首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Plasmids containing two inverted 0.6-kb stretches of human telomeric repeats transform Aspergillus nidulans at frequencies characteristic of autonomously replicating vectors. Transformation frequency is not affected when the plasmids are linearized in vitro prior to transformation by cutting between the inverted repeats. Southern analysis reveals the presence of a homogeneous pool of linear plasmid molecules in mycelium of transformants. Addition of the AMA1 plasmid replicator to the telomere-containing plasmids has only a minor effect on transformation. The phenotypic stability of the transformants is low. However, unlike conventional replicative transformants containing AMA1-bearing plasmids, these transformants are prone to spontaneous stabilization which occurs predominantly by conversion of the mutant chromosomal allele of the marker gene to the plasmid-borne allele. The data strongly suggest that telomeric DNA can act as a plasmid replicator. An alternative interpretation is that autonomous replication of linear DNA fragments, in contrast to covalently closed supercoiled molecules, does not require any special replicator sequences. Received: 13 January 1998 / Accepted: 10 June 1998  相似文献   

2.
Plasmids containing two inverted 0.6-kb stretches of human telomeric repeats transform Aspergillus nidulans at frequencies characteristic of autonomously replicating vectors. Transformation frequency is not affected when the plasmids are linearized in vitro prior to transformation by cutting between the inverted repeats. Southern analysis reveals the presence of a homogeneous pool of linear plasmid molecules in mycelium of transformants. Addition of the AMA1 plasmid replicator to the telomere-containing plasmids has only a minor effect on transformation. The phenotypic stability of the transformants is low. However, unlike conventional replicative transformants containing AMA1-bearing plasmids, these transformants are prone to spontaneous stabilization which occurs predominantly by conversion of the mutant chromosomal allele of the marker gene to the plasmid-borne allele. The data strongly suggest that telomeric DNA can act as a plasmid replicator. An alternative interpretation is that autonomous replication of linear DNA fragments, in contrast to covalently closed supercoiled molecules, does not require any special replicator sequences.  相似文献   

3.
Eukaryotic chromosomal DNA replication is initiated by a highly conserved set of proteins that interact with cis-acting elements on chromosomes called replicators. Despite the conservation of replication initiation proteins, replicator sequences show little similarity from species to species in the small number of organisms that have been examined. Examination of replicators in other species is likely to reveal common features of replicators. We have examined a Kluyeromyces lactis replicator, KARS12, that functions as origin of DNA replication on plasmids and in the chromosome. It contains a 50-bp region with similarity to two other K. lactis replicators, KARS101 and the pKD1 replication origin. Replacement of the 50-bp sequence with an EcoRI site completely abrogated the ability of KARS12 to support plasmid and chromosomal DNA replication origin activity, demonstrating this sequence is a common feature of K. lactis replicators and is essential for function, possibly as the initiator protein binding site. Additional sequences up to 1 kb in length are required for efficient KARS12 function. Within these sequences are a binding site for a global regulator, Abf1p, and a region of bent DNA, both of which contribute to the activity of KARS12. These elements may facilitate protein binding, protein/protein interaction and/or nucleosome positioning as has been proposed for other eukaryotic origins of DNA replication.  相似文献   

4.
    
We describe a new method of gene cloning by complementation of mutant alleles which obviates the need for construction of a gene library in a plasmid vector in vitro and its amplification in Escherichia coli. The method involves simultaneous transformation of mutant strains of the fungus Aspergillus nidulans with (i) fragmented chromosomal DNA from a donor species and (ii) DNA of a plasmid without a selectable marker gene, but with a fungal origin of DNA replication (helper plasmid). Transformant colonies appear as the result of the Joining of chromosomal DNA fragments carrying the wild-type copies of the mutant allele with the helper plasmid. Joining may occur either by ligation (if the helper plasmid is in linear form) or recombination (if it is cccDNA). This event occurs with high efficiency in vivo, and generates an autonomously replicating plasmid cointegrate. Transformants containing Penicillium chrysogenum genomic DNA complementing A. nidulans niaD, nirA and argB mutations have been obtained. While some of these cointegrates were evidently rearranged or consisted only of unaltered replicating plasmid, in other cases plasmids could be recovered into E. coli and were subsequently shown to contain the selected gene. The utility of this instant gene bank technique is demonstrated here by the molecular cloning of the P. canescens trpC gene.  相似文献   

5.
The AMA1 sequence is an efficient plasmid replicator and transformation enhancer in Aspergillus nidulans. It comprises two long perfect inverted repeats (MATE elements) flanking a short, unique, central spacer. Subclone analysis indicates that the complete inverted duplication, but not the unique central spacer, is necessary for efficient plasmid replication. The smallest fragments able to affect transformation efficiency lie within the AT-rich portions of the inverted repeats. We demonstrate that two or more copies of the repeat in any relative orientation are able to perform the replicator function. A single copy of a MATE element increases transformation frequency to a modest extent but leads to multiple rearrangement, unstable integration or concatenation of vector molecules. Multimeric concatenates generated during this process are more stable mitotically, and when reisolated, transform the fungus at a much higher frequency than the original monomeric vector. Selection for multiple copies leads to the accumulation of multimeric products which resemble amplified DNA in various eukaryotic systems.  相似文献   

6.
Summary Shuttle cloning vectors, capable of replication in Escherichia coli and in the cyanobacterium Anacystis nidulans R2, have been used to localize a putative origin of replication of the large endogenous plasmid (pANL) of A. nidulans R2. Utilizing the cloning flexiblity of the polylinker containing E. coli plasmid pDPL 13, we have constructed a series of deletion derivatives of a 11.7 kilobase segment of pANL believed to contain a functional origin of replication. Two distinct segments of pANL that are 5.7 and 4.7 kilobases in size carry sufficient information to support transformation of A. nidulans R2. These DNA fragments, designated by us ORI 1 and ORI 2, do not overlap and show no DNA homology by blot hybridization analysis. Additionally, neither of these fragments are homologous to the replication origin of the other endogenous plasmid (pANS) of A. nidulans R2. Intact hybrid plasmids capable of transforming A. nidulans R2 have been re-isolated from transformed cells indicating that these plasmids exist autonomously in both A. nidulans R2 and E. coli.Dedicated to Professor Georg Melchers to celebrate his 50-year association with the journal  相似文献   

7.
Summary An Aspergillus nidulans gene library was constructed in a high-frequency transformation vector, pDJB3, based on the Neurospora crassa pyr4 gene. This gene library was used to isolate the structural gene for isocitrate lyase (acuD) by complementation of a deficiency mutation following transformation of A. nidulans. Plasmids rescued in Escherichia coli were able to transform five different A. nidulans acuD mutants. Transformation using plasmids containing the cloned fragment resulted in integration at the acuD locus in six of nine transformants.  相似文献   

8.
A heterologous transformation system was developed for V. lecanii based on the complementation of a nitrate reductase mutant. Nitrate reductase mutants were obtained by resistance to chlorate in a rate of 23.24% when compared to other mutations that lead to the chlorate resistance. Mutant no. 01 and 04 was chosen for the transformation experiments. Plasmid pBT was used as transformation vector containing the Aspergillus nidulans nitrate reductase gene. A frequency of approximately 3 transformants/μg DNA was obtained using the circular vector pBT. The establishment of a transformation system for V. lecanii is fundamental for genetic manipulation of this microorganism.  相似文献   

9.
Natural transformation of plasmids by Pseudomonas stutzeri was found to depend on their bearing inserts of chromosomal DNA. A set of plasmids derived from the nonconjugative broad host range plasmid pSa151 was constructed by integrating various chromosomal DNA fragments into the single EcoR1 site of pSa151. Selection for the kanamycin resistance determined by pSa151 demonstrated that the derivative plasmids were taken into the cells by natural transformation and stably maintained; each could be reisolated unchanged. Thirty-two different derivative plasmids, 14 to 31 kbase pairs in size, all transformed. The frequency of transformation increased with the size of the chromosomal insert over a twenty fold range. These results suggest that the mechanism of transformation of plasmids by the Gram-negative P. stutzeri is similar to those proposed to operate in Gram-positive bacteria.Dedicated to Prof. Dr. H.-G. Schlegel on the occasion of his 60 th birthday  相似文献   

10.
11.
We describe a new method of gene cloning by complementation of mutant alleles which obviates the need for construction of a gene library in a plasmid vector in vitro and its amplification in Escherichia coli. The method involves simultaneous transformation of mutant strains of the fungus Aspergillus nidulans with (i) fragmented chromosomal DNA from a donor species and (ii) DNA of a plasmid without a selectable marker gene, but with a fungal origin of DNA replication (‘helper plasmid’). Transformant colonies appear as the result of the Joining of chromosomal DNA fragments carrying the wild-type copies of the mutant allele with the helper plasmid. Joining may occur either by ligation (if the helper plasmid is in linear form) or recombination (if it is cccDNA). This event occurs with high efficiency in vivo, and generates an autonomously replicating plasmid cointegrate. Transformants containing Penicillium chrysogenum genomic DNA complementing A. nidulans niaD, nirA and argB mutations have been obtained. While some of these cointegrates were evidently rearranged or consisted only of unaltered replicating plasmid, in other cases plasmids could be recovered into E. coli and were subsequently shown to contain the selected gene. The utility of this “instant gene bank” technique is demonstrated here by the molecular cloning of the P. canescens trpC gene.  相似文献   

12.
Two transformation systems, based on the use of CaCl2/PEG and Agrobacterium tumefaciens, respectively, were developed for the zygomycete Rhizopus oryzae. Irrespective of the selection marker used, a pyr4 marker derived from R. niveus or a dominant amdS+ marker from Aspergillus nidulans, and irrespective of the configuration of the transforming DNA (linear or circular), the transformants obtained with the CaCl2/PEG transformation method were found to carry multiple copies of tandemly linked vector molecules, which failed to integrate into the genomic DNA. Furthermore, these transformants displayed low mitotic stability. In contrast, transformants obtained by Agrobacterium-mediated transformation were mitotically stable, even under non-selective conditions. Detailed analysis of these transformants revealed that the transforming DNA had integrated into the genome of R. oryzae at a single locus in independently obtained transformants. In addition, truncation of the transforming DNA was observed, resulting in the integration of the R. niveus pyr4 marker gene, but not the second gene located on the transferred DNA. Modification of the transforming DNA, resulting in partial resistance to restriction enzyme digestion, was observed in transformants obtained with the CaCl2/PEG transformation method, suggesting that a specific genome defence mechanism may exist in R. oryzae. It is likely that the unique mechanism used by A. tumefaciens to deliver its transferred DNA to its hosts facilitates bypass of the host defence mechanisms, thus allowing the DNA to integrate into the chromosomal genome.An erratum to this article can be found at Communicated by C. P. Hollenberg  相似文献   

13.
S E Celniker  J L Campbell 《Cell》1982,31(1):201-213
An enzyme system prepared from Saccharomyces cerevisiae carries out the replication of exogenous yeast plasmid DNA. Replication in vitro mimics that in vivo in that DNA synthesis in extracts of strain cdc8, a temperature-sensitive DNA replication mutant, is thermolabile relative to the wild-type, and in that aphidicolin inhibits replication in vitro. Furthermore, only plasmids containing a functional yeast replicator, ARS, initiate replication at a specific site in vitro. Analysis of replicative intermediates shows that plasmid YRp7, which contains the chromosomal replicator ARS1, initiates bidirectional replication in a 100 bp region within the sequence required for autonomous replication in vivo. Plasmids containing ARS2, another chromosomal replicator, and the ARS region of the endogenous yeast plasmid 2 microns circle give similar results, suggesting that ARS sequences are specific origins of chromosomal replication. Used in conjunction with deletion mapping, the in vitro system allows definition of the minimal sequences required for the initiation of replication.  相似文献   

14.
An electrophoretic karyotype of Aspergillus niger   总被引:4,自引:0,他引:4  
Summary An electrophoretic karyotype of Aspergillus niger was obtained using contour-clamped homogeneous electric field (CHEF) gel electrophoresis. Chromosomesized DNA was separated into four bands. Seven of the eight linkage groups could be correlated with specific chromosomal bands. For this purpose DNA preparations from seven transformant strains of A. niger each carrying the heterologous amdS gene of Aspergillus nidulans on a different chromosome were analysed. Some of the assignments were confirmed with linkage groupspecific A. niger probes. The estimated sizes of the A. niger chromosome range from 3.5 to 6.6 Mb, based on gel migration relative to the chromosomes of Schizosaccharomyces pombe strains, Saccharomyces cerevisiae and A. nidulans. The total genome size of A. niger significantly exceeds that of A. nidulans and is estimated to be about 35.5–38.5 Mb. Electrophoretic karyotyping was used to allocate non-mutant rRNA genes and to estimate the number of plasmids integrated in a high copy number transformant.  相似文献   

15.
The release of chromosomal and plasmid DNA from Acinetobacter calcoaceticus and Bacillus subtilis cultivated in minimal medium and broth over a period of 50 h was monitored and related to growth phase, autolysis, DNase production and natural competence. The released DNAs were biologically active in natural transformation. In addition, the circular integrity of a released B. subtilis shuttle vector (pHV14) was demonstrated by artificial transformation of Escherichia coli. In cultures of both strains high molecular weight DNA accumulated, particularly during the stationary and death phase (up to 30 g ml-1). Generally, despite the presence in culture fluids of DNase activity (and of an intracellular enzyme, catalase, indicating some cell lysis) there was high transforming activity of chromsomal and plasmid DNA even 40 h after the cultures reached the stationary phase. In cultures of B. subtilis in minimal medium a presumably active release of intact plasmids and chromsomal DNA occurred during the competence phase. The release of biologically functional DNA during essentially all growth phases of a gram-positive and a gram-negative member of soil bacteria might facilitate horizontal gene transfer by transformation in natural habitats.  相似文献   

16.
17.
Gene amplification plays a pivotal role in malignant transformation of human cells. A plasmid with both a mammalian replication-initiation region (IR)/origin/replicator and a nuclear matrix-attachment region (MAR) is spontaneously amplified in transfected cells by a mechanism that involves amplification at the extrachromosomal site, followed by amplification at the chromosomal arm, ultimately generating a long homogeneously staining region (HSR). Several observations suggest that replication initiation from IR sequences might mediate amplification. To test this idea, we previously dissected c-myc and DHFR IRs to identify the minimum sequence required to support amplification. In this study, we applied an improved analysis that discriminates between two amplification steps to the ß-globin RepP IR, which contains separate elements already known to be essential for initiation on the chromosome arm. The IR sequence was required at least for the extrachromosomal amplification step. In addition to the vector-encoded MAR, amplification also required an AT-rich region and a MAR-like element, consistent with the results regarding replicator activity on the chromosome. However, amplification did not require the AG-rich tract necessary for replicator activity, but instead required a novel sequence containing another AG-rich tract. The differential sequence requirement might be a consequence of extrachromosomal replication.  相似文献   

18.
Plasmids containing the nontranscribed central and terminal, but not the coding, regions of the extrachromosomal ribosomal deoxyribonucleic acid (rDNA) of Tetrahymena thermophila are capable of autonomous replication in Saccharomyces cerevisiae. These plasmids transform S. cerevisiae at high frequency; transformants are unstable in the absence of selection, and plasmids identical to those used for transformation were isolated from the transformed yeast cells. One plasmid contains a 1.85-kilobase Tetrahymena DNA fragment which includes the origin of bidirectional replication of the extrachromosomal rDNA. The other region of Tetrahymena rDNA allowing autonomous replication of plasmids in S. cerevisiae is a 650-base pair, adenine plus thymine-rich segment from the rDNA terminus. Neither of these Tetrahymena fragments shares obvious sequence homology with the origin of replication of the S. cerevisiae 2-microns circle plasmid or with ars1, an S. cerevisiae chromosomal replicator.  相似文献   

19.
Summary Increased synthesis of DnaA protein, obtained with plasmids carrying the dnaA gene controlled by the heat inducible pL promoter, stimulated initiation of replication from oriC about threefold. The overinitiation was determined both as an increase in copy number of a minichromosome and as an increase in chromosomal gene dosage of oriC proximal DNA. The additional replication forks which were initiated on the chromosome did not lead to an overall increase in DNA content. DNA/DNA hybridization showed an amplification encompassing less than a few hundred kilobases on each side of oriC. Kinetic studies showed that the overinitiation occurred very rapidly after the induction, and that the initiation frequency then decreased to a near normal frequency per oriC. The results indicate that the DnaA protein is one important factor in regulation of initiation of DNA replication from oriC.  相似文献   

20.
Summary Two plasmids from group B streptococcus were introduced into pneumococcus (Streptococcus pneumoniae) and examined for copy number, stability, and some features of the process by which they transform pneumococcal recipients. The 3.6 Mdal pMV158 (tet) was present at a minimum of 12 to 16 copies per chromosome and was never observed to be cured. The 20 Mdal pIP501 (cat erm) had a minimum copy number of 3 to 4 per chromosome and was lost spontaneously at a frequency near 0.03 per division. The presence of novobiocin increased this frequency 2 to 3-fold. Competence for chromosomal transformation and the membrane endonuclease needed for normal DNA entry were required for plasmid transformation. Plasmid transformants segregated transformed cells one generation ahead of chromosomal transformants. Both single and multiple hit components of the transformation reaction kinetics were observed, but the latter could not be seen in the presence of competing chromosomal DNA. The majority of the transforming activity behaved as covalently closed circular DNA in dye-buoyancy gradients. Although most of the activity for both plasmids sedimented in sucrose gradients more rapidly than did monomeric closed circular DNA, a significant fraction was found at a position suggesting that it may have been due to monomeric plasmids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号