoyl-L-tyrosine p-nitroanilide and N-succinyl-ala-ala-pro-leu p-nitroanilide. The pH optimum of midgut extracts was acidic (pH 4), implying that acidic proteases predominate. However, protease activity was inhibited substantially by both aprotinin and E-64, suggesting the presence of both serine and cysteine proteases in the midgut of the green mirid.  相似文献   

7.
Paul A. Roberts 《Chromosoma》1988,97(3):254-260
In Drosophila gibberosa, differences between midgut and salivary gland chromosomes fall into two categories: tissue-specific band modulations which persist throughout the 90 h developmental period that we studied and tissue-specific puffs. Puffs that are common to both tissues tend to appear earlier in the midgut. Some major early ecdysteroid-induced puffs appear simultaneously in both tissues at the end of the third larval instar; however, the many late puffs that follow in the salivary glands are absent from the midgut. Intense puff activity in the early third larval instar midgut declines at the time of the hormonal pulse that initiates intense gene and secretory activity in salivary glands; the sloughing of midgut cells ensues.  相似文献   

8.
When the salivary glands of 10-day-old adult Periplaneta americana L. are removed, a gradual decline in midgut invertase activity is found. No such effect occurs in cockroaches whose salivary ducts are severed. An injection of salivary gland extract in the haemocoel of salivarectomized insects causes the reestablishment, to a large extent, of the normal midgut enzyme levels. The possibility of the involvement of a non-exocrine factor from the salivary glands is discussed.  相似文献   

9.
10.
The wheat bug Eurygaster maura (Hemiptera: Scutelleridae) is a potential pest of wheat and barley in Iran and other countries. Two major digestive enzymes of this insect, α‐d ‐glucosidase and β‐d ‐glucosidase, have been investigated. The midgut has four distinct regions including the first ventriculus (V1), second ventriculus (V2), third ventriculus (V3) and fourth ventriculus (V4). The study showed that the first three regions of the wheat bug midgut were acidic (pH 5.5–6), the fourth region of the midgut and hindgut pH were slightly acidic (pH 6.5–6.9) and the salivary gland (labial gland) pH was determined to be somewhat acidic (pH 5–5.5). Enzyme assay showed that α‐ and β‐glucosidase activity is present in both midgut and salivary glands of adult E. maura. The specific activities of midgut α‐ and β‐glucosidase were 11.2 and 10.8 mU/mg protein, respectively. The specific activities of these enzymes in salivary glands were 3.06 and 2.73 mU/mg protein, respectively. Optimum temperature and pH values for glucosidases were determined to be 30–35°C and 5, respectively. Glucosidases of the midgut were more stable than salivary glucosidases at 35°C. Evaluating enzymatic kinetic parameters showed that glucosidases of the midgut had more affinity as well as more velocity than that of salivary glands.  相似文献   

11.
For malaria transmission to occur, Plasmodium sporozoites must infect the salivary glands of their mosquito vectors. This study reports that Anopheles gambiae SRPN6 participates in a local salivary gland epithelial response against the rodent malaria parasite, Plasmodium berghei . We showed previously that SRPN6, an immune inducible midgut invasion marker, influences ookinete development. Here we report that SRPN6 is also specifically induced in salivary glands with the onset of sporozoite invasion. The protein is located in the basal region of epithelial cells in proximity to invading sporozoites. Knockdown of SRPN6 during the late phase of sporogony by RNAi has no effect on oocyst rupture but significantly increases the number of sporozoites present in salivary glands. Despite several differences between the passage of Plasmodium through the midgut and the salivary glands, this study identifies a striking overlap in the molecular responses of these two epithelia to parasite invasion.  相似文献   

12.
The ultrastructure of the midgut and the tubular salivary glands of Frankliniella occidentalis (Thysanoptera : Thripidae) is described. The microvilli have 2 different types of glycocalyx: in the anterior part of the midgut they are surrounded by a myelin-like membrane; in the posterior region, the microvilli have numerous rod-like projections arranged to form a continuous layer. Microfilaments longitudinally cross each microvillus; the microfilaments contain F-actin. Tubular salivary glands flank the midgut but do not fuse with it. The distal part of these glands have microvillated cells containing large amounts of electron-transparent material. The cells of the proximal part are lined with a thin cuticle.  相似文献   

13.
疥螨消化系统的显微和超微结构观察   总被引:4,自引:0,他引:4  
疥螨消化系统由咽、食道、中肠、1对侧囊、结肠、直肠、肛门以及唾腺组成。应用透射电镜,可将中肠和侧囊壁上皮细胞分为鳞状细胞期、柱状细胞期、核变性圆细胞期和全变性细胞期等4种不同生理功能状态。可将唾腺细胞分为I期、Ⅱ期和Ⅲ期等3种不同生理功能时期。食道和中肠及侧囊内含物为絮状物。直肠前段肠壁具有较多微管。  相似文献   

14.
Several carbohydrases and glycosidases from the alimentary cancal and/or salivary glands of feeding larvae of mayetiola destructor have been identified. Pectinase activity was identified in the midgut and may be present in the salivary glands. No endocellulase activity was found in larvae; however, hemicellulase activity was detected in extract of larvae. Amylase activity was present in midguts from feeding larvae and at a low level in extract of salivary glands. Amylases detected in the midgut showed mobilities during polyacrylamide gel electrophoresis similar to the two major amylases in tissues of the insect's host plant. The possibility exists that Hessian fly larvae utilize amylases obtained from their host plant in the digestion of starch. The major glycosidases detected in the midgut lumen of larve were: α-D-glucosidase and α-D-and β-D-galactosidase. The role of these enzymes in the feeding process of Hessian fly larvae is discussed as well as their potential role in feeding damage to wheat.  相似文献   

15.
This study shows the progression of immune responses in mice during five sequential immunizations with Anopheles stephensi mosquito extracts, characterized by ELISA, Western blot and immunohistochemistry. When exposed repeatedly to mosquito bites, control mice developed antibodies which reached titres of 1:10(5), reacted weakly in Western blot analysis and were localized to the salivary glands. Mice immunized with mosquito head plus salivary glands, midgut, ovary, fat body, midgut microvilli (Mv) and midgut basolateral plasma membrane (Blm), showed increased titre with each successive boost. Epitopes were shared between sera or were specific to the immunizing or heterologous extract. Anti-Mv and Blm sera recognized proteins labelled by anti-midgut serum and gave specific reactions with the midgut and head. Cross-reactivity was confirmed immunohistochemically.  相似文献   

16.
The α‐amylase in the midgut and salivary glands of Eurygaster integriceps was isolated and characterized. The specific activity of α‐amylase in the midgut was 1.77 U/mg protein and in the salivary glands was 1.65 U/mg protein. Sodium dodecylsulfate electrophoresis showed that both midgut and salivary glands contain isozymes. Only a trace amount of α‐amylase activity was detected in the first nymphal stage (0.19 U/mg protein), whereas α‐amylase activity was highest in the third nymphal stage (1.21 U/mg protein). The results show that α‐amylase activity in the immature stages increase constantly to the third instar stage. There was no significant difference in enzyme activity between the third, fourth and fifth nymphal stages and adults. The optimum pH and temperature for the enzyme activity was determined to be 6.5 and 35°C, respectively. The enzyme activity was inhibited by addition of ethylenediaminetetraacetic acid, urea, sodium dodecylsulfate and Mg2+, but NaCl and KCl enhanced enzyme activity.  相似文献   

17.
Programmed cell death is involved with the degeneration/remodeling of larval tissues and organs during holometabolous development. The midgut is a model to study the types of programmed cell death associated with metamorphosis because its structure while degenerating is a substrate for the formation of the adult organ. Another model is the salivary glands from dipteran because their elimination involves different cell death modes. This study aimed to investigate the models of programmed cell death operating during midgut replacement and salivary gland histolysis in Bradysia hygida. We carried out experiments of real‐time observations, morphological analysis, glycogen detection, filamentous‐actin localization, and nuclear acridine orange staining. Our findings allow us to establish that an intact actin cytoskeleton is required for midgut replacement in B. hygida and nuclear condensation and acridine orange staining precede the death of the larval cells. Salivary glands in histolysis present cytoplasmic blebbing, nuclear retraction, and acridine orange staining. This process can be partially reproduced in vitro. We propose that the larval midgut death involves autophagic and apoptotic features and apoptosis is a mechanism involved with salivary gland histolysis.  相似文献   

18.
The malaria parasite sporozoite transmission stage develops and differentiates within parasite oocysts on the Anopheles mosquito midgut. Successful inoculation of the parasite into a mammalian host is critically dependent on the sporozoite's ability to first infect the mosquito salivary glands. Remarkable changes in tissue infection competence are observed as the sporozoites transit from the midgut oocysts to the salivary glands. Our microarray analysis shows that compared to oocyst sporozoites, salivary gland sporozoites upregulate expression of at least 124 unique genes. Conversely, oocyst sporozoites show upregulation of at least 47 genes (upregulated in oocyst sporozoites [UOS genes]) before they infect the salivary glands. Targeted gene deletion of UOS3, encoding a putative transmembrane protein with a thrombospondin repeat that localizes to the sporozoite secretory organelles, rendered oocyst sporozoites unable to infect the mosquito salivary glands but maintained the parasites' liver infection competence. This phenotype demonstrates the significance of differential UOS expression. Thus, the UIS-UOS gene classification provides a framework to elucidate the infectivity and transmission success of Plasmodium sporozoites on a whole-genome scale. Genes identified herein might represent targets for vector-based transmission blocking strategies (UOS genes), as well as strategies that prevent mammalian host infection (UIS genes).  相似文献   

19.
The completion of the Plasmodium (malaria) life cycle in the mosquito requires the parasite to traverse first the midgut and later the salivary gland epithelium. We have identified a putative kinase-related protein (PKRP) that is predicted to be an atypical protein kinase, which is conserved across many species of Plasmodium. The pkrp gene encodes a RNA of about 5300 nucleotides that is expressed as a 90 kDa protein in sporozoites. Targeted disruption of the pkrp gene in Plasmodium berghei, a rodent model of malaria, compromises the ability of parasites to infect different tissues within the mosquito host. Early infection of mosquito midgut is reduced by 58-71%, midgut oocyst production is reduced by 50-90% and those sporozoites that are produced are defective in their ability to invade mosquito salivary glands. Midgut sporozoites are not morphologically different from wild-type parasites by electron microscopy. Some sporozoites that emerged from oocysts were attached to the salivary glands but most were found circulating in the mosquito hemocoel. Our findings indicate that a signalling pathway involving PbPKRP regulates the level of Plasmodium infection in the mosquito midgut and salivary glands.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号