首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Green manures from seven tropical leguminous trees were incubated with soil to determine the rates and controls of net nitrogen release. Fresh green manure (leaves and succulent twigs) was mixed with moist soil and incubated in polyethylene bags. Net N mineralization from green manures was estimated by the accumulation of extractable ammonium and nitrate minus the accumulation in soil alone. Patterns of N mineralization were complex, differed among species, and at 12 weeks ranged from 10 to 65 percent of original green-manure N. Cumulative net N mineralization was negatively correlated with initial soluble polyphenol content in the early phases of decomposition (1 through 8 weeks) and with initial lignin content in later phases (4 through 12 weeks). Neither initial percent N nor lignin: N ratio were strongly correlated with N mineralization. The best chemical index of N release was the initial polyphenol: N ratio. This study confirms previous findings that N mineralization from tropical legumes is controlled more by soluble polyphenols than by lignin or N content.  相似文献   

2.
We studied late-stages decomposition of four types of coniferous needle and three types of deciduous leaf litter at two sites, one nutrient-poor boreal and one nutrient-rich temperate. The late stage was identified by that reached by litters at the onset of net loss of lignin mass, i.e. at about 1 year after the incubation when the highest amount of lignin had been detected; the study extended over the following 2 year period. Decomposition rates were significantly lower at the boreal than at the temperate site and did not differ between needle litter and leaf litter. In the boreal forest: (1) mass-loss was positively correlated with N and Mn release, (2) Mn concentration at the start of the late stage was positively correlated with lignin decay, (3) Ca concentration was negatively correlated to litter mass loss and lignin decay. In the temperate forest neither lignin, N, Mn, and Ca concentration at the start of the late stage, nor their dynamics were related to litter decomposition rates and lignin decay. In leaf litter mass-loss and lignin decay were positively correlated with N and Ca release and with Ca concentration. In needle litter mass-loss was positively correlated to Mn release and N concentration negatively with lignin decay. We concluded that Ca, N and Mn have different roles in controlling lignin decay depending on type of litter and site conditions.  相似文献   

3.
Immobilization and mobilization of nitrogen and phosphorus were investigated in relation to the nitrogen (L/N) ratio and lignin to the phosphorus (L/P) ratio as indicators of the nitrogen and phosphorus dynamics. The present study was carried out on upper and lower parts of a forest slope in a cool temperate forest in Japan. Net immobilization and net mobilization characterized the dynamics of nitrogen and phosphorus in 14 litter types and were related to the changes in the L/N and L/P ratio. The critical values of the L/N and L/P ratio at which the mobilization began were 23–25 and 500–620, respectively. In litter types with the L/N and L/P ratio higher than critical values, nitrogen and phosphorus were immobilized until the ratios reached at the critical values and then nitrogen and phosphorus began decreasing. In litter types with initial L/N and L/P ratios lower than or equal to the critical values, nitrogen and phosphorus were released from litter. The critical values of the L/N and L/P ratios showed convergent trends among litter types as compared to their initial values, and were approached to those of underlying humus layers. These results indicated the usefulness of L/N and L/P ratios as indicators of the nitrogen and phosphorus dynamics in the study site. The general validity of the L/N ratio as an indicator of nitrogen dynamics and the convergent trend of critical L/N ratio at 25–30 were demonstrated by a review of literature on lignin and nitrogen dynamics in 47 litter types in temperate and boreal forests.  相似文献   

4.
Nitrogen immobilization in relation to the dynamics of lignin and tannins in nine different types of leaf litter was investigated during a 2-yr study at two Mediterranean ecosystems of SW Spain. Net nitrogen immobilization for all the species was higher in a forest than in the more nutrient-poor soil of a shrubland. Absolute amount of lignin increased in both ecosystems in the first 2–4 months whereas tannin rapidly decreased in the same time period. Increases in lignin were significantly correlated to losses of tannins during decomposition. Initial tannin content was the best predictor of the maximum amount of immobilized nitrogen in litter in both ecosystems. Mechanisms that could explain the immobilization of nitrogen in litter are discussed.  相似文献   

5.
To study the incorporation of carbon and nitrogen in different plant fractions, 3‐year‐old‐beech (Fagus sylvatica L.) seedlings were exposed in microcosms to a dual‐labelling experiment employing 13C and 15N throughout one season. Leaves, stems, coarse and fine roots were harvested 6, 12 and 18 weeks after bud break (June to September) and used to isolate acid‐detergent fibre lignins (ADF lignin) for the determination of carbon and nitrogen and their isotope ratios. Lignin concentrations were also determined with the thioglycolic acid method. The highest lignin concentrations were found in fine roots. ADF lignins of all tissues analysed, especially those of leaves, also contained significant concentrations of nitrogen. This suggests that lignin‐bound proteins constitute an important cell wall fraction and shows that the ADF method is not suitable to determine genuine lignin. ADF lignin should be re‐named as ligno‐protein fraction. Whole‐leaf biomass was composed of 50 to 70% newly assimilated carbon and about 7% newly assimilated nitrogen; net changes in the isotope ratios were not observed during the experimental period. In the other tissues analysed, the fraction of new carbon and nitrogen was initially low and increased significantly during the time‐course of the experiment, whereas the total tissue concentrations of carbon remained almost unaffected and nitrogen declined. At the end of the experiment, the whole‐tissue biomass and ADF lignins of fine roots contained about 65 and 50% new carbon and about 50 and 40% new nitrogen, respectively. These results indicate that significant metabolic activity was related to the formation of structural biopolymers after leaf growth, especially below‐ground and that this activity also led to a substantial binding of nitrogen to structural compounds.  相似文献   

6.
Previous work in a young Hawaiian forest has shown that nitrogen (N) limits aboveground net primary production (ANPP) more strongly than it does decomposition, despite low soil N availability. In this study, I determined whether (a) poor litter C quality (that is, high litter lignin) poses an overriding constraint on decomposition, preventing decomposers from responding to added N, or (b) high N levels inhibit lignin degradation, lessening the effects of added N on decomposition overall. I obtained leaf litter from one species, Metrosideros polymorpha, which dominates a range of sites in the Hawaiian Islands and whose litter lignin concentration declines with decreasing precipitation. Litter from three dry sites had lignin concentrations of 12% or less, whereas litter from two wet sites, including the study site, had lignin concentrations of more than 18%. This litter was deployed 2.5 years in a common site in control plots (receiving no added nutrients) and in N-fertilized plots. Nitrogen fertilization stimulated decomposition of the low-lignin litter types more than that of the high-lignin litter types. However, in contrast to results from temperate forests, N did not inhibit lignin decomposition. Rather, lignin decay increased with added N, suggesting that the small effect of N on decomposition at this site results from limitation of decomposition by poor C quality rather than from N inhibition of lignin decay. Even though ANPP is limited by N, decomposers are strongly limited by C quality. My results suggest that anthropogenic N deposition may increase leaf litter decomposition more in ecosystems characterized by low-lignin litter than in those characterized by high-lignin litter. Received 26 October 1999; accepted 2 June 2000.  相似文献   

7.
不同林龄马尾松凋落物基质质量与土壤养分的关系   总被引:9,自引:0,他引:9  
凋落物的质量、数量及分解速率在一定程度上代表了土壤的营养状况。为了精确估算凋落物分解对土壤碳库的年净归还量及凋落物-土壤生物化学连续体的深层理解,从凋落物基质质量的角度分析了三峡库区不同林龄马尾松凋落物基质质量与土壤养分的作用关系,结果表明:中龄林、近熟林、成熟林马尾松凋落物基质质量中的C、C/N比、C/P比、木质素/N比、木质素/P比差异显著,其中近熟林凋落物叶木质素/N分别比中龄林和成熟林的高33.65%、39.24%,N、P、K、木质素含量差异不显著;但各组织器官的N、P、K含量差异显著,均是皮<枝<叶<杂物,C/N比、C/P比的变化则相反。不同林龄马尾松0-20 cm(0-5 cm、5-10 cm、10-20 cm)土壤有机质、总氮、有效磷含量均表现出近熟林<中龄林<成熟林,0-5 cm最大,10-20 cm最小,且随着土壤深度的增加而明显降低,总磷则是中林龄最低,成熟林最大,pH值则各土层均表现为中龄林<成熟林<近熟林,平均pH值为4.55-5.51。凋落物基质质量指标与土壤养分之间冗余分析(RDA)表明:马尾松凋落物基质质量和土壤养分之间关系紧密,N、P、纤维素、半纤维素、木质素、木质素/N比、C/N比对土壤养分影响比较大;凋落物中木质素/N比、C/N比与土壤有机质呈显著负相关,其含量越高越不利于土壤有机质的形成,土壤养分积累的越慢;凋落物基质质量氮含量与土壤氮含量呈显著正相关;土壤pH值、容重与N含量呈显著负相关,与凋落物C/N比、木质素/N比呈显著正相关。马尾松土壤表面有机质、N、P养分含量与凋落物基质质量对应养分含量变化规律一致,土壤养分高,凋落物基质质量相对较高,土壤贫瘠,凋落物基质质量相对较低。  相似文献   

8.
桂西北喀斯特区原生林与次生林凋落叶降解和养分释放   总被引:2,自引:0,他引:2  
凋落叶降解及养分释放研究对喀斯特生态脆弱区森林生态系统的恢复与重建具有重要指导意义。本文选取桂西北喀斯特区3种原生林与3种次生林进行比较,研究其凋落叶降解与降解过程中的营养元素释放规律以及降解速率的影响因子。结果表明,原生林凋落叶的降解速率略大于次生林。C、N、K元素在前180天释放速率较快,随后趋于稳定。次生林凋落叶总P含量在降解初始阶段呈净积累,随后净释放,而原生林的凋落叶在降解360天后仍呈现P素净积累。相关分析表明,凋落叶降解速率与凋落叶初始总N、木质素含量及木质素:N比值呈负相关,与C:N比呈正相关。综合比较发现,次生林圆叶乌桕(Sapium rotundifolium Hemsl)凋落叶的降解速率与养分释放速率较快,是喀斯特退化土地及植被恢复过程中潜在的优势种和建群种。  相似文献   

9.
Litter decomposition represents one of the largest annual fluxes of carbon (C) from terrestrial ecosystems, particularly for tropical forests, which are generally characterized by high net primary productivity and litter turnover. We used data from the Long-Term Intersite Decomposition Experiment (LIDET) to (1) determine the relative importance of climate and litter quality as predictors of decomposition rates, (2) compare patterns in root and leaf litter decomposition, (3) identify controls on net nitrogen (N) release during decay, and (4) compare LIDET rates with native species studies across five bioclimatically diverse neotropical forests. Leaf and root litter decomposed fastest in the lower montane rain and moist forests and slowest in the seasonally dry forest. The single best predictor of leaf litter decomposition was the climate decomposition index (CDI), explaining 51% of the variability across all sites. The strongest models for predicting leaf decomposition combined climate and litter chemistry, and included CDI and lignin ( R 2=0.69), or CDI, N and nonpolar extractives ( R 2=0.69). While we found no significant differences in decomposition rates between leaf and root litter, drivers of decomposition differed for the two tissue types. Initial stages of decomposition, determined as the time to 50% mass remaining, were driven primarily by precipitation for leaf litter ( R 2=0.93) and by temperature for root litter ( R 2=0.86). The rate of N release from leaf litter was positively correlated with initial N concentrations; net N immobilization increased with decreasing initial N concentrations. This study demonstrates that decomposition is sensitive to climate within and across tropical forests. Our results suggest that climate change and increasing N deposition in tropical forests are likely to result in significant changes to decomposition rates in this biome.  相似文献   

10.
The effect of litter quality and climate on the rate of decomposition of plant tissues was examined by the measurement of mass remaining after 3 years’ exposure of 11 litter types placed at 18 forest sites across Canada. Amongst sites, mass remaining was strongly related to mean annual temperature and precipitation and amongst litter types the ratio of Klason lignin to nitrogen in the initial tissue was the most important litter quality variable. When combined into a multiple regression, mean annual temperature, mean annual precipitation and Klason lignin:nitrogen ratio explained 73% of the variance in mass remaining for all sites and tissues. Using three doubled CO2 GCM climate change scenarios for four Canadian regions, these relationships were used to predict increases in decomposition rate of 4–7% of contemporary rates (based on mass remaining after 3 years), because of increased temperature and precipitation. This increase may be partially offset by evidence that plants growing under elevated atmospheric CO2 concentrations produce litter with high lignin:nitrogen ratios which slows the rate of decomposition, but this change will be small compared to the increased rate of decomposition derived from climatic changes.  相似文献   

11.
Genetically based trait in a dominant tree affects ecosystem processes   总被引:11,自引:0,他引:11  
Fundamental links between genes and ecosystem processes have remained elusive, although they have the potential to place ecosystem sciences within a genetic and evolutionary framework. Utilizing common gardens with cottonwood trees of known genotype, we found that the concentration of condensed tannins is genetically based and is the best predictor of ecosystem‐level processes. Condensed tannin inputs from foliage explained 55–65% of the variation in soil net nitrogen (N) mineralization under both field and laboratory conditions. Alternative associations with litter lignin, soil moisture or soil temperature were relatively poor predictors of litter decomposition and net N mineralization. In contrast to the paradigm that the effects of genes are too diffuse to be important at the ecosystem‐level, here we show that plant genes had strong, immediate effects on ecosystem function via a tight coupling of plant polyphenols to rates of nitrogen cycling.  相似文献   

12.
Crossbred wethers (22 months old; 46 ± 1.3 kg body weight), with catheters in a hepatic vein, the portal vein and a mesenteric vein and artery, consumed warm (W; bermudagrass hay) or cool season grass hay (C; ryegrass‐wheat) at 1.6% body weight (dry matter basis) in a crossover design experiment. Warm and cool season grasses were 13.6 and 9.9% crude protein, 77 and 66% neutral detergent fibre and 4.6 and 4.0% acid detergent lignin, respectively. Neutral detergent fibre digestibility (70.3 and 77.4%) and digestible energy intake (8.5 and 9.3 mJ/d) were greater (P<0.02) for C than for W, and digestible nitrogen intake (11.5 and 8.0 g/d for W and C, respectively) was greater (P<0.01) for W. Ruminai fluid concentrations of ammonia nitrogen and total volatile fatty acids were not altered by grass source, and acetate: propionate was greater (P<0.02) for W (3.80) than for the C (3.54). Portal‐drained viscera blood flow (118 and 119 1/h; SE 8.0), oxygen consumption (141 and 142 mM/h; SE 3.7), alpha‐amino nitrogen release (13.4 and 13.1 mM/h; SE 3.42), urea nitrogen uptake (22.8 and 22.5 mM/h; SE 4.97), ammonia nitrogen release (14.9 and 15.7 mM/h; SE 3.36), glucose uptake (10.0 and 6.5 mM/h; SE 1.30), propionate release (14.5 and 16.4 mM/h; SE 1.88), lactate release (4.64 and 5.03 mM/h; SE 1.908) and acetate release (54.8 and 55.4 mM/h for W and C, respectively; SE 8.82) were similar between grasses. Energy consumption by the portal‐drained viscera accounted for a slightly greater (P<0.01) percentage of digestible energy intake with W vs C (18.8 vs 17.0%; SE 0.10). In conclusion, with restricted consumption of W or C by mature sheep, grass source had little impact on net flux of oxygen and nutrients across the portal‐drained viscera and splanchnic bed.  相似文献   

13.
通过对阔叶红松林和红松人工林2种林型凋落物处理(分别为不添加凋落物(原样组)、添加凋落物(双倍组)和去除凋落物(去除组)等3个处理)与模拟氮磷沉降(分别为对照CK (0 g N m-2 a-1、0 g P m-2 a-1)、低浓度氮磷(5 g N m-2 a-1、5 g P m-2 a-1)、中浓度氮磷(15 g N m-2 a-1、10g P m-2 a-1)和高浓度氮磷(30 g N m-2 a-1、20 g P m-2 a-1)等4个强度)原位培养试验,研究凋落物质量的增加与氮磷沉降及两种处理的耦合作用对碳(C)和木质素分解释放的影响。结果表明:凋落物添加在试验前期(6月)抑制人工林L层的C释放,促进H层的C释放;试验后期(10月)促进人工林L层C释放,而抑制H层的C释放。凋落物添加在前期(6月)是促进天然林L层C释放的,但在后期(10月)产生抑制作用。与L层相反,凋落物添加持续促进天然林H层的C释放。低、中浓度氮磷沉降显著促进了红松人工林和阔叶红松林L、H层C释放和木质素降解,但高浓度的氮磷添加会抑制C释放和木质素的降解,两种处理之间无交互作用。  相似文献   

14.
Rice  Steven K.  Westerman  Bryant  Federici  Robert 《Plant Ecology》2004,174(1):97-107
We investigated the influence of the exotic nitrogen-fixing black locust (Robinia pseudoacacia) on nitrogen cycling in a pitch pine (Pinus rigida) −scrub oak (Quercus ilicifolia, Q. prinoides) ecosystem. Within paired pine-oak and adjacent black locust stands that were the result of a 20-35 year-old invasion, we evaluated soil nutrient contents, soil nitrogen transformation rates, and annual litterfall biomass and nitrogen concentrations. In the A horizon, black locust soils had 1.3-3.2 times greater nitrogen concentration relative to soils within pine-oak stands. Black locust soils also had elevated levels of P and Ca, net nitrification rates and total net N-mineralization rates. Net nitrification rates were 25-120 times greater in black locust than in pine-oak stands. Elevated net N-mineralization rates in black locust stands were associated with an abundance of high nitrogen, low lignin leaf litter, with 86 kg N ha–1 yr–1 in leaf litter returned compared with 19 kg N ha–1 yr–1 in pine-oak stands. This difference resulted from a two-fold greater litterfall mass combined with increased litter nitrogen concentration in black locust stands (1.1% and 2.6% N for scrub oak and black locust litter, respectively). Thus, black locust supplements soil nitrogen pools, increases nitrogen return in litterfall, and enhances soil nitrogen mineralization rates when it invades nutrient poor, pine-oak ecosystems. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

15.
安琪  司静  戴玉成 《菌物学报》2018,37(3):361-370
利用1株糙皮侧耳Pleurotus ostreatus栽培菌株为材料,研究添加碱性木质素或者配合简单碳源或氮源后对其液体发酵产漆酶活性的影响。结果表明,不同诱导培养基对糙皮侧耳漆酶活性具有极显著的影响(P<0.001),而且不同诱导培养基对糙皮侧耳菌丝生物量也产生了极显著的影响(P<0.001)。此外,只利用碱性木质素或者是再添加碳源葡萄糖均有利于糙皮侧耳产漆酶,既包括产漆酶酶活性的提升,同时也包括产漆酶时间的提前,但只利用碱性木质素诱导不利于菌丝生物量的积累;而富含简单碳/氮源的诱导培养基,无论是否含碱性木质素,均有利于菌丝生物量的积累,其中,富含简单碳/氮源的培养基中再添加碱性木质素后的菌丝生物量和漆酶活性均高于不添加碱性木质素时的菌丝生物量和漆酶活性。相比而言,含碱性木质素的培养基中测得的漆酶活性大部分时间下都要高于不含木质素的简单碳/氮源培养基,含碱性木质素的培养基对糙皮侧耳菌株产漆酶的诱导作用更强。  相似文献   

16.
Litter disappearance was examined before (1989) and after (1990) Hurricane Hugo in the Luquillo Experimental Forest, Puerto Rico using mesh litterbags containing abscised Cyrilla racemiflont or Dacryodes excelsa leaves or fresh Prestoea montana leaves. Biomass and nitrogen dynamics were compared among: (i) species; (ii) mid- and high elevation forest types; (iii) riparian and upland sites; and (iv) pre- and post-hurricane disturbed environments. Biomass disappearance was compared using multiple regression and negative exponential models in which the slopes were estimates of the decomposition rates subsequent to apparent leaching losses and the y-intercepts were indices of initial mass losses (leaching). Cyrilla racemiflora leaves with low nitrogen (0.39%) and high lignin (22.1%) content decayed at a low rate and immobilized available nitrogen. Dacryodes excelsa leaves had moderate nitrogen (0.67%) and lignin (16.6%) content, decayed at moderate rates, and maintained the initial nitrogen mass. Prestoea montana foliage had high nitrogen (1.76%) and moderate lignin (16.7%) content and rapidly lost both mass and nitrogen. There were no significant differences in litter disappearance and nitrogen dynamics among forest types and slope positions. Initial mass loss of C. racemiflora leaves was lower in 1990 but the subsequent decomposition rate did not change. Initial mass losses and the overall decomposition rates were lower in 1990 than in 1989 for Dacryodes excelsa. Dacryodes excelsa and C. racemiflora litter immobilized nitrogen in 1990 but released 10-15 percent of their initial nitrogen in 1989, whereas P. montana released nitrogen in both years (25-40%). Observed differences in litter disappearance rates between years may have been due to differences in the timing of precipitation. Foliar litter inputs during post-hurricane recovery of vegetation in Puerto Rico may serve to immobilize and conserve site nitrogen.  相似文献   

17.
The biological transformation of lignocellulose of Achras zapota by white rot fungi, Phanerochaete chrysosporium, in solid state fermentation (SSF) was studied for 28 days. The kinetic transformation of lignocellulose was monitored through the determination of acid soluble and acid insoluble lignin content, total organic carbon (TOC) and chemical oxygen demand (COD). The lignolytic enzymes, lignin peroxidase (LiP) and manganese peroxidase (MnP) were quantified on weekly intervals. The degradation of lignin and other structural moieties of A. zapota lignocellulose were confirmed by high performance liquid chromatography (HPLC), Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). The degradation of lignin was increased after 7 days of fermentation with the release of water soluble and fermentable products. The LiP and MnP activities were increased in the first week of SSF and lignin degradation was also set to increase. This was accompanied with increase in COD by 94.6% and TOC by 80% and lignin content was decreased by 76%. The maximum activities of the enzymes LiP and MnP in extracellular fluid of SSF under nitrogen limitation, at pH 5.0, at temperature 37 degrees C and at 60% humidity were 2100 U/L and 1200 U/L.  相似文献   

18.
White-rot fungi that are efficient lignin degraders responsible for its turnover in nature have appeared twice in the center of biotechnological research — first, when the lignin degradation process started being systematically investigated and major enzyme activities and mechanisms involved were described, and second, when the huge remediation potential of these organisms was established. Originally, Phanerochaete chrysosporium became a model organism, characterized by a secondary metabolism regulatory pattern triggered by nutrient (mostly nitrogen) limitation. Last decade brought evidence of more varied regulatory patterns in white-rot fungi when ligninolytic enzymes were also abundantly synthesized under conditions of nitrogen sufficiency. Gradually, research was focused on other species, among them Irpex lacteus showing a remarkable pollutant toxicity resistance and biodegradation efficiency. Systematic research has built up knowledge of biochemistry and biotechnological applicability of this fungus, stressing the need to critically summarize and estimate these scattered data. The review attempts to evaluate the information on I. lacteus focusing on various enzyme activities and bioremediation of organopollutants in water and soil environments, with the aim of mediating this knowledge to a broader microbiological audience.  相似文献   

19.
Neal A. Scott  Dan Binkley 《Oecologia》1997,111(2):151-159
The feedback between plant litterfall and nutrient cycling processes plays a major role in the regulation of nutrient availability and net primary production in terrestrial ecosystems. While several studies have examined site-specific feedbacks between litter chemistry and nitrogen (N) availability, little is known about the interaction between climate, litter chemistry, and N availability across different ecosystems. We assembled data from several studies spanning a wide range of vegetation, soils, and climatic regimes to examine the relationship between aboveground litter chemistry and annual net N mineralization. Net N mineralization declined strongly and non-linearly as the litter lignin:N ratio increased in forest ecosystems (r 2 = 0.74, P < 0.01). Net N mineralization decreased linearly as litter lignin concentration increased, but the relationship was significant (r 2 = 0.63, P < 0.01) only for tree species. Litterfall quantity, N concentration, and N content correlated poorly with net N mineralization across this range of sites (r 2 < 0.03, P = 0.17–0.26). The relationship between the litter lignin:N ratio and net N mineralization from forest floor and mineral soil was similar. The litter lignin:N ratio explained more of the variation in net N mineralization than climatic factors over a wide range of forest age classes, suggesting that litter quality (lignin:N ratio) may exert more than a proximal control over net N mineralization by influencing soil organic matter quality throughout the soil profile independent of climate. Received: 16 December 1996 / Accepted: 8 February 1997  相似文献   

20.
In this study the oxidative behavior of carbons derived from cellulose and lignin were compared using thermogravimetric analysis (TGA). Specific surface area and chemical composition of the two types of carbon were analyzed using nitrogen adsorption at 77 K and infrared spectroscopy respectively. The results demonstrate that cellulose carbon has a higher reaction order and lower activation energy than lignin carbon under identical experimental conditions when they were prepared at temperatures lower than 500 °C. However, such differences were considerably reduced for the carbon samples prepared at temperatures greater than 700 °C. It was verified that lignin carbon is more stable than cellulose carbon due to its higher content of aromatic structures when they are prepared at lower temperature. The specific surface area and porosity have a more limited contribution to the differential oxidative behaviors of the two types of carbon. This research has significance related to the formation of carbon nanotubes from plant materials during low temperature carbonization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号