首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The objective of this study was to determine the effect of age and chronic intracerebral administration of nerve growth factor (NGF) on the activity of the presynaptic cholinergic neuronal markers hemicholinium-sensitive high-affinity choline uptake (HACU) and choline acetyltransferase (ChAT) in the brain of Fisher 344 male rats. In 24-month-old rats, a substantial decrease in ChAT activity (30%) was measured in striatum, and decreases in HACU were found in frontal cortex (28%) and hippocampus (23%) compared with 4-month-old controls. Cholinergic neurons in brain of both young adult and aged rats responded to administration of exogenous NGF by increased expression of both phenotypes. In 4-month-old animals, NGF treatment at 1.2 micron/day resulted in increased activities of both ChAT and HACU in striatum (175 and 170%, respectively), frontal cortex (133 and 125%), and hippocampus (137 and 125%) compared with untreated and vehicle-treated 4-month-old animals; vehicle treatment had no effect on the activity of either marker. In 24-month-old animals treated with NGF for 2 weeks, ChAT activity was increased in striatum (179%), frontal cortex (134%), and hippocampus (119%) compared with 24-month-old control animals. Synaptosomal HACU in 24-month-old rats was increased in striatum (151%) and frontal cortex (128%) after 2 weeks of NGF treatment, but hippocampal HACU was not significantly different from control values.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Vulnerability of hippocampal hemicholinium-3 (HC-3)-sensitive carriers to ethanol was evaluated in vitro during rat postnatal development. The high-affinity uptake of [3H]choline (HACU) and the specific binding of [3H]HC-3 were measured on synaptosomes from 7-, 14-, and 60-day- and 3-month-old male and female Wistar rats. Marked increases of basal (between 7 and 60 days of age) and of stimulated HACU levels via K+-depolarization (between 14 days and 3 months) but only a mild elevation in [3H]HC-3 binding (between 7 days and 3 months) associated with alterations in the binding site number were found. On the mature tissue, ethanol at high concentrations (5%) moderately inhibited the choline transport under basal conditions but totally eliminated depolarization effects. However, both age- and sex-dependent alterations in basal HACU mediated by high or low pharmacologically relevant alcohol concentrations (50–100 mM) were observed in the immature tissue. Namely, the dose- and incubation time–dependent inhibition of HACU associated with changes in the transport velocity was found in postnatal male but not female tissue. [3H]HC-3 binding site was not markedly sensitive to ethanol actions. Anisotropy measurements in the region of the hydrophilic heads of phospholipid bilayers and in the membrane hydrocarbon core indicated penetration of 100 mM ethanol to immature female but not male tissue. Our results suggest the noncompetitive binding of alcohol to choline carriers from immature male tissue and correspond with data reporting significant sexual dimorphism of postnatal hippocampal neurons. The direct effects of ethanol on male choline carriers can contribute to the inhibition of acetylcholine synthesis and to sex-dependent neurotoxic effects of alcohol applied in vivo during early and late postnatal period.  相似文献   

3.
Our previous experiments indicated an age- and sex-dependent functional lateralization of a high-affinity choline uptake system in hippocampi of Wistar rats. The system is connected with acetylcholine synthesis and also plays a role in spatial navigation. The current study demonstrates that a single in vivo exposure of 7- or 14-day-old males to a static magnetic field of 0.14 T for 60–120 min evokes asymmetric alterations in the activity of carriers in adulthood. Namely, the negative field (antiparallel orientation with a vertical component of the geomagnetic field) mediated a more marked decrease in the right hippocampus. The positive field (parallel orientation) was ineffective. Moreover, differences between the carriers from the right and the left hippocampi were observed on synaptosomes pretreated with superparamagnetic nanoparticles and exposed for 30 min in vitro. The positive field enhanced more markedly the activity of carriers from the right hippocampus, the negative that from the left hippocampus, on the contrary. Our results demonstrate functionally teratogenic risks of the alterations in the orientation of the strong static magnetic field for postnatal brain development and suggest functional specialization of both hippocampi in rats. Choline carriers could be involved as secondary receptors in magnetoreception through direct effects of geomagnetic field on intracellular magnetite crystals and nanoparticles applied in vivo should be a useful tool to evaluate magnetoreception in future research.  相似文献   

4.
A transient 45% increase in cortical high-affinity choline uptake (HACU) was observed after an injection of quinolinic acid (QUIN) into the nucleus basalis magnocellularis (nbM) of the rat. This was followed by a steady decline in choline uptake, which resulted in a 46% decrease by day 7. Specific [3H]hemicholinium-3 binding to coronal brain sections showed a similar pattern following injections of QUIN into the nbM. The increase in cortical HACU elicited by QUIN appeared to be dose dependent.  相似文献   

5.
A Horita  M A Carino  J Zabawska  H Lai 《Peptides》1989,10(1):121-124
Microinjection of ibotenic acid into medial septum of rats decreased choline acetyltransferase (CAT) and high-affinity choline uptake (HACU) activities in hippocampus and retarded the learning of a spatial memory task in the radial-arm maze. Administration of MK-771, a stable TRH analog, to such animals restored HACU activity in hippocampus to normal levels. Daily treatment of rats with MK-771 prior to maze running also restored the animals' learning ability. MK-771 did not enhance hippocampal HACU activity or maze performance in sham-lesioned rats. These results suggest that MK-771 reversed the ibotenic acid-induced memory deficit by restoring septohippocampal cholinergic function. MK-771 and other TRH analogs may represent novel agents for improving memory deficits produced by cholinergic insufficiency in Alzheimer's disease.  相似文献   

6.
Our previous microdialysis study of freely moving rats demonstrated that 3 pyrethroids, allethrin (type I), cyhalothrin (type II) and deltamethrin (type II) differentially modulate acetylcholine (ACh) release in the hippocampus. To better understand the mechanisms of their modulatory effects and also other effects on the cholinergic system in the brain, the activities of ACh hydrolyzing enzyme acetylcholinesterase (AChE), ACh synthesizing enzyme choline acetyltransferase (ChAT) and ACh synthesizing rate-limiting step, high-affinity choline uptake (HACU) were examined in the present study. The pyrethroids studied had no effect on AChE activity in the cortex, hippocampus and striatum. These pyrethroids had no significant effect on ChAT in the cortex and hippocampus, but striatal ChAT was increased at higher dosage (60 mg/kg) by all three compounds. Lineweaver-Burk analysis of hippocampal HACU revealed that the pyrethroids did not alter the Michaelis-Menten constant (Km) value but caused alteration of maximal velocity (Vmax). Allethrin (60 mg/kg) and cyhalothrin (20 and 60 mg/kg) decreased while deltamethrin (60 mg/kg) increased the Vmax for HACU. In vitro study showed that at higher concentrations (> or = 10(-) (6) M) allethrin and cyhalothrin reduced the hippocampal HACU but deltamethrin increased it. These results suggest that mechanisms of ACh synthesis are involved in the modulatory effects of the pyrethroids on ACh release and other cholinergic activities.  相似文献   

7.
High affinity choline uptake (HACU) was investigated in the hippocampal formation following fetal septal cell suspension transplants into rats with fimbria-fornix lesions. Nine-14 weeks after transplantation, HACU was markedly decreased in hippocampi from animals with fimbria-fornix lesions; this decrease was ameliorated by fetal septal cells transplanted into the host hippocampus. HACU related to septal transplantation was activated in vitro by K+, and in vivo by the administration of scopolamine and picrotoxin. These findings suggest that fetal septal cell transplantation can restore HACU in the host hippocampus following fimbria-fornix lesions, and that HACU related to the graft has pharmacological properties similar to those of the normal adult HACU system. The activation of HACU by picrotoxin, a gamma-aminobutyric acid (GABA) antagonist, suggests that transplanted cholinergic neurons receive either direct or indirect functional input from GABAergic afferents from the transplant and/or host hippocampus. Lesions of the fimbria-fornix also resulted in an increased binding to muscarinic receptors in the dorsal hippocampus. This increase in binding was not significantly ameliorated by intrahippocampal grafts of cholinergic neurons.  相似文献   

8.
Li  Ying J.  Low  Walter C. 《Neurochemical research》1997,22(5):589-595
Fetal septal neurons transplanted into the deafferented retrosplenial cortex (RSC) of rats have been shown to reinnervate the host brain and ameliorate spatial memory deficits. In the present study we examined the effects of implanting cholinergic neurons on high affinity choline uptake (HACU) in the denervated RSC and the correlational relationship between this cholinergic parameter and the level of behavioral recovery. Three groups of animals were used: 1) normal control rats (NC), 2) rats with lesions of the fornix and cingulate pathways (FX), and 3) lesioned rats with fetal septal grafts in the RSC (RSCsep-TPL). We found that intra-RSC septal grafts produced significant increases in HACU, and that recovery of HACU was significantly correlated with the improvements in the performance of spatial reference memory, spatial navigation, and spatial working memory tasks. We have also investigated the ability of the host brain to modulate the activity of the implanted neurons. In particular we evaluated the effect of the animals' performance in a 6-arm radial maze task on high affinity choline uptake (HACU). Animals in each of the NC, FX, and RSCsep-TPL groups were randomly assigned one of the following subgroups: 1) rats that performed the maze task before the determination of HACU (BEH), or 2) rats that did not perform the maze task before the determination of HACU (NON-BEH). Significant increases were observed in the NC and RSCsep-TPL groups, but not in the FX animals, indicating that fetal septal grafts in the RSC can become functionally incorporated with the host neural circuitry, and that the activity of the implanted cholinergic neurons can be modulated by the host brain.  相似文献   

9.
MK-771 (l-pyro-2-aminoadipyl-histidyl-thiazolidine-4-carboxamide) was administered intraventricularly to conscious and pentobarbital-narcotized rats. In the conscious rats MK-771 did not affect the regional levels of acetylcholine (ACh) or the rate of sodium-dependent high-affinity choline uptake (HACU). MK-771 was found to antagonize pentobarbital-induced elevations of ACh levels in the cortex, hippocampus and striatum. MK-771 also reversed the depressant effects of pentobarbital on the HACU of the cortex and hippocampus. Striatal HACU was unaltered by the administration of pentobarbital or the combination of pentobarbital and MK-771.  相似文献   

10.
High affinity choline uptake (HACU) in the hippocampus and striatal concentration of dopamine (DA) and homovanillic acid (HVA) as measures of the in vivo acetylcholine and DA turnover, respectively, were estimated in male rats, Long-Evans, following 6-day administration of various nootropics in clinically relevant doses: piracetam and its derivatives pramiracetam and oxiracetam (100 mg/kg/day), pyritinol (50 mg/kg/day). Piracetam treatment was without effect on HACU, but induced significant increase of HVA in the striatum leaving striatal DA concentration unchanged. On the contrary, pyritinol, pramiracetam and oxiracetam increased HACU, but did not change striatal DA and HVA levels.  相似文献   

11.
Effects of amyloid beta peptide 1-40 (Abeta) and of plant cysteine proteases bromelain and papain on the high-affinity uptake of choline (HACU) and the specific binding of [3H]hemicholinium-3 ([3H]HC-3) have been investigated on hippocampal synaptosomes from young adult male Wistar rats under basal and stimulated conditions (55 mM KCl). Depolarization increased significantly the HACU levels (the changes were predominantly in Vmax) and mildly the [3H]HC-3 binding (the changes especially in KD). Nonaggregated Abeta at low nM concentrations suppressed the depolarization effects but was ineffective under basal conditions during a short-term incubation. Higher M concentrations decreased the HACU and binding under basal conditions in a time-dependent manner. The binding changes were firstly associated with alterations in KD and secondarily were accompanied also by a drop in Bmax. The results suggest that Abeta directly influences high-affinity carriers, inhibits their transport activity and enhances their sensitivity to proteolytic cleavage. Stimulation increases the sensitivity of carriers to the interaction with Abeta.  相似文献   

12.
The Na+-dependent high-affinity choline uptake (HACU) transport and the [3H]hemicholinium-3 ([3H]HC-3) specific binding were measured on hippocampal synaptosomes of young (3–6 months) and old (22 months) Wistar rats. In vitro effects of 100–300 M arachidonic acid (AA) and of 5% ethanol were tested under basal as well as stimulated (55 mM KCl) conditions. The influence of AA (an irreversible decrease of HACU and a reversible increase of [3H]HC-3 binding) was more marked under stimulated rather than basal conditions in brain tissue of young rats. The increased K+-depolarization effect on HACU and the decreased influence of AA on [3H]HC-3 binding were estimated in brain tissue of old compared to young rats. Results suggest the involvement of different pools of the high-affinity choline carrier and marked changes due to aging in the regulation of the HACU transport.  相似文献   

13.
Abstract: The effect of choline (60 mg/kg, i.p.) on fluphenazine- and pentylenetetrazol-induced alterations in the concentration of acetylcholine (ACh) and/or the rate of sodium-dependent high-affinity choline uptake (HACU) in rat striatum and hippocampus was studied. Systemic administration of the dopamine receptor blocking agent fluphenazine hydrochloride (0.5 mg/kg, i.p.) decreased the concentration of ACh in the striatum; this effect was prevented by the prior administration of choline. The central nervous system stimulant pentylenetetrazol (30 mg/kg, i.p.) reduced the concentration of ACh in both striatum and hippocampus and increased the velocity of HACU in the hippocampus. Pretreatment with choline totally prevented the depletion of ACh induced by pentylenetetrazol in the striatum. In the hippocampus, prior administration of choline prevented the pentylenetetrazol-induced increase in the rate of HACU and attenuated the effect of pentylenetetrazol on the levels of ACh. Results indicate that the acute administration of choline antagonizes pharmacologically induced alterations in cholinergic activity as assessed by the rate of HACU and the steady-state concentration of ACh. Furthermore, data support the hypothesis that the administration of choline increases the ability of central cholinergic neurons to synthesize ACh under conditions of increased neuronal activity.  相似文献   

14.
It has been suggested that the lateralization of the human brain underlies hemispheric specialization and that it can be observed also on a biochemical level. Biochemical laterality appears to be a basis of volumetric or functional asymmetry but direct relationships among them are still unclear. Moreover, age-related differences between the right and left hemispheres are not well documented in various rat strains. In the current study, biochemical markers sensitive to Alzheimer disease (activities of high-affinity choline uptake and of nitric oxide synthases, expression of 17β-hydroxysteroid dehydrogenase type 10) were estimated in both hemispheres of young and old male Wistar/Long Evans rats. Our experiments indicate (1) differences in some biochemical markers between young Wistar and Long Evans rats (the activities of endothelial nitric oxide synthase are higher in Long Evans and those of citrate synthase in Wistar rats), (2) more similar brain asymmetry of healthy human/young Wistar brains when compared to those of young Long Evans, (3) the decrease in asymmetry of the physiologically left/right lateralized biomarker during aging (the activity of the high-affinity choline uptake decreases more markedly in the left side of old Wistar rats) in accordance with the HAROLD model, (4) the age-related shift to reversed left/right asymmetry of the physiologically right/left lateralized biomarker (the activity of inducible nitric oxide synthase increases especially in the left side of old Long Evans rats), and finally (5) age-related differences in physiologically unlateralized biomarkers between Wistar and Long Evans rats (changes in the activities of neural/endothelial nitric oxide synthases or in expression of 17β-hydroxysteroid dehydrogenase type 10 are more asymmetrical in old Wistar when compared to rather bilateral alterations of old Long Evans animals). It seems that the physiological lateralization of the human or rat brains on a biochemical level and their age-related alterations are dependent on biomarker type/function. By our opinion, it is difficult, perhaps impossible, to make one simple universal model, at least on a biochemical level. Since lateral analyses are of sufficient sensitivity to reveal subtle links, we recommend using Wistar rather than Long Evans rats in modeling of diseases accompanied by alterations in brain asymmetry.  相似文献   

15.
There is evidence that brain lateralization underlying hemispheric specialization can be observed also at biochemical level. However, hemispheric differences in nitric oxide mediator system have not yet been evaluated. The hippocampus and planum temporale are highly asymmetrical regions but the degree of their laterality is altered in demented or psychotic people. In the study, l-glutamate/l-arginine/l-citrulline concentrations, nitric oxide synthase activities/expressions and nitrites/nitrates levels were estimated in autoptic hippocampi. Right/left laterality in endothelial synthase activity and in nitrites/nitrates was observed in controls. Lateral changes were estimated in patients with Alzheimer disease (a marked increase in activities of constitutive synthases and in expression of inducible enzyme in the left side) and schizophrenia (an increase in activities of all enzymes especially in the right side). Significant shifts from positive to negative correlations were found between laterality of some components of nitric oxide pathway and of planum temporale volumetry under pathological conditions. The hippocampal nitric oxide system appears to be globally right/left lateralized, especially via actions of highly asymmetrical endothelial synthase. The results suggest a specific involvement of all synthases in the development of selected diseases and show that lateral analyses are of sufficient sensitivity to reveal subtle links. The volumetric asymmetry of the planum temporale as a marker of handedness is not probably simply linked to brain laterality at biochemical level but reflects alterations due to pathological processes.  相似文献   

16.
The recent evidence from literature testify to functional asymmetry of the structures belonging to the limbic system: hippocampus, amygdala, and hypothalamus. Predominant activation of the right hippocampus and right amygdala during perception and memorizing of visual picturesque images and solving the tasks provoking emotional stress, apparently, concerns the functional specialization of the right hemisphere in general. The leading role of the left hypothalamus in provocation of food, sexual, and defensive responses was experimentally verified. This finding is in line with the functional role of the left hemisphere in genesis of motivational states.  相似文献   

17.
Effects of novel or relevant (a single exposure to experimental chamber) and irrelevant (20 exposures to experimental chamber) stimuli on the levels of serotonin (5-HT) and its metabolite 5-hydroxyindoleacetic acid (5-HIAA) in the left and right hippocamp and amygdala were studied in male and female rats. It was found that hemispheric specificity of 5-HT metabolism in hippocampus and amygdala depended on sex and novelty of information. In male rats, the hippocampal level of 5-HT in response to the novel stimulus increased in the left hemisphere, and the 5-HIAA hippocampal level increased bilaterally in response to irrelevant stimulus. In females, an increase in 5-HT and/or 5-HIAA levels was observed only in the left hippocampus in response both to relevant and irrelevant stimuli. In the amygdala, a hemispheric asymmetry of the 5-HT involvement, due to right-hemispheric changes in 5-HT metabolism, was observed only in male rats. In females, an increase in 5-HT level was found in the left and right amygdalas in response to irrelevant stimulus. These data suggest that serotonergic neurotransmitter mechanisms are an important factor which determines hemispheric and sex differences in selective attention.  相似文献   

18.
Along with human speech and language processing, birdsong has been one of the best-characterized model systems for understanding the relationship of lateralization of brain function to behavior. Lateralization of song production has been extensively characterized, and lateralization of song perception has begun to be studied. Here we have begun to examine whether behavior and brain function are lateralized in relation to communicative aspects of singing, as well. In order to monitor central brain function, we assayed the levels of several activity dependent immediate early genes after directed courtship singing. Consistent with a lateralization of visual processing during communication, there were higher levels of expression of both egr-1 and c-fos in the left optic tectum after directed singing. Because input from the eyes to the brain is almost completely contralateral in birds, these results suggest that visual input from the right eye should be favored during normal singing to females. Consistent with this, we further found that males sang more when they could use only their right eye compared to when they could use only their left eye. Normal levels of singing, though, required free use of both eyes to view the female. These results suggest that there is a preference for visual processing by the right eye and left brain hemisphere during courtship singing. This may reflect a proposed specialization of the avian left hemisphere in sustaining attention on stimuli toward which a motor response is planned.  相似文献   

19.
Bilateral lesion of the nucleus basalis with ibotenic acid infusions in young and aged rats results in the degeneration of cholinergic neurons which innervate the cortex. As expected, high-affinity uptake of choline was decreased in the frontal cortex subsequent to the lesion. Twenty one days after surgery there was a significantly decrease of the transport rate of GABA, glutamate and glycine in the frontal cortex of young rats, but those activities showed a recovery six months after lesion. On the contrary, 12-month old rats lesioned with the same experimental protocol showed no recovery of the transport rates in the frontal cortex. Uptake of choline, GABA, glutamate and glycine has also been studied in other areas of the brain, namely, hippocampus, olfactory bulb and cerebellum. The present results suggest that lesioning the nucleus basalis of rats led to a more effective and permanent impairment of some biochemical functions of the brain, when compared to young lesioned animals, and also suggest a functional relationship between the nucleus basalis and other areas of the brain.  相似文献   

20.
This article deals with the role of functional cerebral asymmetry in the analysis of lexical and grammatical material. The author examined healthy test subjects with various types of cerebral organization of speech activity; i.e., with speech lateralization in the left and right hemispheres and bilateral speech lateralization. The test subjects with speech lateralization in the left hemisphere and bilateral lateralization are shown to prefer the formal-grammatical principle of the classification of both lexemes (distinguishing antonyms and synonyms) and grammatical constructions (distinguishing active and passive sentences). The test subjects with speech lateralization in the right hemisphere fail to follow the formal-grammatical principle of the classification of either lexemes (synonyms disappear) or grammatical constructions (active and passive sentences are united). The data obtained show that the linguistic abilities are determined by the functional specialization of the hemispheres.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号