首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Four DNA probes isolated from Peromyscus leucopus were used to examine intra- and interspecific variation in the chromosomal location of satellite DNA in the genus Peromyscus. All four probes hybridized to the centromeric regions of all chromosomes in all species of Peromyscus examined but did not hybridize to the majority of heterochromatic regions in closely related non-Peromyscus species. One probe contains a nonsatellite repetitive sequence. The implications of these data to the evolution of genome organization are discussed.  相似文献   

2.
The Mus musculus and Rattus norvegicus genomes have been extensively studied, yet despite the emergence of Peromyscus maniculatus as an NIH model for genome sequencing and biomedical research much remains unknown about the genome organization of Peromyscines. Contrary to their phylogenetic relationship, the genomes of Rattus and Peromyscus appear more similar at the gross karyotypic level than either does to Mus. We set out to define the chromosome homologies between Peromyscus, Mus and Rattus. Reciprocal cross-species chromosome painting and G-band homology assignments were used to delineate the conserved chromosome homology map between P. maniculatus and M. musculus. These data show that each species has undergone extensive chromosome rearrangements since they last shared a common ancestor 25 million years ago (mya). This analysis coupled with an inferred homology map with Rattus revealed a high level of chromosome conservation between Rattus and Peromyscus and indicated that the chromosomes of Mus are highly derived.  相似文献   

3.
Cross-transmission experiments were done using sporulated oocysts of Eimeria arizonensis from Peromyscus truei and Peromyscus maniculatus, and oocysts of 2 putative species that resemble E. arizonensis, i.e., Eimeria albigulae from Neotoma albigula, and Eimeria onychomysis from Onychomys leucogaster. Oocysts of each species were inoculated into representatives of P. maniculatus and the latter 2 rodent species. Other experiments were conducted wherein oocysts of Eimeria langebarteli from Peromyscus leucopus were given to P. truei and P. maniculatus. Oocysts of E. arizonensis from P. truei and P. maniculatus could be transmitted only to P. maniculatus; likewise, oocysts of E. albigulae and E. onychomysis produced patent infections only in N. albigula and O. leucogaster, respectively. Oocysts of E. langebarteli from P. leucopus could be transmitted to P. truei, but not P. maniculatus. These results indicate that E. arizonensis, and the morphologically similar E. albigulae and E. onychomysis, are distinct species that are not transmissible between the genera of their respective hosts (Peromyscus, Neotoma, Onychomys), and that some isolates of E. langebarteli, reported from 6 species of Peromyscus and Reithrodontomys megalotis, may not always be infective to P. maniculatus.  相似文献   

4.
Recombinant DNA clones have been isolated that contain 80 kb of the beta-globin complex from the deer mouse, Peromyscus maniculatus. Comparisons of this complex with that from the laboratory mouse, Mus domesticus (with an order 5'-Hbby, Hbb-bhO, Hbb-bhl, Hbb-bh2, Hbb-bh3, Hbb-bl, Hbb-b2 3') highlight organizational trends in the beta-globin complex since the two species diverged. Unlike other mammals studied thus far, the deer mouse possesses three adult genes. Partial sequence analysis indicates that each of the three adult genes is intact and hence may be functional. Hybridization of one of the two Mus pseudogenes, Hbb-bh3, to genomic blots from Peromyscus reveals that it has a homologous counterpart in Peromyscus. Homologous genes to the two gamma-like Mus genes, Hbb-bhO and Hbb-bhl, are also found in Peromyscus. The strong hybridization between the Hbb-bhl genes and significant nucleotide similarity between the Hbb-bhO genes suggest that both pairs are important for the ontogeny of these mice although no known product has been identified for the Hbb-bhO genes. The presence of Hbb-bhO and Hbb-bhl in Peromyscus suggests that the duplication that created this related gene set occurred before the two lineages diverged. A single gene for Hbb-y has been isolated from Peromyscus. The adult region in Peromyscus has undergone significant divergence from the same region in Mus, having three rather than two adult genes, the acquisition of at least 15 kb of extra DNA relative to Mus, and possibly the loss of the Hbb-bh2 pseudogene. The nonadult region of the complex, in contrast, contains the same set of genes apparently distributed over the same amount of DNA as in the Mus beta- globin complex. This observation suggests that the embryonic region of the complex is more evolutionarily stable than the adult region.   相似文献   

5.
Clethrionomys rutilus and Peromyscus maniculatus occur together in the boreal forest of southwestern Yukon and we studied their population dynamics on unmanipulated live-trapping grids for 17 yr. Peromyscus showed a regular seasonal change in numbers each year with little interannual variation. Clethrionomys by comparison, showed low density fluctuations during one period (1976-1982) followed by changes in number in the next period that are consistent with a typical 3-4 yr microtine cycle. During one of two years of peak numbers adult males had unusually heavy body weights. The sexual maturation of juvenile Clethrionomys varied inversely with density. In most years Clethrionomys showed higher rates of population increase from spring to late summer than Peromyscus and this may be partly attributed to the vole's longer breeding season. Juvenile female Clethrionomys often reached sexual maturity during their first summer when population density was low but Peromyscus never matured during their first summer. Finally, there was no correlation between the two species in year to year changes in overwinter survival rates. This is the first report of a cyclic Norh American population of Clethrionomys and it underlines the need to search for hypotheses of population regulation that explain both annual and multi-annual cycles within the same population.  相似文献   

6.
Little ecological information is available on small mammals inhabiting wetlands in the southern Appalachian mountains of the USA. These wetland systems are becoming rare features in southern landscapes due to human activities. We investigated the small mammal fauna and examined the microhabitat associations of the two most abundant species in a southern Appalachian fen. Four species of small mammals were captured: the meadow jumping mouse (Zapus hudsonius), short-tailed shrew ( Blarina brevicauda), white-footed mouse ( Peromyscus leucopus), and golden mouse ( Ochrotomys nuttalli). Peromyscus and Ochrotomys, which were caught in the largest numbers, preferred sites characterized by moderate herbaceous cover and substantial canopy closure. Peromyscus, however, selected areas with greater canopy closure and higher tree densities, suggesting that they are greater habitat specialists than Ochrotomys in this wetland community.  相似文献   

7.
We isolated and characterized 60 novel microsatellite markers from the closely related oldfield mouse (Peromyscus polionotus) and deer mouse (Peromyscus maniculatus) for studies of conservation, ecological, quantitative and population genetics. We assessed all 60 markers in a wild population of Peromyscus polionotus rhoadsi (N = 20) from central Florida and found an average of nine alleles per marker and an observed heterozygosity (HO) of 0.66 (range = 0.00–1.00). These polymorphic markers contribute to the growing number of genomic resources for Peromyscus, an emerging model system for ecological and evolutionary research.  相似文献   

8.
Mark V. Lomolino 《Ecography》1989,12(3):213-218
Laboratory and field experiments were conducted to investigate bioenergetics of winter dispersal and to compare winter (cross-ice) dispersal abilities of three small mammals: Microtus pennsylvanicus, Peromyscus leucopus and Blarina brevicauda . Total metabolic rates increased with running activity and decreased as ambient temperatures increased for all species. Thermal conductance was significantly higher for running than for resting Microtus and Peromyscus , but decreased significantly with activity for Blarina .
Winter dispersal abilities, calculated from treadmill experiments, increased with ambient temperature and with body size of the species. The superior dispersal ability of Microtus in comparison with Peromyscus results from the former's ability to utilize more energy reserves during running. The comparatively low winter dispersal ability of Blarina , which was less than a third of the two rodent species, resulted from its high weight specific cost of transport at winter temperatures and its relatively low energy stores and/or energy utilization during running.  相似文献   

9.
Of 198 deermice (Peromyscus spp) collected from various localities in the southwestern United States and northern Mexico, 106 (54%) had eimerian oocysts in their feces when examined. These included 50 of 106 (47%) Peromyscus truei, 34 of 54 (63%) Peromyscus maniculatus, 4 of 17 (24%) Peromyscus leucopus, and 18 of 21 (86%) Peromyscus eremicus. The following Eimeria were identified from infected mice: Eimeria arizonensis and Eimeria langebarteli from P. truei; E. arizonensis, Eimeria peromysci, and Eimeria delicata from P. maniculatus; E. arizonensis and Eimeria lachrymalis n. sp. from P. eremicus; and E. langebarteli from P. leucopus. Of the 106 Peromyscus found positive for Eimeria, 97 (91.5%) harbored only a single eimerian species at the time of examination. Sporulated oocysts of E. lachrymalis n. sp. were ellipsoid, 27-35 X 17-21 (30.8 +/- 1.7 X 19.1-0.9) micron, possessed a smooth wall and one polar granule, but lacked a micropyle and an oocyst residuum. Sporocysts were teardrop-shaped, 9-13 X 6-10 (10.9 +/- 0.9 X 7.9 +/- 0.5) micron, and had a Stieda body and sporocyst residuum, but no substieda body. Prepatent periods in experimental infections were 3-6 days after inoculation (DAI) for E. arizonensis (hosts: P. eremicus, P. maniculatus, P. truei); 4-5 DAI for E. peromysci (host: P. maniculatus); 6-9 DAI for E. langebarteli (hosts: P. truei, P. leucopus); and 8-10 DAI for E. lachrymalis (host: P. eremicus). Patency in these infections lasted 6-11 days for E. arizonensis, 5-10 days for E. peromysci, 14-40+ days for E. langebarteli, and 19-50+ days for E. lachrymalis. Eimeria lachrymalis appears to produce occult infections in P. eremicus that can be reactivated upon inoculation of the host with E. arizonensis.  相似文献   

10.
SYNOPSIS. Isospora peromysci n. sp., I. californica n. sp., and I. hastingsi n. sp. are described from 4 Peromyscus species in Monterey County, Central California. I. peromysci n. sp. was found in 35 of 1,346 Peromyscus , including P. californicus, P. truei , and P. maniculatus; I. californica n. sp. was found in 15 Peromyscus , including P. californicus, P. boylii, P. truei , and P. maniculatus ; and I. hastingsi n. sp. was found in one P. truei. Endogenous forms of I. peromysci n. sp. are described from P. maniculatus , and host distribution and incidence of all species are given.  相似文献   

11.
Rodents of the genus Peromyscus (deer mice) are the most prevalent native North American mammals. Peromyscus species are used in a wide range of research including toxicology, epidemiology, ecology, behavioral, and genetic studies. Here they provide a useful model for demonstrations of artificial insemination. Methods similar to those displayed here have previously been used in several deer mouse studies, yet no detailed protocol has been published. Here we demonstrate the basic method of artificial insemination. This method entails extracting the testes from the rodent, then isolating the sperm from the epididymis and vas deferens. The mature sperm, now in a milk mixture, are placed in the female's reproductive tract at the time of ovulation. Fertilization is counted as day 0 for timing of embryo development. Embryos can then be retrieved at the desired time-point and manipulated.Artificial insemination can be used in a variety of rodent species where exact embryo timing is crucial or hard to obtain. This technique is vital for species or strains (including most Peromyscus) which may not mate immediately and/or where mating is hard to assess. In addition, artificial insemination provides exact timing for embryo development either in mapping developmental progress and/or transgenic work. Reduced numbers of animals can be used since fertilization is guaranteed. This method has been vital to furthering the Peromyscus system, and will hopefully benefit others as well.  相似文献   

12.
Some of the studies on late effects of neutron and gamma radiation previously carried out with the C57BL6 X BALB/c F1 hybrids of Mus musculus have been repeated with the white-footed mouse, Peromyscus leucopus, a cricetid rodent of a different subfamily, with differing physiological characteristics and a different spectrum of pathologies. Among the more important findings were the following: For both species, the life shortening per rad at low doses of either radiation was the same percentage of the life span. The limiting values of the relative biological effectiveness for life shortening from all causes of death were about the same for the two species, ranging from 8 to 16, depending on the method of calculation. Fractionated neutron exposures failed to produce significant life shortening in Peromyscus over that observed at single doses. Tumor-related deaths accounted for at least 70 to 75% of the radiation-specific excess mortality in Peromyscus.  相似文献   

13.
Trypanosoma peromysci Watson, 1912 (Sarcomastigophora: Kinetoplastida), is described from a new host and locality. One of 20 (5.0%) Peromyscus leucopus collected from Pottawatomie and Riley counties in Kansas was found to harbor the parasite. Morphometric and statistical analysis confirmed the trypanosome to be indistinguishable from T. peromysci, the only difference being a greater mean flagellar length than reported previously. This is the first reported occurrence of T. peromysci in the white-footed mouse (Peromyscus leucopus noveboracensis Fischer, 1829) and also the first record of its occurrence in Kansas.  相似文献   

14.
In a variety of animal taxa, proteins involved in reproduction evolve more rapidly than nonreproductive proteins. Most studies of reproductive protein evolution, however, focus on divergence between species, and little is known about differentiation among populations within a species. Here we investigate the molecular population genetics of the protein ZP3 within two Peromyscus species. ZP3 is an egg coat protein involved in primary binding of egg and sperm and is essential for fertilization. We find that amino acid polymorphism in the sperm-combining region of ZP3 is high relative to silent polymorphism in both species of Peromyscus . In addition, while there is geographical structure at a mitochondrial gene ( Cytb ), a nuclear gene ( Lcat ) and eight microsatellite loci, we find no evidence for geographical structure at Zp3 in Peromyscus truei . These patterns are consistent with the maintenance of ZP3 alleles by balancing selection, possibly due to sexual conflict or pathogen resistance. However, we do not find evidence that reinforcement promotes ZP3 diversification; allelic variation in P. truei is similar among populations, including populations allopatric and sympatric with sibling species. In fact, most alleles are present in all populations sampled across P. truei's range. While additional data are needed to identify the precise evolutionary forces responsible for sequence variation in ZP3, our results suggest that in Peromyscus , selection to maintain divergent alleles within species contributes to the pattern of rapid amino acid substitution observed among species.  相似文献   

15.
Cross-transmission experiments were performed using oocysts of an Eimeria arizonensis-like coccidian from Peromyscus leucopus and Peromyscus truei, an E. arizonensis-like coccidian from Reithrodontomys fulvescens, Eimeria baiomysis and Eimeria taylori from Baiomys taylori, Eimeria albigulae from Neotoma albigula, and Eimeria onychomysis from Onychomys spp., between representatives of the above host genera. The E. arizonensis-like coccidian from R. fulvescens infected Reithrodontomys megalotis, Reithrodontomys montanus, and Peromyscus leucopus. Oocysts of E. arizonensis from P. leucopus could be transmitted to both P. leucopus and R. megalotus. Oocysts of E. baiomysis and E. taylori infected only B. taylori. Oocysts of E. arizonensis from P. truei infected P. truei but not Neotoma mexicana or Onychomys leucogaster. Oocysts of E. albigulae from N. albigula were infective for N. mexicana but not for P. truei or O. leucogaster. Oocysts of E. onychomysis from Onychomys spp. infected O. leucogaster but not N. mexicana or P. truei. These results demonstrate that Peromyscus and Reithrodontomys, genera known to be related very closely evolutionarily, are capable of sharing E. arizonensis, whereas morphologically similar coccidians (E. albigulae, E. baiomysis, and E. onychomysis) from more distantly related hosts, are probably distinct and more stenoxenous. This also is the first report of coccidians infecting species of Reithrodontomys.  相似文献   

16.
Many plant species are thought to benefit from mast seeding as a result of increased seed survival through predator satiation. However, in communities with many different masting species, lack of synchrony in seed production among species may decrease seed survival by maintaining seed predator populations through the intermast cycle. Similarly, masting by different plant species may have different effects on the seed predator community. We conducted a three-year study in a northeastern USA temperate deciduous forest to determine if production of large seed crops by several tree species was synchronous, and if they had similar effects on all small mammal species. We found that red oak mast crops resulted in increased densities of Peromyscus leucopus and P. maniculatus , but had no effect on Clethrionomys gapperi abundance. Conversely, C. gapperi populations, but not Peromyscus populations, appeared to increase in response to a large red maple seed crop. Differences in small mammal abundance resulted in changes in species-specific seed survival: in the year of abundant C. gapperi , experimentally placed red oak acorns had significantly higher survival than in the year of high Peromyscus abundance. Red oak acorn removal was positively correlated with Peromyscus abundance, while red maple seed removal was significantly higher with increased C. gapperi abundance. Thus, species-specific seed production had differential effects on subsequent small mammal abundance, which in turn affected seed survival. We suggest that at the level of the community, even short-term lack of synchrony in production of large seed crops can cause variation in postdispersal seed survival, through differential effects on the community of small mammal seed predators.  相似文献   

17.
Nucleoside phosphorylase (NP: EC 2.4.2.1) has not been demonstrated to be an extensively polymorphic enzyme locus in mammals. We have studied NP electrophoretically in five independently derived cell lines established from Peromyscus eremicus as well as in various tissues of a sixth animal. Four different NP phenotypes involving three different alleles were resolved. The data suggest that (1) the enzyme is trimeric and its genetic locus is polymorphic in P. eremicus, (2) heterozygous enzyme phenotypes are stable during long-term culture, and (3) the enzyme locus is autosomal in Peromyscus.  相似文献   

18.
Horizontal starch gel electrophoresis reveals three hemoglobin phenotypes in natural populations of the deer mouse, Peromyscus maniculatus,from northern Arizona. Phenotypic variation is controlled by a single locus. A sample of deer mice from Michigan was monomorphic for a multiple-banded phenotype. Hemoglobin polymorphism was also observed in Arizona samples of the species Peromyscus boylii.This investigation was supported by Public Health Service Research Grant R01-GM12190.  相似文献   

19.
G- and C-banded karyotypes for two insular species of deer mice, Peromyscus slevini and P. sejugis, are described and analyzed relative to the evolutionary relationship of these species to and their inclusion within the P. maniculatus species group. The chromosomal phenotype of P. slevini is unique among all banded karyotypes reported for Peromyscus, and comparison with published karyotypes suggests that P. slevini has systematic affinities with either the P. boylii or P. mexicanus species groups. The karyotypic data for P. sejugis clearly align these mice with P. maniculatus and provide a diagnostic character that supports the specific distinction between these taxa.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号