首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The two major cadherins of endothelial cells are neural (N)-cadherin and vascular endothelial (VE)- cadherin. Despite similar level of protein expression only VE-cadherin is located at cell–cell contacts, whereas N-cadherin is distributed over the whole cell membrane. Cotransfection of VE-cadherin and N-cadherin in CHO cells resulted in the same distribution as that observed in endothelial cells indicating that the behavior of the two cadherins was not cell specific but related to their structural characteristics. Similar amounts of α- and β-catenins and plakoglobin were associated to VE- and N-cadherins, whereas p120 was higher in the VE-cadherin complex. The presence of VE-cadherin did not affect N-cadherin homotypic adhesive properties or its capacity to localize at junctions when cotransfectants were cocultured with cells transfected with N-cadherin only. To define the molecular domain responsible for the VE-cadherin–dominant activity we prepared a chimeric construct formed by VE-cadherin extracellular region linked to N-cadherin intracellular domain. The chimera lost the capacity to exclude N-cadherin from junctions indicating that the extracellular domain of VE-cadherin alone is not sufficient for the preferential localization of the molecule at the junctions. A truncated mutant of VE-cadherin retaining the full extracellular domain and a short cytoplasmic tail (Arg621–Pro702) lacking the catenin-binding region was able to exclude N-cadherin from junctions. This indicates that the Arg621–Pro702 sequence in the VE-cadherin cytoplasmic tail is required for N-cadherin exclusion from junctions. Competition between cadherins for their clustering at intercellular junctions in the same cell has never been described before. We speculate that, in the endothelium, VE- and N-cadherin play different roles; whereas VE-cadherin mostly promotes the homotypic interaction between endothelial cells, N-cadherin may be responsible for the anchorage of the endothelium to other surrounding cell types expressing N-cadherin such as vascular smooth muscle cells or pericytes.  相似文献   

2.
Vascular endothelial (VE) cadherin is the surface glycoprotein cadherin specific to the endothelium that mediates cell-cell adhesion and plays a major role in the remodeling, gating, and maturation of vascular vessels. To investigate the contribution of individual VE-cadherins to endothelial cell-cell interactions and investigate whether different classical cadherins display different kinetics and micromechanical properties, we characterize the binding properties of VE-cadherin/VE-cadherin bonds at single-molecule resolution and in living human umbilical vein endothelial cells (HUVECs). Our single-molecule force spectroscopy measurements reveal that type II VE-cadherin molecules form bonds that are less prone to rupture and display a higher tensile strength than bonds formed by classical type I neuronal (N) cadherin and epithelial (E) cadherin. The equilibrium lifetime of the VE-cadherin/VE-cadherin bond is significantly longer than formed by N-cadherin/N-cadherin bonds and E-cadherin/E-cadherin bonds. These results indicate that VE-cadherins form bonds that have kinetics and mechanical properties that are significantly different from those formed by classical type I cadherins, properties that are particularly well adapted to the barrier and adhesive functions of VE-cadherin in endothelial cell-cell junctions.  相似文献   

3.
Endothelial cadherins and tumor angiogenesis   总被引:7,自引:0,他引:7  
  相似文献   

4.
Vascular endothelial cadherin (VE-cadherin), a divergent member of the type II classical cadherin family of cell adhesion proteins, mediates homophilic adhesion in the vascular endothelium. Previous investigations with a bacterially produced protein suggested that VE-cadherin forms cell surface trimers that bind between apposed cells to form hexamers. Here we report studies of mammalian-produced VE-cadherin ectodomains suggesting that, like other classical cadherins, VE-cadherin forms adhesive trans dimers between monomers located on opposing cell surfaces. Trimerization of the bacterially produced protein appears to be an artifact that arises from a lack of glycosylation. We also present the 2.1-Å-resolution crystal structure of the VE-cadherin EC1-2 adhesive region, which reveals homodimerization via the strand-swap mechanism common to classical cadherins. In common with type II cadherins, strand-swap binding involves two tryptophan anchor residues, but the adhesive interface resembles type I cadherins in that VE-cadherin does not form a large nonswapped hydrophobic surface. Thus, VE-cadherin is an outlier among classical cadherins, with characteristics of both type I and type II subfamilies.  相似文献   

5.
Endothelial cells express two different classical cadherins, vascular endothelial (VE) cadherin and neural (N) cadherin, having distinct functions in the vascular system. VE-cadherin is specific to endothelial adherens junctions and is strictly necessary for vascular morphogenesis. On the contrary, N-cadherin shows diffuse localization on the cell surface and interacts with mural cells for vessel stabilization. In this study, we sought to clarify the cellular mechanisms leading to the distinct cellular locations and functions of the two cadherins in the endothelium. VE-cadherin has been shown to be responsible for the junctional exclusion of N-cadherin. Using several endothelial models, we demonstrate that this property is dependent on VE-cadherin binding to p120 catenin (p120ctn). Moreover, although in the absence of VE-cadherin N-cadherin can localize to cell contacts, angiogenesis remains impaired, demonstrating that endothelial junction formation is not sufficient for normal vessel development. Interestingly, we show that VE-cadherin, but not N-cadherin, is partially associated with cholesterol-enriched microdomains. Lipid raft-associated-VE-cadherin is characterized by a very high level of p120ctn association, and this association is necessary for VE-cadherin recruitment into lipid rafts. Altogether, our results indicate a critical role for p120ctn in regulating the membrane distribution of endothelial cadherins with functional consequences in terms of cadherin stabilization and intracellular signaling.  相似文献   

6.
Endothelial cells express two classic cadherins, VE-cadherin and N-cadherin. The importance of VE-cadherin in vascular development is well known; however, the function of N-cadherin in endothelial cells remains poorly understood. Contrary to previous studies, we found that N-cadherin localizes to endothelial cell-cell junctions in addition to its well-known diffusive membrane expression. To investigate the role of N-cadherin in vascular development, N-cadherin was specifically deleted from endothelial cells in mice. Loss of N-cadherin in endothelial cells results in embryonic lethality at mid-gestation due to severe vascular defects. Intriguingly, loss of N-cadherin caused a significant decrease in VE-cadherin and its cytoplasmic binding partner, p120ctn. The down-regulation of both VE-cadherin and p120ctn was confirmed in cultured endothelial cells using small interfering RNA to knockdown N-cadherin. We also show that N-cadherin is important for endothelial cell proliferation and motility. These findings provide a novel paradigm by which N-cadherin regulates angiogenesis, in part, by controlling VE-cadherin expression at the cell membrane.  相似文献   

7.
Cadherins are cell adhesion receptors that play important roles in embryogenesis and tissue homoeostasis. Endothelial cells express various members of the cadherin superfamily, in particular vascular endothelial (VE-) cadherin, which is the main adhesion receptor of endothelial adherens junctions and neural (N-) cadherin, which is normally localized outside the junctions and may mediate adhesion between endothelial cells and non-endothelial cells. Dysregulation of cadherin expression has been implicated in tumor progression, in particular the loss of epithelial (E-) cadherin expression or function and the gain of N-cadherin. Moreover, more recently, aberrant expression of VE-cadherin was observed in certain cancer types. In breast carcinoma, VE-cadherin was shown to promote tumor cell proliferation and invasion through enhancing TGF-β signaling. Thus, in breast cancer, the cadherin switch involves another player, vascular endothelial cadherin, which is part of an intricate interplay of classical cadherins in breast cancer progression.  相似文献   

8.
Endothelial cells express two classical cadherins, VE-cadherin and N-cadherin. VE-cadherin is absolutely required for vascular morphogenesis, but N-cadherin is thought to participate in vessel stabilization by interacting with periendothelial cells during vessel formation. However, recent data suggest a more critical role for N-cadherin in endothelium that would regulate angiogenesis, in part by controlling VE-cadherin expression. In this study, we have assessed N-cadherin function in vascular development using an in vitro model derived from embryonic stem (ES) cell differentiation. We show that pluripotent ES cells genetically null for N-cadherin can differentiate normally into endothelial cells. In addition, sprouting angiogenesis was unaltered, suggesting that N-cadherin is not essential for the early events of angiogenesis. However, the lack of N-cadherin led to an impairment in pericyte covering of endothelial outgrowths. We conclude that N-cadherin is necessary neither for vasculogenesis nor proliferation and migration of endothelial cells but is required for the subsequent maturation of endothelial sprouts by interacting with pericytes.  相似文献   

9.
Tissue morphogenesis and maintenance of complex tissue architecture requires a variety of cell-cell junctions. Typically, cells adhere to one another through cadherin junctions, both adherens and desmosomal junctions, strengthened by association with cytoskeletal networks during development. Both β- and γ-catenins are reported to link classical cadherins to the actin cytoskeleton, but only γ-catenin binds to the desmosomal cadherins, which links them to intermediate filaments through its association with desmoplakin. Here we provide the first biochemical evidence that, in vivo, γ-catenin also mediates interactions between classical cadherins and the intermediate filament cytoskeleton, linked through desmoplakin. In the developing lens, which has no desmosomes, we discovered that vimentin became linked to N-cadherin complexes in a differentiation-state specific manner. This newly identified junctional complex was tissue specific but not unique to the lens. To determine whether in this junction N-cadherin was linked to vimentin through γ-catenin or β-catenin we developed an innovative “double” immunoprecipitation technique. This approach made possible, for the first time, the separation of N-cadherin/γ-catenin from N-cadherin/β-catenin complexes and the identification of multiple members of each of these isolated protein complexes. The study revealed that vimentin was associated exclusively with N-cadherin/γ-catenin junctions. Assembly of this novel class of cadherin junctions was coincident with establishment of the unique cytoarchitecture of lens fiber cells. In addition, γ-catenin had a distinctive localization to the vertices of these hexagonally shaped differentiating lens fiber cells, a region devoid of actin; while β-catenin co-localized with actin at lateral cell interfaces. We believe this novel vimentin-linked N-cadherin/γ-catenin junction provides the tensile strength necessary to establish and maintain structural integrity in tissues that lack desmosomes.  相似文献   

10.
p120-catenin (p120) binds to the cytoplasmic tails of classical cadherins and inhibits cadherin endocytosis. Although p120 regulation of cadherin internalization is thought to be important for adhesive junction dynamics, the mechanism by which p120 modulates cadherin endocytosis is unknown. In this paper, we identify a dual-function motif in classical cadherins consisting of three highly conserved acidic residues that alternately serve as a p120-binding interface and an endocytic signal. Mutation of this motif resulted in a cadherin variant that was both p120 uncoupled and resistant to endocytosis. In endothelial cells, in which dynamic changes in adhesion are important components of angiogenesis and inflammation, a vascular endothelial cadherin (VE-cadherin) mutant defective in endocytosis assembled normally into cell–cell junctions but potently suppressed cell migration in response to vascular endothelial growth factor. These results reveal the mechanistic basis by which p120 stabilizes cadherins and demonstrate that VE-cadherin endocytosis is crucial for endothelial cell migration in response to an angiogenic growth factor.  相似文献   

11.
Endothelial cells (ECs) express VE-cadherin and N-cadherin, and recent data suggest that VE-cadherin levels are dependent on N-cadherin expression. While investigating changes in N-cadherin levels during endothelial monolayer maturation, the authors found that VE-cadherin levels are maintained in ECs despite a decrease in N-cadherin, suggesting that VE-cadherin levels may not depend on N-cadherin. Knockdown of N-cadherin did not affect VE-cadherin levels in ECs with low endogenous N-cadherin expression. Surprisingly, however, knockdown of N-cadherin in ECs with high endogenous N-cadherin expression increased VE-cadherin levels, suggesting an inverse relationship between the two. This was further supported by a decrease in VE-cadherin following overexpression of N-cadherin. Experiments in which p120, a catenin that binds N- and VE-cadherin, was knocked down or overexpressed indicate that these two cadherins compete for p120. These data demonstrate that VE-cadherin levels are not directly related to N-cadherin levels but may be inversely related due to competition for p120.  相似文献   

12.
To establish the role of vascular endothelial (VE)-cadherin in the regulation of endothelial cell functions, we investigated the effect of phosphorylation of a VE-cadherin site sought to be involved in p120-catenin binding on vascular permeability and endothelial cell migration. To this end, we introduced either wild-type VE-cadherin or Y658 phosphomimetic (Y658E) or dephosphomimetic (Y658F) VE-cadherin mutant constructs into an endothelial cell line (rat fat pad endothelial cells) lacking endogenous VE-cadherin. Remarkably, neither wild-type- nor Y658E VE-cadherin was retained at cell-cell contacts because of p120-catenin preferential binding to N-cadherin, resulting in the targeting of N-cadherin to cell-cell junctions and the exclusion of VE-cadherin. However, Y658F VE-cadherin was able to bind p120-catenin and to localize at adherence junctions displacing N-cadherin. This resulted in an enhanced barrier function and a complete abrogation of Rac1 activation and lamellipodia formation, thereby inhibiting cell migration. These findings demonstrate that VE-cadherin, through the regulation of Y658 phosphorylation, competes for junctional localization with N-cadherin and controls vascular permeability and endothelial cell migration.  相似文献   

13.
Adherens junctions, which play a central role in intercellular adhesion, comprise clusters of type I classical cadherins that bind via extracellular domains extended from opposing cell surfaces. We show that a molecular layer seen in crystal structures of E- and N-cadherin ectodomains reported here and in a previous C-cadherin structure corresponds to the extracellular architecture of adherens junctions. In all three ectodomain crystals, cadherins dimerize through a trans adhesive interface and are connected by a second, cis, interface. Assemblies formed by E-cadherin ectodomains coated on liposomes also appear to adopt this structure. Fluorescent imaging of junctions formed from wild-type and mutant E-cadherins in cultured cells confirm conclusions derived from structural evidence. Mutations that interfere with the trans interface ablate adhesion, whereas cis interface mutations disrupt stable junction formation. Our observations are consistent with a model for junction assembly involving strong trans and weak cis interactions localized in the ectodomain.  相似文献   

14.
M-cadherin is a member of the multigene family of calcium-dependent intercellular adhesion molecules, the cadherins, which are involved in morphogenetic processes. Amino acid comparisons between M-cadherin and E-, N-, and P-cadherin suggested that M-cadherin diverged phylogenetically very early from these classical cadherins. It has been shown that M-cadherin is expressed in prenatal and adult skeletal muscle. In the cerebellum, M-cadherin is present in an adherens-type junction which differs in its molecular composition from the E-cadherin-mediated adherens-type junctions. These and other findings raised the question of whether M-cadherin and the classical cadherins share basic biochemical properties, notably the calcium-dependent resistance to proteolysis, mediation of calcium-dependent intercellular adhesion, and the capability to form M-cadherin complexes with the catenins. Here we show that M-cadherin is resistant to trypsin digestion in the presence of calcium ions but at lower trypsin concentrations than E-cadherin. When ectopically expressed in LMTKcells, M-cadherin mediated calcium-dependent cell aggregation. Finally, M-cadherin was capable of forming two distinct cytoplasmic complexes in myogenic cells, either with α-catenin/β-catenin or with α-catenin/plakoglobin, as E- and N-cadherin, for example, have previously been shown to form. The relative amount of these complexes changed during differentiation from C2C12 myoblasts to myotubes, although the molecular composition of each complex was unaffected during differentiation. These results demonstrate that M-cadherin shares important features with the classical cadherins despite its phylogenetic divergence.  相似文献   

15.
Cell-cell interactions and adhesion determine cellular architectural organization, proliferation, signaling, differentiation, and death. We have identified the molecular components of different cell-cell junctions in human valve interstitial cells (ICs) both in situ and in culture. ICs were isolated, cultured, and phenotyped for cell surface and cytoplasmic markers by flow cytometry and immunocytochemistry. Western blotting was used to identify and quantify the molecular components of these cell-cell junctions in human valve ICs and compared with expression in smooth muscle and fibroblast cell types. N-cadherin and desmoglein were weakly detected on a low percentage of ICs, and the other classical cadherins were not detected. α- and β-catenin, but not γ-catenin, were expressed at equivalent levels by all valve ICs. Valve ICs did not express connexin-32 and-40; however, connexin-26 and-43 were equally expressed by a low percentage of ICs, demonstrating cell surface and cytoplasmic expression, and connexin-45 was weakly expressed. The other cell types also expressed N-cadherin, α- and β-catenin, desmoglein and connexin-43. The expression of these junctional molecules was predominantly by valve ICs on the inflow side of the valves. Human valve ICs have the ability to communicate with other valve ICs and mediate cell-cell adhesion via N-cadherin, connexin-26 and-43, and desmoglein. The junctions between valve ICs could support an interconnecting and coordinated cellular unit capable of controlling the functionality of the valve.  相似文献   

16.
Vascular endothelial cadherin (VE-cadherin/cadherin5) is specifically expressed in adherens junctions of endothelial cells and exerts important functions in cell-cell adhesion as well as signal transduction. To analyze the mechanism of VE-cadherin homoassociation, the ectodomains CAD1-5 were connected by linker sequences to the N terminus of the coiled-coil domain of cartilage matrix protein (CMP). The chimera VECADCMP were expressed in mammalian cells. The trimeric coiled-coil domain leads to high intrinsic domain concentrations and multivalency promoting self-association. Ca(2+)-dependent homophilic association of VECADCMP was detected in solid phase assays and cross-linking experiments. A striking analogy to homoassociation of type I ("classical") cadherins like E, N or P-cadherin was observed when interactions in VECADCMP and between these trimeric proteins were analyzed by electron microscopy. Ca(2+)-dependent ring-like and double ring-like arrangements suggest interactions between domains 1 and 2 of the ectodomains, which may be correlated with lateral and adhesive contacts in the adhesion process. Association to complexes composed of two VECADCMP molecules was also demonstrated by chemical cross-linking. No indication for an antiparallel association of VECAD ectodomains to hexameric complexes as proposed by Legrand et al. was found. Instead the data suggest that homoassociation of VE-cadherin follows the conserved mechanism of type I cadherins.  相似文献   

17.
M-cadherin is a classical calcium-dependent cell adhesion molecule that is highly expressed in developing skeletal muscle, satellite cells, and cerebellum. Based on its expression pattern and observations in cell culture, it has been postulated that M-cadherin may be important for the fusion of myoblasts to form myotubes, the correct localization and function of satellite cells during muscle regeneration, and the specialized architecture of adhering junctions in granule cells of cerebellar glomeruli. In order to investigate the potential roles of M-cadherin in vivo, we generated a null mutation in mice. Mutant mice were viable and fertile and showed no gross developmental defects. In particular, the skeletal musculature appeared essentially normal. Moreover, muscle lesions induced by necrosis were efficiently repaired in mutant mice, suggesting that satellite cells are present, can be activated, and are able to form new myofibers. This was also confirmed by normal growth and fusion potential of mutant satellite cells cultured in vitro. In the cerebellum of M-cadherin-lacking mutants, typical contactus adherens junctions were present and similar in size and numbers to the equivalent junctions in wild-type animals. However, the adhesion plaques in the cerebellum of these mutants appeared to contain elevated levels of N-cadherin compared to wild-type animals. Taken together, these observations suggest that M-cadherin in the mouse serves no absolutely required function during muscle development and regeneration and is not essential for the formation of specialized cell contacts in the cerebellum. It seems that N-cadherin or other cadherins can largely compensate for the lack of M-cadherin.  相似文献   

18.
In the seminiferous epithelium, morphologically diverse junctions mediate inter-Sertoli and Sertoli-germ cell adhesive contact and likely transmit signals between contacting cells. Defining the molecular composition of testicular cell-cell junctions is an important step in determining their function. Proteins belonging to the cadherin superfamily are important mediators of cell-cell adhesion, as well as cell signaling. Here, we determined the spatial and temporal protein expression of four classic cadherins in rat testis: N-cadherin, cadherin-6, cadherin-11, and a cadherin defined by an antiserum generated against a conserved classic cadherin peptide (L4). Through Western blot analysis, all antibodies recognized unique proteins. Similarly, each cadherin displayed unique, cell-type specific immunostaining patterns. Whereas N-cadherin, cadherin-11, and L4-positive cadherin were expressed from Postnatal Day 7 through adulthood, cadherin-6 protein was not present at Postnatal Day 7 and first appeared at Day 21. Immunostaining of testis cryosections on Postnatal Days 7, 21, 31, 43, and those of adults indicated that cadherin-11 localized to peritubular cell junctions. N-cadherin immunostaining localized to basal inter-Sertoli junctions, Sertoli-spermatocyte junctions, and at about stages I-VII in Sertoli-elongate spermatid junctions. Cadherin-6 immunostaining was restricted to Sertoli-round spermatid and in Sertoli-elongate spermatid junctions at approximately stages XII-I. Finally, L4-positive immunostaining also detected Sertoli-round spermatid junctions in addition to Sertoli-elongate spermatid junctions at approximately stages XII-I. These data show that the various testicular cell-cell junctions are molecularly unique and dynamic complexes.  相似文献   

19.
p0071, a member of the armadillo protein family, localizes to both adherens junctions and desmosomes in epithelial cells and exhibits homology to the adherens junction protein p120 and the desmosomal protein plakophilin-1. p0071 is also present at dermal microvascular endothelial intercellular junctions and colocalizes with VE-cadherin, an endothelium-specific cadherin that associates with both actin and intermediate filament networks. To define the role of p0071 in junction assembly, p0071 was tested for interactions with other components of the endothelial junctional complex. In transient expression assays, p0071 colocalized with and formed complexes with both VE-cadherin and desmoplakin. Deletion analysis using the yeast two-hybrid system revealed that the armadillo repeat domain of p0071 bound directly to VE-cadherin. Site-directed mutagenesis experiments demonstrated that p0071 and p120 bound to the same region on the cytoplasmic tail of VE-cadherin and that overexpression of p0071 could displace p120 from intercellular junctions. In contrast to VE-cadherin, desmoplakin was found to associate with the non-armadillo head domain of p0071. Cotransfections and triple-label immunofluorescence analysis revealed that VE-cadherin colocalization with desmoplakin in transfected COS cells required p0071, suggesting that p0071 may couple VE-cadherin to desmoplakin. Based on previous findings that both VE-cadherin and desmoplakin play central roles in vasculogenesis, these new results suggest that p0071 may play an important role in endothelial junction assembly and in the morphogenic events associated with vascular remodeling.  相似文献   

20.
Cadherin-mediated cell-cell adhesion is a dynamic process that is regulated during embryonic development, cell migration, and differentiation. Different cadherins are expressed in specific tissues consistent with their roles in cell type recognition. In this study, we examine the formation of N-cadherin-dependent cell-cell contacts in fibroblasts and myoblasts. In contrast to E-cadherin, both endogenous and ectopically expressed N-cadherin shuttles between an intracellular and a plasma membrane pool. Initial formation of N-cadherin-dependent cell-cell contacts results from the recruitment of the intracellular pool of N-cadherin to the plasma membrane. N-cadherin also localizes to the Golgi apparatus and both secretory and endocytotic vesicles. We demonstrate that the intracellular pool of N-cadherin is tightly associated with the microtubule (MT) network and that junction formation requires MTs. In addition, localization of N-cadherin to the cortex is dependent on an intact F-actin cytoskeleton. We show that N-cadherin transport requires the MT network as well as the activity of the MT-associated motor kinesin. In conclusion, we propose that N-cadherin distribution is a regulated process promoted by cell-cell contact formation, which controls the biogenesis and turnover of the junctions through the MT network.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号