首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Tamoxifen (TAM), the antiestrogenic drug most widely prescribed in the chemotherapy of breast cancer, induces changes in normal discoid shape of erythrocytes and hemolytic anemia. This work evaluates the effects of TAM on isolated human erythrocytes, attempting to identify the underlying mechanisms on TAM-induced hemolytic anemia and the involvement of biomembranes in its cytostatic action mechanisms. TAM induces hemolysis of erythrocytes as a function of concentration. The extension of hemolysis is variable with erythrocyte samples, but 12.5 microM TAM induces total hemolysis of all tested suspensions. Despite inducing extensive erythrocyte lysis, TAM does not shift the osmotic fragility curves of erythrocytes. The hemolytic effect of TAM is prevented by low concentrations of alpha-tocopherol (alpha-T) and alpha-tocopherol acetate (alpha-TAc) (inactivated functional hydroxyl) indicating that TAM-induced hemolysis is not related to oxidative membrane damage. This was further evidenced by absence of oxygen consumption and hemoglobin oxidation both determined in parallel with TAM-induced hemolysis. Furthermore, it was observed that TAM inhibits the peroxidation of human erythrocytes induced by AAPH, thus ruling out TAM-induced cell oxidative stress. Hemolysis caused by TAM was not preceded by the leakage of K(+) from the cells, also excluding a colloid-osmotic type mechanism of hemolysis, according to the effects on osmotic fragility curves. However, TAM induces release of peripheral proteins of membrane-cytoskeleton and cytosol proteins essentially bound to band 3. Either alpha-T or alpha-TAc increases membrane packing and prevents TAM partition into model membranes. These effects suggest that the protection from hemolysis by tocopherols is related to a decreased TAM incorporation in condensed membranes and the structural damage of the erythrocyte membrane is consequently avoided. Therefore, TAM-induced hemolysis results from a structural perturbation of red cell membrane, leading to changes in the framework of the erythrocyte membrane and its cytoskeleton caused by its high partition in the membrane. These defects explain the abnormal erythrocyte shape and decreased mechanical stability promoted by TAM, resulting in hemolytic anemia. Additionally, since membrane leakage is a final stage of cytotoxicity, the disruption of the structural characteristics of biomembranes by TAM may contribute to the multiple mechanisms of its anticancer action.  相似文献   

2.
Since lysosomes are prone to osmotic lysis, we have examined the correlation between their physical state and sensitivity to osmotic challenge, using agents which modify membrane fluidity. The latency loss of beta-hexosaminidase after an incubation in hypotonic sucrose medium was followed under different conditions of membrane fluidity, recorded by steady-state fluorescence anisotropy of 1,6-diphenyl-1,3, 5-hexatriene. Increasing fluidity of the lysosomal membranes with benzyl alcohol (BA) and greater rigidity caused by cholesteryl hemisuccinate (CHS) increased and decreased the enzyme latency loss, respectively. The effects of BA and CHS treatments on osmotic sensitivity were reversible subsequently by reciprocal treatments of the lysosomes with CHS and BA, respectively. The results indicate that the physical state of the membrane does indeed affect lysosomal osmotic stability.  相似文献   

3.
Razin, S. (University of Connecticut, Storrs), M. E. Tourtellotte, R. N. McElhaney, and J. D. Pollack. Influence of lipid components of Mycoplasma laidlawii membranes on osmotic fragility of cells. J. Bacteriol. 91:609-616. 1966.-Lipid composition of Mycoplasma laidlawii membranes could be significantly changed by variations in the growth medium. The effect of these changes on the osmotic fragility of the cells was studied. Cholesterol, incorporated into the membrane from the growth medium, had no significant effect on osmotic fragility. Carotenoids, synthesized by the cells from acetate, were likewise without effect. Unsaturated long-chain fatty acids increased markedly the resistance of M. laidlawii to osmotic lysis and promoted growth. The fatty acids of the growth medium were incorporated mainly into membrane phospholipids. The ratio between saturated and unsaturated fatty acids in membrane lipids depended on that of the growth medium.  相似文献   

4.
Superoxide anion, either generated during the autooxidation of dihydroxyfumaria acid or by the interaction of 1,4-naphthoquinone-2-sulfonate and intracellular hemoglobin in red cells pretreated with the intracellular superoxide dismutase inhibitor, diethyldithiocarbamate, produces structural changes in red cells hemoglobin and hypotonic lysis. No evidence for lipid peroxidation was found in red cells exposed to either 1,4 naphthoquinone-2-sulfonate in the presence of diethyldithiocarbamate or to dihydroxyfumaric acid, although the membranes of these cells exposed to either 1,4 naphthoquinone-2-sulfonate in the presence of diethyldithiocarbamate or to dihydroxyfumaric acid, although the membranes of these cells retained a green pigment. These results suggest that superoxide anion reacts with cellular hemoglobin to form hemoglobin breakdown products which bind to the red cell membrane and thereby increase the osmotic fragility of the cell.  相似文献   

5.
Alterations in red blood cell (RBC) plasma membranes, i.e. in lipids and proteins, and osmotic fragility of these cells after treatment with Proteus mirabilis O29 endotoxin (lipolysaccharide (LPS)) were examined using a spin labelling method. At the highest concentration of LPS, insignificantly decreased fluidity of membrane lipids was observed. Changes in conformation of membrane proteins were determined by two covalently bound spin labels, 4-maleimido-2,2,6,6-tetramethylpiperidine-1-oxyl (MSL) and 4-iodoacetamido-2,2,6,6-tetramethylpiperidine-1-oxyl (ISL). The analysis of spectra of MSL and ISL showed modifications in membrane proteins in red blood cells treated with the highest concentration of lipopolysaccharide. On the other hand, in the case of isolated membranes, disturbances in membrane were observed for all concentrations of LPS. The alterations in membrane lipids and proteins are paralleled in a significant rise in osmotic fragility of RBCs upon endotoxin treatment. These results provide experimental evidence that P. mirabilis O29 LPS causes deleterious changes in membranes of human red blood cells. They show that action of lipopolysaccharide mainly concerns the membrane cytoskeleton.  相似文献   

6.
Erythrocyte membranes from multiple sclerosis (MS) patients and normal individuals were studied by electron spin resonance spectroscopy, osmotic fragility tests, scanning electron microscopy (SEM) and fatty acid analysis of membrane lipids. There was no significant difference in the membrane fluidity between MS and normal erythrocytes using fatty acid spin labels with the nitroxide moiety on carbons 5, 12, or 16 from the carboxyl group. Linoleic acid, which has been reported to decrease the absolute electrophoretic mobility of only MS erythrocytes, increased the fluidity of MS and normal erythrocyte membranes to a similar extent. The osmotic fragility of MS erythrocytes obtained from outpatients was similar to normal control cells but the osmotic fragility of erythrocytes obtained from hospitalized MS patients was greater than normal. Scanning electron microscopy of MS erythrocytes revealed no gross abnormalities. Cells incubated with linoleic acid had transformed from discocytes into sphero-echinocytes with prominent membrane surface indentations but MS and normal erythrocytes appeared identical. Of the fatty acid content of the total lipid extract, erythrocytes from most, but not all, MS hospitalized patients and some patients with other demyelinating diseases had relatively less (P<.001) 18:2 than the normal cells. These results indicate that at least some of the abnormalities reported in MS erythrocytes may only be found in hospitalized patients and may be due to other complications of the disease. They also indicate that the reported abnormal effects of linoleic acid on the electrophoretic mobility of MS erythrocytes may be caused by some other mechanism than an effect on the fluidity of the bilayer.  相似文献   

7.
Among normal mouse strains, natural genetic variation offers the potential to investigate the structure and function of cell membranes. One such polymorphism between C57BL/6J and DBA/2J is a difference in erythrocyte sensitivity to osmotic lysis. The genetic basis for erythrocyte osmotic fragility differences between mouse strains C57BL/6 and DBA/2 was examined through analyses of their serial backcross progeny, recombinant inbred (ri) strains (BXD), and congenic C57BL/6 strains with allelic differences at Hbb or Fv-2. The data indicate that the fragility difference between C57BL/6 and DBA/2 is the result of allelic differences at a minimum of two segregating loci. One of these might be linked to, but is not identical with the gene encoding the beta chain of hemoglobin (Hbb). Allelic differences at Fv-2, a gene known to control the proportion of erythroid precursors in the S phase, and at Hba, the structural locus of hemoglobin alpha chain also appear to exert no major influence on red cell osmotic fragility. Furthermore, the fact that red cells from one of the RI strans (BXD-31) are strikingly more resistant than those from the resistant parental strain DBA/2 leads to the conclusion that the degree of resistance/susceptibility for either strain is determined by the combined contributions of gene effects not all of which act in the same direction. We also found that red cells from strans C57BL/6 and DBA/2 differ in their uptake of 51Cr. This result suggests the possibility that red cell osmotic fragility differences may be due in part to differences in ion metabolism or membrane transport.  相似文献   

8.
A photoaffinity probe, procaine azide, was employed to determine the sites of interaction of procaine in normal and sickle cell erythrocytes. Studies show that the number of binding sites and affinity of procaine to membranes derived from normal and sickled cell erythrocytes were similar, although procaine retards the in vitro formation of irreversibly sickled cells from cells. The results show that procaine azide, a photoaffinity analogue of procaine, is covalently incorporated into both protein (60–70%) and lipid (40–30%) components of the membrane. Sodium dodecyl sulfate-gel electrophoresis of the labeled ghosts show that procaine binds specifically to band 3 and periodic acid-Schiff staining bands in membranes derived from labeled erythrocytes. Binding of procaine or covalent incorporation of procaine azide into membrane proteins does not affect the phosphate transport. Moreover, pre-treatment of intact erythrocytes with 4,4′-diisothiocyano-2,2′-stilbene disulfonate, an anion transport inhibitor, did not affect either the binding or covalent incorporation of procaine azide into erythrocytes. These results indicate that the binding of procaine azide to Band 3 protein occurs at a locus different than that involved in anion translocation process.  相似文献   

9.
The effect of the sodium cyanate-induced carbamylation (carbamoylation) of proteins in erythrocytes was studied using spin labelling and spectrophotometric methods. The experiments were conducted in whole blood and in erythrocytes in phosphate buffer using 25 mmol/L of sodium cyanate. Lipid membrane fluidity was determined using three spin-labelled fatty acids: 5-, 12- and 16-doxylstearic acids (5-DS, 12-DS, 16-DS). Internal viscosity was measured with Tempamine, using also EPR spectroscopy. Osmotic fragility was determined spectrophotometrically. Incubation of whole blood with sodium cyanate led to an increase in lipid membrane fluidity in the deeper region of the lipid layer, indicated by 12- and 16-doxylstearic acid, and a decrease near the surface (5-DS). Statistically significant results were obtained for the internal viscosity and osmotic fragility of erythrocytes. An increase in internal viscosity and increase in osmotic fragility were found in erythrocytes after incubation of whole blood, as well as in erythrocytes incubated with sodium cyanate in buffer. Alterations in internal viscosity were stronger in erythrocytes incubated with sodium cyanate in blood than in erythrocytes in the buffer. On the other hand, higher osmotic fragility was observed for erythrocytes in the buffer.  相似文献   

10.
Band 3, a transmembrane protein that provides the anion channel of the erythrocyte plasma membrane, crosses the membrane more than once and has a large amino terminal segment exposes on the cytoplasmic side of the membrane. The biosynthesis of band 3 and the process of its incorporation into membranes were studied in vivo in erythroid spleen cells of anemic mice and in vitro in protein synthesizing cell-free systems programmed with polysomes and messenger RNA (mRNA). In intact cells newly synthesized band 3 is rapidly incorporated into intracellular membranes where it is glycosylated and it is subsequently transferred to the plasma membrane where it becomes sensitive to digestion by exogenous chymotrypsin. The appearance of band 3 in the cell surface is not contingent upon its glycosylation because it proceeds efficiently in cells treated with tunicamycin. The site of synthesis of band 3 in bound polysomes was established directly by in vitro translation experiments with purified polysomes or with mRNA extracted from them. The band-3 polypeptide synthesized in an mRNA- dependent system had the same electrophoretic mobility as that synthesized in cells treated with tunicamycin. When microsomal membranes were present during translation, the in vitro synthesized band-3 polypeptide was cotranslationally glycosylated and inserted into the membranes. This was inferred from the facts that when synthesis was carried out in the presence of membranes the product had a lower electrophoretic mobility and showed partial resistance to protease digestion. Our observations indicate that the primary translation product of band-3 mRNA is not proteolytically processed either co- or posttranslationally. It is, therefore, proposed that the incorporation of band 3 into the endoplasmic reticulum (ER) membrane is initiated by a permanent insertion signal. To account for the cytoplasmic exposure of the amino terminus of the polypeptide we suggest that this signal is located within the interior of the polypeptide. a mechanism that explains the final transmembrane disposition of band 3 in the plasma membrane as resulting from the mode of its incorporation into the ER is presented.  相似文献   

11.
Sheep red blood cells are shown to incorporate phosphatidylchline when incubated in human plasma in the presence of EGTA. This treatment results in up to a 5-fold increase in mol ratio of phosphatidylcholine to sphingomyelin. By replacing EGTA with Ca+ the increase of phsphatidylcholine content is completely inhibited, due to the activation of the membrane bound lecithinase which rapidly degrades the incorporated phosphatidylcholine. Analogous treatments of the isolate membranes resulted in similar phosphatidylcholine incorporation but in the presence of Ca+ a residual phosphatidylcholine uptake was still oberved. These results suggest that in the isolated membranes small amounts of phosphatidylcholine can be incorporated into an additional region which is unavailable for the membrane lecithinase. The increase in the phosphatidylcholine to sphingomyelin mol ratio in sheep red blood cells is concomitant with an increase in lipid fluidity, as well as increase in osmotic fragility9  相似文献   

12.
The in vitro effects of gases and temperature on the osmotic fragility of carp erythrocytes were studied. At the three different temperatures analyzed (5, 11 and 20°C) there was no noticeable modification in erythrocyte membrane osmotic resistance. Osmotic fragility of red blood cells was altered by CO2 and air treatment, as compared to the standard procedure. This suggests the need to take into account a possible moderate hypoxia that develops in the routine procedure of nucleated erythrocyte osmotic fragility tests.  相似文献   

13.
Defective cystic fibrosis (CF) transmembrane conductance regulator (CFTR)-mediated Cl(-) transport across the apical membrane of airway epithelial cells is implicated in the pathophysiology of CF lungs. A strategy to compensate for this loss is to augment Cl(-) transport through alternative pathways. We report here that partial correction of this defect could be attained through the incorporation of artificial anion channels into the CF cells. Introduction of GL-172, a synthetic analog of squalamine, into CFT1 cells increased cell membrane halide permeability. Furthermore, when a Cl(-) gradient was generated across polarized monolayers of primary human airway or Fischer rat thyroid cells in an Ussing chamber, addition of GL-172 caused an increase in the equivalent short-circuit current. The magnitude of this change in short-circuit current was ~30% of that attained when CFTR was maximally stimulated with cAMP agonists. Patch-clamp studies showed that addition of GL-172 to CFT1 cells also increased whole cell Cl(-) currents. These currents displayed a linear current-voltage relationship and no time dependence. Additionally, administration of GL-172 to the nasal epithelium of transgenic CF mice induced a hyperpolarization response to perfusion with a low-Cl(-) solution, indicating restoration of Cl(-) secretion. Together, these results demonstrate that in CF airway epithelial cells, administration of GL-172 is capable of partially correcting the defective Cl(-) secretion.  相似文献   

14.
Hereditary hemolytic anemias originate mainly from defects in hemoglobin and plasma membrane proteins. Here, we propose a new method, thermal analysis of impedance, sensitive to membrane defects. It detects three processes in erythrocyte membrane; fall in membrane capacity at 49.5 degrees C and activation of passive PO(4)(2+) permeability at 37 degrees C and inorganic ions at 61.5 degrees C. The denaturation of spectrin is involved in the first process whilst the anion channel is involved in latter processes. Using this method three persons with xerocytosis were found whereby the fall in membrane capacity and spherization of erythrocytes were both postponed (53 degrees C) compared to control (49.5 degrees C). In contrast to control cells, strong activation of passive permeability for Cl(-) at 37 degrees C and sucrose at 61 degrees C were detected that were both eliminated by pre-inhibition of the anion channel with 4,4'-diisothiocyanato-stilbene-2,2'-disulfonic acid (DIDS). In addition, erythrocytes from 15 patients with various forms of anemia were studied in intact state and after refreshment. The results were compared with the data of clinical laboratory and osmotic fragility test. The final conclusion is that this method detects membrane defects with altered spectrin and anion channel syndrome (hereditary xerocytosis, spherocytosis, poikilocytosis and pyropoikilocytosis, elliptocytosis and stomatocytosis) and, after refreshment, helps differentiate them from the anemia with hemoglobinopathy.  相似文献   

15.
Experiments were designed to determine whether band 3, the anion transport protein of the red cell membrane, contains a mobile element that acts as a carrier to move the anions across a permeability barrier. The transport site-specific, nonpenetrating irreversible inhibitor 4,4'-diisothiocyano-2,2'-stilbene disulfonate (DIDS) was found to be effective only when applied extracellularly. It was used to sequester transport sites on the extracellular side of the membrane in intact cells. The membranes were then coverted into inside-out vesicles. The number of anion transport sites available on the cytoplasmic side of the vesicle membranes was then estimated by measuring the binding of N-(-4-azido-2-nitrophenyl)-2-aminoethyl-sulfonate (NAP-taurine), a photoreactive probe. Pretreatment with DIDS from the extracullular side substantially reduced the binding of NAP-taurine at the cytoplasmic side. Since NAP-taurine does not appear to penetrate into the intravesicular (normally extracellular) space, a transmembrane effect is apparently involved. About 70% of the DIDS-sensitive NAP-taurine binding sites are located in band 3, with the remainder largely in a lower molecular weight (band 4) region. A similar pattern of reduction in NAP-taurine binding is produced by high concentrations of Cl-, but this anion has little or no effect in vesicles from cells pretreated with DIDS. Thus the DIDS-modulated sites seem to be capable of binding either NAP-taurine or Cl. It is suggested that band 3 contains a mobile transport element that can be recruited to the extracellular surface by DIDS, thus becoming unavailable to NAP-taurine at the cytoplasmic face of the membrane. The results are consistent with a model of carrier-mediated transport in which the movement of the transport site is associated with a local conformational change in band 3 protein.  相似文献   

16.
The effect of lipopolysaccharide (LPS, endotoxin), isolated from Proteus mirabilis S1959 strain, on red blood cell (RBC) membranes in whole cells as well as on isolated membranes was studied. Lipid membrane fluidity, conformational state of membrane proteins and the osmotic fragility of RBCs were examined using electron paramagnetic resonance spectroscopy and spectrophotometric method. Lipid membrane fluidity was determined using three spin-labeled fatty acids: 5-, 12- and 16-doxylstearic acid (5-, 12- and 16-DS). The addition of LPS S1959 to RBC suspension resulted in an increase in membrane fluidity, as indicated by 12-DS. At the concentrations of 0.5 and 1 mg/ml, LPS treatment led to a significant (P<0.05) increase in lipid membrane fluidity in the deeper region of lipid bilayer (determined by 12-DS). The conformational changes in membrane proteins were determined using two covalently bound spin labels, 4-maleimido-2,2,6,6-tetramethylpiperidine-1-oxyl and 4-iodoacetamido-2,2,6,6-tetramethylpiperidine-1-oxyl (ISL). The highest concentration of endotoxin significantly (P<0.05) decreased the relative rotational correlation time of ISL and significantly (P<0.05) increased the osmotic fragility of RBCs. The effect of endotoxin was much more profound in isolated membranes than in intact cells treated with LPS. At the concentrations 0.5 and 1 mg/ml, LPS led to a significant increase in h(w)/h(s) ratio. These results indicated increased membrane protein mobility, mainly in the spectrin-actin complex in membrane cytoskeleton. These data suggest that LPS-induced alterations in membrane lipids and cytoskeleton proteins of RBCs lead to loss of membrane integrity.  相似文献   

17.
Irradiated porcine erythrocytes demonstrated increased osmotic fragility, which was enhanced by the addition of anions. The extent of the damage produced by the secondary radicals depended on the kind of anion and conditions of irradiation. The most pronounced changes occurred in the presence of azide, whereas bromide and thiocyanate gave rise to a smaller enhancement of osmotic fragility. Irradiation of cells in air or N2O revealed that radical anions have more damaging effects on porcine erythrocytes in air.  相似文献   

18.
Freeze-fracturing of cholesterol-rich Mycoplasma gallisepticum membranes from cells grown in a medium containing horse serum revealed particle-free patches. The patches appeared in cells quenched from either 4 or 37 degrees C. Particle-free patches also occurred in membranes of cells grown in a serum-free medium supplemented with egg-phosphatidylcholine but not in membranes of cells grown with dioleoylphosphatidylcholine. The appearance of particle-free patches was attributed to the presence of disaturated phosphatidylcholine (PC) molecules in M. gallisepticum membranes, which were synthesized by the insertion of a saturated fatty acid at position 2 of lysophosphatidylcholine derived from exogenous PC present in the growth medium. Consequences of the synthesis of the disaturated PC also included a decrease in osmotic fragility and the ability of the cells to be permeated by K+. Electron paramagnetic resonance and fluorescence polarization measurements revealed that the fluidity of the lipid domain in the protein-rich M. gallisepticum membranes was almost identical to that of an aqueous dispersion of M. gallisepticum membrane lipids. Furthermore, the electron paramagnetic resonance spectra of the membranes were single-component spectra showing no indication of immobilized regions. The possibility that the osmotic resistance of M. gallisepticum cells is associated with the particle-free patches rather than with a restricted membrane fluidity caused by membrane proteins is discussed.  相似文献   

19.
Sheep red blood cells are shown to incorporate phosphatidylcholine when incubated in human plasma in the presence of EGTA. This treatment results in up to a 5-fold increase in mol ratio of phosphatidylcholine to sphingomyelin. By replacing EGTA with Ca2+ the increase of phosphatidylcholine content is completely inhibited, due to the activation of the membrane bound lecithinase which rapidly degrades the incorporated phosphatidylcholine. Analogous treatments of the isolated erythrocyte membranes resulted in similar phosphatidylcholine incorporation but in the presence of Ca2+ a residual phosphatidylcholine uptake was still observed. These results suggest that in the isolated membranes small amounts of phosphatidylcholine can be incorporated into an additional region which is unavailable for the membrane lecithinase. The increase in the phosphatidylcholine to sphingomyelin mol ratio in sheep red blood cells is concomitant with an increase in lipid fluidity, as well as increase in osmotic fragility.  相似文献   

20.
Summary The anion transport domain of the anion exchange protein (AEP) of human erythrocyte membranes (band 3, 95 kD mol wt) was probed with the substrate and affinity label pyridoxal-5-phosphate (PLP). Acting from outside, this probe labels two chymotryptic fragments of 65 and 35 kD of AEP but only the 35-kD fragment is protected from labeling by reversibly acting disulfonic stilbenes (DS). It is shown here by functional studies and by immunoblotting with anti-PLP antibodies that transmembrane gradients of anions determine the availability of a 35-kD fragmentlys residue to surface labeling by PLP, in analogy with their effects on labeling of 65-kD fragment by DS. On this basis, it is suggested that both fragments contribute to the formation of the transport domain. However, unlike DS, PLP blocks transport when reacted from within resealed membranes, indicating that the 35-kD fragment might contain components of the mobile unit of the AEP. Using impermeant fluorescence quenchers of PLP of both complexation type (anti-PLP antibodies) or collisional type (acrylamide) as topological probes for PLP-labeled sites, it is deduced that the 65-kD PLP-labeled and the 35-kD PLP-labeledlys groups are inaccessible to macromolecules from either surface, but the 65-kD PLP-lys is accessible to low molecular weight molecules from without while the 35-kD PLP-labeledlys shows accessibility primarily from within the cell surface. The studies indicate that the accommodation of a wide class of anions by AEP might be associated with the flexibility of the transport domain of the protein and its capacity to undergo transport-related conformational changes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号