首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Corynebacterium glutamicum, a gram-positive soil bacterium, has been regarded as an aerobe because its growth by fermentative catabolism or by anaerobic respiration has, to this date, not been demonstrated. In this study, we report on the anaerobic growth of C. glutamicum in the presence of nitrate as a terminal electron acceptor. C. glutamicum strains R and ATCC13032 consumed nitrate and excreted nitrite during growth under anaerobic, but not aerobic, conditions. This was attributed to the presence of a narKGHJI gene cluster with high similarity to the Escherichia coli narK gene and narGHJI operon. The gene encodes a nitrate/nitrite transporter, whereas the operon encodes a respiratory nitrate reductase. Transposonal inactivation of C. glutamicum narG or narH resulted in mutants with impaired anaerobic growth on nitrate because of their inability to convert nitrate to nitrite. Further analysis revealed that in C. glutamicum, narK and narGHJI are cotranscribed as a single narKGHJI operon, the expression of which is activated under anaerobic conditions in the presence of nitrate. C. glutamicum is therefore a facultative anaerobe.  相似文献   

2.
The respiratory chain of Corynebacterium glutamicum was investigated, especially with respect to a cyanide-resistant respiratory chain bypass oxidase. The membranes of C. glutamicum had NADH, succinate, lactate, and NADPH oxidase activities, and menaquinone, and cytochromes a 598, b 562(558), and c 550 as respiratory components. The NADH, succinate, lactate, and NADPH oxidase systems, all of which were more cyanide-resistant than N,N,N′,N′-tetramethyl-p-phenylene diamine oxidase activity (cytochrome aa 3 terminal oxidase), had different sensitivities to cyanide; the cyanide sensitivity of these oxidase systems increased in the order, NADPH, lactate, NADH, and succinate. Taken together with the analysis of redox kinetics in the cytochromes and the effects of respiratory inhibitors, the results suggested that there is a cyanide-resistant bypass oxidase branching at the menaquinone site, besides cyanide-sensitive cytochrome oxidase in the respiratory chain. H+/O measurements with resting cells suggested that the cyanide-sensitive respiratory chain has two or three coupling sites, of which one is in NADH dehydrogenase and the others between menaquinone and cytochrome oxidase, but the cyanide-resistant bypass oxidase may not have any proton coupling site. NADPH and lactate oxidase systems were more resistant to UV irradiation than other systems and the UV insensitivity was highest in the NADPH oxidase system, suggesting that a specific quinone resistant to UV or no such a quinone works in at least NADPH oxidase system while the UV-sensitive menaquinone pool does in other oxidase systems. Furthermore, superoxide was generated in well-washed membranes, most strongly in the NADPH oxidase system. Thus, it was suggested that the cyanide-resistant bypass oxidase system of C. glutamicum is related to the NADPH oxidase system, which may be involved in generation of superoxide anions and probably functions together with superoxide dismutase and catalase.  相似文献   

3.
The function of type II NADH dehydrogenase (NDH-2) in Gram-positive Corynebacterium glutamicum was investigated by preparing strains with ndh, the NDH-2 gene, disrupted and over-expressed. Although disruption showed no growth defects on glucose minimum medium, the growth rate of the over-expressed strain was lower compared with its parent, C. glutamicum KY9714. Ndh-disruption and over-expression did not lead to a large change in the respiratory chain and energetics, including the cytochrome components and the H+/O ratio. However, in the strain that lacked NDH-2, membrane l-lactate oxidase activity increased, while NDH-2 over-expression led to decreased l-lactate and malate oxidase activities. In addition, relatively high cytoplasmic lactate dehydrogenase (LDH) activity was always present as was malate dehydrogenase, irrespective of NDH-2 level. Furthermore, l-lactate or malate-dependent NADH oxidase activity could be reproduced by reconstitution with the membranes and the cytoplasmic fraction isolated from the disruptant. These results suggest that coupling of LDH and the membrane l-lactate oxidase system, together with the malate-dependent NADH oxidase system, operates to oxidize NADH when the NDH-2 function is defective in C. glutamicum.  相似文献   

4.
The nature of the carbon monoxide- and oxygen-reacting haemoproteins in the respiratory chain of the filamentous antibiotic-producing bacterium Streptomyces clavuligerus has been investigated. CO-difference (i.e. CO+ reduced minus reduced) spectra of intact cells showed the presence of cytochrome aa 3, a CO binding b-type cytochrome, and a pigment resembling cytochrome d. In addition, cells that were approaching the end of the growth phase showed the presence of cytochrome P450: this pigment was undetectable in cells harvested early in the growth cycle. High speed centrifugation of cell-free extracts prepared from cells broken by sonication showed that cytochrome aa 3 was tightly membrane-bound and that cytochrome P450 was soluble. Inhibition of oxygen uptake rates of cells by cyanide indicated that one component, which showed 50% inhibition at 2–4 mM CN, was acting as major terminal oxidase: this was observed in cells harvested from all stages of growth. Photodissociation (i. e. photolysed, CO reduced minus CO reduced) spectra at-118°C, in the absence of oxygen, showed cytochrome aa 3 to be the sole photolysable CO-reacting haemoprotein. At higher temperature (-87°C), in the presence of oxygen, cytochrome aa 3 formed a complex with oxygen that could not be photolysed by similar intensities of light. By raising the temperature to-43°C, the oxidation of c-type cytochromes was observed. It is concluded that cytochrome aa 3 is the predominant terminal oxidase in S. clavuligerus and that the other CO reacting haemoproteins, of unknown function, are unlikely to be oxidases.  相似文献   

5.
Brochothrix thermosphacta, grown in batch culture in a yeast-dextrose broth, at temperatures from 30 °C to 10 °C, contained diverse membrane-bound respiratory cytochromes. Under conditions of moderate aeration, cytochromes of the a-, b- and d-type were detected at all growth temperatures, but the proportions changed as a function of temperature, with the spectra of cells grown at 10 or 15 °C being dominated by a-type cytochrome(s). Cytochrome a 3 was detected by its reactions with CO and cyanide in cells from all growth conditions. An additional cytochrome a, which was not cyanide-reactive, was also detected, suggesting the presence of an aa 3 oxidase complex. Cytochrome d was cyanide- and CO-reactive, but not detectable in photodissociation spectra, presumably because of the very rapid recombination of CO at the sub-zero temperatures used. Decreasing the oxygen transfer rates to batch cultures resulted in enhanced expression of cytochrome d and changed the proportion of the aa 3-type oxidase that could be attributed to ligand-binding cytochrome a 3; at the lowest oxygen transfer rates, no cytochrome a was detected, suggesting the presence of a cytochrome ba 3 terminal oxidase complex. Intact cells showed no evidence of a c-type cytochrome and no haem C was detected in membrane preparations. After growth at 10°C, the cytochrome composition of B. campestris was essentially identical to that of B. thermosphacta. The multiplicity of putative terminal oxidases in B. thermosphacta is discussed.  相似文献   

6.
A part of the gene encoding cbb 3-type cytochrome oxidase CcoN subunit was cloned from Azotobacter vinelandii and a mutant strain of this bacterium with disrupted ccoN gene was constructed. In contrast to the wild type strain, this one is unable to oxidize cytochromes c 4 and c 5. Thus, the A. vinelandii respiratory chain is shown to contain cbb 3-type cytochrome c oxidase. It is also shown that the activity of this enzyme is not necessary for diazotrophic growth of A. vinelandii at high oxygen concentrations.  相似文献   

7.
Caffeine (1,3,7-trimethylxanthine), a ubiquitous component of human diet has been suggested as a chemical indicator of ecosystem impacts of sewage spills and treated effluent discharges because it is not sufficiently metabolized by wastewater microorganisms. This study identified enzymes responsible for caffeine metabolism in sewage bacteria. Pseudomonas putida biotype A (ATCC 700097) originally isolated as a rare caffeine-degrading organism in domestic wastewater exhibited diauxic growth on caffeine, concomitant with the expression of a P450-type cytochrome and peroxidase enzyme activities. Initial growth phase lasted 13.8 ± 1.4 h with a growth rate that was five times slower than the secondary growth phase that lasted 5.5 ± 1.2 h. Molecular and enzymatic characteristics of the cytochrome P450-type enzyme differ from the previously described cytochrome P450 (P450cam) of P. putida (ATCC 17453) involved in camphor metabolism. The caffeine-inducible cytochrome P450-type enzyme exhibited a carbon monoxide difference spectrum peak at 450 nm, but does not allow growth on camphor. Caffeine induced production of haem-associated peroxidase activity was confirmed with 3,3, 5,5-tetramethylbenzidine–H2O2 reaction in polyacrylamide gels. Polymerase chain reaction (PCR) primers derived from the gene for cytochrome P450cam (camC) of P. putida (ATCC 17453) did not yield an amplification product when DNA extracted from P. putida strain ATCC 700097 was used as template. The data demonstrate that caffeine is metabolized through a specific biphasic pathway driven by oxygen-demanding enzymes.  相似文献   

8.
A genetic locus, encoding putative acyltransferase, was induced by autoinducers in Corynebacterium glutamicum. The autoinducers were maximally produced by the bacterium after 24 h culture. Those molecules are resistant to proteinase K treatment (300 μg ml−1) for 30 min at 37°C or at 121°C for 15 min, and remained stable after extensive storage at 4°C. Autoinducers in the cell-free culture fluids from Corynebacterium ammoniagenes and Pseudomonas aeruginosa also induced the expression of acyltransferase in C. glutamicum, suggesting possible cross-recognition of the autoinducers by C. glutamicum. C. glutamicum thus possesses an autoinduction system which secretes autoinducers during growth, triggering the expression of downstream genes, exemplified by the putative acyltransferase gene.  相似文献   

9.
10.
Informational structure of cytochrome c was investigated using the ANIS method (Analysis of Informational Structure Method). Mutant variants of cytochrome c gene were constructed on the basis of data from the ANIS method. The mutations carry substitutions reducing electron-transport activity of cytochrome c in the mitochondrial respiratory chain. These mutant genes were obtained and expressed in the bacterial system. The biological activity of the obtained cytochrome c mutant variants interacting with complexes III and IV of the respiratory chain in the system of rat liver mitoplasts.  相似文献   

11.
12.
The genome of Corynebacterium glutamicum ATCC 13032 contains two genes, rpf1 and rpf2, encoding proteins with similarities to the essential resuscitation-promoting factor (Rpf) of Micrococcus luteus. Both the Rpf1 (20.4 kDa) and Rpf2 (40.3 kDa) proteins share the so-called Rpf motif, a highly conserved protein domain of approximately 70 amino acids, which is also present in Rpf-like proteins of other gram-positive bacteria with a high G+C content of the chromosomal DNA. Purification of the C. glutamicum Rpf2 protein from concentrated supernatants, SDS-PAGE and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry identified modified Rpf2 variants with increased or reduced mobility when compared with the calculated size of Rpf2. A Western blot-based enzyme immunoassay demonstrated glycosylation of the Rpf2 variants with higher molecular masses. Galactose and mannose were identified as two components of the oligosaccharide portion of the Rpf2 glycoprotein by capillary gas chromatography coupled to mass spectrometry. The Rpf2 protein was localized on the surface of C. glutamicum with the use of immuno-fluorescence microscopy. C. glutamicum strains with defined deletions in the rpf1 or rpf2 gene or simultaneous deletions in both rpf genes were constructed, indicating that the rpf genes are neither individually nor collectively essential for C. glutamicum. The C. glutamicum rpf double mutant displayed slower growth and a prolonged lag phase after transfer of long-stored cells into fresh medium. The addition of supernatant from exponentially growing cultures of the rpf double mutant, the wild type or C. glutamicum strains with increased expression of the rpf1 or rpf2 gene significantly reduced the lag phase of long-stored wild-type and rpf single mutant strains, but addition of purified His-tagged Rpf1 or Rpf2 did not. In contrast, the lag phase of the C. glutamicum rpf double mutant was not affected upon addition of these culture supernatants.  相似文献   

13.
14.
15.
The class II fructose-1,6-bisphosphatase gene of Corynebacterium glutamicum, fbp, was cloned and expressed with a N-terminal His-tag in Escherichia coli. Purified, His-tagged fructose-1,6-bisphosphatase from C. glutamicum was shown to be tetrameric, with a molecular mass of about 140 kDa for the homotetramer. The enzyme displayed Michaelis-Menten kinetics for the substrate fructose 1,6-bisphosphate with a Km value of about 14 µM and a Vmax of about 5.4 µmol min–1 mg–1 and kcat of about 3.2 s–1. Fructose-1,6-bisphosphatase activity was dependent on the divalent cations Mg2+ or Mn2+ and was inhibited by the monovalent cation Li+ with an inhibition constant of 140 µM. Fructose 6-phosphate, glycerol 3-phosphate, ribulose 1,5-bisphosphate and myo-inositol-monophosphate were not significant substrates of fructose-1,6-bisphosphatase from C. glutamicum. The enzymatic activity was inhibited by AMP and phosphoenolpyruvate and to a lesser extent by phosphate, fructose 6-phosphate, fructose 2,6-bisphosphate, and UDP. Fructose-1,6-bisphosphatase activities and protein levels varied little with respect to the carbon source. Deletion of the chromosomal fbp gene led to the absence of any detectable fructose-1,6-bisphosphatase activity in crude extracts of C. glutamicum WTfbp and to an inability of this strain to grow on the carbon sources acetate, citrate, glutamate, and lactate. Thus, fbp is essential for growth on gluconeogenic carbon sources and likely codes for the only fructose-1,6-bisphosphatase in C. glutamicum.  相似文献   

16.
17.
18.
《FEMS microbiology letters》1998,167(2):171-177
The sequence of the cyc1 gene encoding the Thiobacillus ferrooxidans ATCC 33020 c552 cytochrome, shows that this cytochrome is a 21-kDa periplasmic c4-type cytochrome containing two similar monohaem domains. The kinetics of reduction and the fact that cytochromes c4 are considered to be physiological electron donors of cytochrome oxidases suggest that the last steps of the iron respiratory chain are: rusticyanin→cytochrome c4→cytochrome oxidase. In Thiobacillus ferrooxidans, cyc1 is co-transcribed with the cyc2 gene, encoding a high-molecular-mass monohaem cytochrome c. This suggests that the cytochromes encoded by these genes belong to the same electron transfer chain.  相似文献   

19.
The genes for a new type of a haem-copper cytochrome oxidase were cloned from Rhodobacter capsulatus strain 37b4, using the Bradyrhizobium japonicum fixNOQP gene region as a hybridizing probe. Four genes, probably organized in an operon (ccoNOQP), were identified; their products share extensive amino acid sequence similarity with the FixN, O, Q and P proteins that have recently been shown to be the subunits of a cb-type oxidase. CcoN is a c-type cytochrome, CcoO and CcoP are membrane-bound mono- and dihaem c-type cytochromes and CcoQ is a small membrane protein of unknown function. Genes for a similar oxidase are also present in other non-rhizobial bacterial species such as Azoto-bacter vinelandii, Agrobacterium tumefaciens and Pseudomonas aeruginosa, as revealed by polymerase chain reaction analysis. A ccoN mutant was constructed whose phenotype, in combination with the structural information on the gene products, provides evidence that the CcoNOQP oxidase is a cytochrome c oxidase of the cb type, which supports aerobic respiration in R. capsulatus and which is probably identical to the cbb3-type oxidase that was recently purified from a different strain of the same species. Mutant analysis also showed that this oxidase has no influence on photosynthetic growth and nitrogen-fixation activity.  相似文献   

20.
Molecular access to amino acid excretion by Corynebacterium glutamicum and Escherichia coli led to the identification of structurally novel carriers and novel carrier functions. The exporters LysE, RhtB, ThrE and BrnFE each represent the protoype of new transporter families, which are in part distributed throughout all of the kingdoms of life. LysE of C. glutamicum catalytes the export of basic amino acids. The expression of the carrier gene is regulated by the cell-internal concentration of basic amino acids. This serves, for example, to maintain homoeostasis if an excess of l-lysine or l-arginine inside the cell should arise during growth on complex media. RhtB is one of five paralogous systems in E. coli, of which at least two are relevant for l-threonine production. A third system is relevant for l-cysteine production. It is speculated that the physiological function of these paralogues is related to quorum sensing. ThrE of C. glutamicum exports l-threonine and l-serine. However, a ThrE domain with a putative hydrolytic function points to an as yet unknown role of this exporter. BrnFE in C. glutamicum is a two-component permease exporting branched-chained amino acids from the cell, and an orthologue in B. subtilis exports 4-azaleucine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号