首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We present here explicit mathematical formulas for calculating the concentration, mass, and velocity of movement of the center of mass of the plant growth regulator auxin during its polar movement through a linear file of cells. The results of numerical computations for two cases, (a) the conservative, in which the mass in the system remains constant and (b) the non-conservative, in which the system acquires mass at one end and loses it at the other, are graphically presented. Our approach differs from that of Mitchison's (Mitchison 1980) in considering both initial effects of loading and end effects of substance leaving the file of cells. We find the velocity varies greatly as mass is entering or leaving the file of cells but remains constant as long as most of the mass is within the cells. This is also the time for which Mitchison's formula for the velocity, which neglects end effects, reflects the true velocity of auxin movement. Finally, the predictions of the model are compared with two sets of experimental data. Movement of a pulse of auxin through corn coleoptiles is well described by the theory. Movement of auxin through zucchini shoots, however, shows the need to take into account immobilization of auxin by this tissue during the course of transport.  相似文献   

2.
Plant growth and development is determined by intracellular and intercellular auxin gradients that are controlled at first hand by auxin efflux catalysts of the ABCB/PGP and PIN families. ABCB transport activity was shown to be counter-actively regulated by protein phosphorylation by the AGC protein kinase, PINOID (PID), that is coordinated by interaction with the immunophilin-like FKBP42, TWISTED DWARF1 (TWD1). In contrast, PID was shown to determine PIN polarity, however, the direct impact of PID on PIN activity has yet not been tested. Co-expression in yeast indicates that PID had no effect on PIN1,2 alone but specifically inhibits interactive ABCB1-PIN1/PIN2 auxin efflux in an action that is dependent on its kinase activity. PIN1-PID co-transfection in N. benthamiana revealed that PID blocks PIN1-mediated auxin efflux without changing PIN1 location. In summary, these data provide evidence that PID phosphorylation does not only determine PIN polarity but also has a direct impact on transport activity of the activity of the binary PIN-ABCB1 complex.  相似文献   

3.
Gravity-controlled transport of auxin was studied for a negative gravitropic response in the early growth stage of etiolated pea (Pisum sativum L. cv. Alaska) seedlings, in which epicotyl bending was observed near the cotyledon nodes of the seedlings grown continuously from seeds germinated in a horizontal or an inclined position. Increased expression of an auxin-inducible gene, PsIAA4/5, was observed in the elongated side of epicotyls grown in a horizontal or an inclined position. Regardless of the conditions of seed germination, polar auxin transport in the proximal side of the first internodes of the seedlings was significantly higher than in the distal side. Polar auxin transport in the proximal side of epicotyls grown in an inclined position was significantly lower than in those grown in a horizontal position. In contrast, lateral auxin distribution from the proximal to distal sides in epicotyls grown in an inclined position was significantly higher than in epicotyls grown in a horizontal position. Accumulation of PsPIN1 mRNA encoding a putative auxin efflux facilitator, which was observed in vascular tissue, cortex and epidermis in the proximal and distal sides of epicotyls, was markedly influenced by gravistimulation. These results strongly suggest that gravistimulation induces changeable polar auxin transport and one-way lateral auxin distribution in epicotyls as well as asymmetric auxin accumulation in the proximal and distal sides of epicotyls, resulting in a negative gravitropic response of epicotyls in the early growth stage of pea seedlings.  相似文献   

4.
Regulation of auxin transport by aminopeptidases and endogenous flavonoids   总被引:46,自引:0,他引:46  
Murphy A  Peer WA  Taiz L 《Planta》2000,211(3):315-324
 The 1-N-naphthylphthalamic acid (NPA)-binding protein is a putative negative regulator of polar auxin transport that has been shown to block auxin efflux from both whole plant tissues and microsomal membrane vesicles. We previously showed that NPA is hydrolyzed by plasma-membrane amidohydrolases that co-localize with tyrosine, proline, and tryptophan-specific aminopeptidases (APs) in the cotyledonary node, hypocotyl-root transition zone and root distal elongation zone of Arabidopsisthaliana (L.) Heynh. seedlings. Moreover, amino acyl-β-naphthylamide (aa-NA) conjugates resembling NPA in structure have NPA-like inhibitory activity on growth, suggesting a possible role of APs in NPA action. Here we report that the same aa-NA conjugates and the AP inhibitor bestatin also block auxin efflux from seedling tissue. Bestatin and, to a lesser extent, some aa-NA conjugates were more effective inhibitors of low-affinity specific [3H]NPA-binding than were the flavonoids quercetin and kaempferol but had no effect on high-affinity binding. Since the APs are inhibited by flavonoids, we compared the localization of endogenous flavonoids and APs in seedling tissue. A correlation between AP and flavonoid localization was found in 5- to 6-d-old seedlings. Evidence that these flavonoids regulate auxin accumulation in vivo was obtained using the flavonoid-deficient mutant, tt4. In whole-seedling [14C]indole-3-acetic acid transport studies, the pattern of auxin distribution in the tt4 mutant was shown to be altered. The defect appeared to be in auxin accumulation, as a considerable amount of auxin escaped from the roots. Treatment of the tt4 mutant with the missing intermediate naringenin restored normal auxin distribution and accumulation by the root. These results implicate APs and endogenous flavonoids in the regulation of auxin efflux. Received: 2 December 1999 / Accepted: 16 January 2000  相似文献   

5.
6.
Water transport in plants is greatly dependent on the expression and activity of water transport channels, called aquaporins. Here, we have clarified the tissue- and cell-specific localization of aquaporins in rice plants by immunoblotting and immunocytochemistry using seven isoform-specific aquaporin antibodies. We also examined water transport activities of typical aquaporin family members using a yeast expression system in combination with a stopped-flow spectrophotometry assay. OsPIP1 members, OsPIP2;1, OsTIP1;1 and OsTIP2;2 were expressed in both leaf blades and roots, while OsPIP2;3, OsPIP2;5 and OsTIP2;1 were expressed only in roots. In roots, large amounts of aquaporins accumulated in the region adjacent to the root tip (around 1.5-4 mm from the root tip). In this region, cell-specific localization of the various aquaporin members was observed. OsPIP1 members and OsTIP2;2 accumulated predominantly in the endodermis and the central cylinder, respectively. OsTIP1;1 showed specific localization in the rhizodermis and exodermis. OsPIP2;1, OsPIP2;3 and OsPIP2;5 accumulated in all root cells, but they showed higher levels of accumulation in endodermis than other cells. In the region at 35 mm from the root tip, where aerenchyma develops, aquaporins accumulated at low levels. In leaf blades, OsPIP1 members and OsPIP2;1 were localized mainly in mesophyll cells. OsPIP2;1, OsPIP2;3, OsPIP2;5 and OsTIP2;2 expressed in yeast showed high water transport activities. These results suggest that rice aquaporins with various water transport activities may play distinct roles in facilitating water flux and maintaining the water potential in different tissues and cells.  相似文献   

7.
The transport of [14C]phenylacetic acid (PAA) in intact plants and stem segments of light-grown pea (Pisum sativum L. cv. Alderman) plants was investigated and compared with the transport of [14C]indiol-3yl-acetic acid (IAA). Although PAA was readily taken up by apical tissues, unlike IAA it did not undergo long-distance transport in the stem. The absence of PAA export from the apex was shown not to be the consequence of its failure to be taken up or of its metabolism. Only a weak diffusive movement of PAA was observed in isolated stem segments which readily transported IAA. When [1-14C]PAA was applied to a mature foliage leaf in light, only 5.4% of the 14C recovered in ethanol extracts (89.6% of applied 14C) had been exported from the leaf after 6.0 h. When applied to the corresponding leaf, [14C]sucrose was readily exported (46.4% of the total recovered ethanol-soluble 14C after 6.0 h). [1-14C]phenylacetic acid applied to the root system was readily taken up but, after 5.0 h, 99.3% of the recovered 14C was still in the root system.When applied to the stem of intact plants (either in lanolin at 10 mg·g-1, or as a 10-4 M solution), unlabelled PAA blocked the transport through the stem of [1-14C]IAA applied to the apical bud, and caused IAA to accumulate in the PAA-treated region of the stem. Applications of PAA to the stem also inhibited the basipetal polar transport of [1-14C]IAA in isolated stem segments. These results are consistent with recent observations (C.F. Johnson and D.A. Morris, 1987, Planta 172, 400–407) that no carriers for PAA occur in the plasma membrane of the light-grown pea stem, but that PAA can inhibit the carrier-mediated efflux of IAA from cells. The possible functions of endogenous PAA are discussed and its is suggested that an important role of the compound may be to modulate the polar transport and-or accumulation by cells of IAA.Abbreviations IAA indol-3yl-acetic acid - NPA N-1-naphthylphthalamic acid - PAA phenylacetic acid - IIBA 2,3,5-triiodobenzoic acid  相似文献   

8.
Correlatively inhibited pea shoots (Pisum sativum L.) did not transport apically applied 14C-labelled indol-3yl-acetic acid ([14C]IAA), and polar IAA transport did not occur in internodal segments cut from these shoots. Polar transport in shoots and segments recovered within 24 h of removing the dominant shoot apex. Decapitation of growing shoots also resulted in the loss of polar transport in segments from internodes subtending the apex. This loss was prevented by apical applications of unlabelled IAA, or by low temperatures (approx. 2° C) after decapitation. Rates of net uptake of [14C]IAA by 2-mm segments cut from subordinate or decapitated shoots were the same as those in segments cut from dominant or growing shoots. In both cases net uptake was stimulated to the same extent by competing unlabelled IAA and by N-1-naphthylphthalamic acid. Uptake of the pH probe [14C]-5,5-dimethyloxazolidine-2,4-dione from unbuffered solutions was the same in segments from both types of shoot. Patterns of [14C]IAA metabolism in shoots in which polar transport had ceased were the same as those in shoots capable of polar transport. The reversible loss of polar IAA transport in these systems, therefore, was not the result of loss or inactivation of specific IAA efflux carriers, loss of ability of cells to maintain transmembrane pH gradients, or the result of a change in IAA metabolism. Furthermore, in tissues incapable of polar transport, no evidence was found for the occurrence of inhibitors of IAA uptake or efflux. Evidence is cited to support the possibility that the reversible loss of polar auxin transport is the result of a gradual randomization of effluxcarrier distribution in the plasma membrane following withdrawal of an apical auxin supply and that the recovery of polar transport involves reestablishment of effluxcarrier asymmetry under the influence of vectorial gradients in auxin concentration.Abbreviations DMO 5,5-dimethyloxazolidine-2,4-dione - IAA indol-3yl-acetic acid - NPA N-1-naphthylphthalamic acid - TIBA 2,3,5-triiodobenzoic acid This work was supported by grant no. GR/D/08760 from the U.K. Science and Engineering Research Council. We thank Mrs. R.P. Bell for technical assistance.  相似文献   

9.
10.
Sugar regulates a variety of genes and controls plant growth and development similarly to phytohormones. As part of a screen for Arabidopsis mutants with defects in sugar-responsive gene expression, we identified a loss-of-function mutation in the HOOKLESS1 (HLS1) gene. HLS1 was originally identified to regulate apical hook formation of dark-grown seedlings (Lehman et al., 1996, Cell 85: 183-194). In hls1, sugar-induced gene expression in excised leaf petioles was more sensitive to exogenous sucrose than that in the wild type. Exogenous IAA partially repressed sugar-induced gene expression and concomitantly activated some auxin response genes such as AUR3 encoding GH3-like protein. The repression and the induction of gene expression by auxin were attenuated and enhanced, respectively, by the hls1 mutation. These results suggest that HLS1 plays a negative role in sugar and auxin signaling. Because AUR3 GH3-like protein conjugates free IAA to amino acids (Staswick et al., 2002, Plant Cell 14: 1405-1415; Staswick et al., 2005, Plant Cell 17: 616-627), enhanced expression of GH3-like genes would result in a decrease in the free IAA level. Indeed, hls1 leaves accumulated a reduced level of free IAA, suggesting that HLS1 may be involved in negative feedback regulation of IAA homeostasis through the control of GH3-like genes. We discuss the possible mechanisms by which HLS1 is involved in auxin signaling for sugar- and auxin-responsive gene expression and in IAA homeostasis.  相似文献   

11.
12.
Gravitropism aligns plant growth with gravity. It involves gravity perception and the asymmetric distribution of the phytohormone auxin. Here we provide insights into the mechanism for hypocotyl gravitropic growth. We show that the Arabidopsis thaliana PIN3 auxin transporter is required for the asymmetric auxin distribution for the gravitropic response. Gravistimulation polarizes PIN3 to the bottom side of hypocotyl endodermal cells, which correlates with an increased auxin response at the lower hypocotyl side. Both PIN3 polarization and hypocotyl bending require the activity of the trafficking regulator GNOM and the protein kinase PINOID. Our data suggest that gravity-induced PIN3 polarization diverts the auxin flow to mediate the asymmetric distribution of auxin for gravitropic shoot bending.  相似文献   

13.
14.
A mutation in tobacco (Nicotiana tabacum L. cv `Xanthi') called lat (low auxin transport) that changes many morphogenic features throughout the life of the plant has been isolated. Abnormalities were observed in seed development, embryogenesis, cotyledon formation, leaf initiation and development, leaf veination pattern, and flower development. Selfed R2 lat mutant plants set between 60% and 90% fewer seeds than wild-type tobacco, and about 10% of these seeds did not germinate. Non-germinating seeds contained either abnormal embryos or abnormal endosperm tissues. There was no uniformity in the stage at which embryonic development ceased in the aberrant seeds. Seedlings often revealed abnormal and highly varied phenotypes after germination. In some of these cases, cotyledons were heart-shaped, fused, cup-shaped, or cylindrical. Leaf morphology ranged from normal to cup-shaped, and some leaves occasionally produced shoots from the leaf midvein. Flowers ranged from normal to compound with occasional fused floral parts or split petals. Stamens were sometimes petal-like. This unusual assortment of phenotypic changes suggested that the mutation might affect a basic component of plant metabolism. We found that polar transport of indole-3-acetic acid (IAA) was reduced to about 9–19% of the wild-type level in the inflorescence axis of selfed R2 lat mutants. In addition, supplementation of 1-naphthaleneacetic acid (NAA) to sterile media suppressed some of the abnormalities of the lat mutation so long as the plants grew there. Similarities in the phenotype of embryos, cotyledon and leaf shapes, translocation of labeled IAA, and response to applied NAA indicate that the lat locus of tobacco may be analogous to the pin locus of Arabidopsis, or produce a protein that functions in the same auxin-transport pathway. Received: 18 March 1997 / Revision received: 1 May 1997 / Accepted: 17 June 1997  相似文献   

15.
Root temperature is found to be a very important factor forleaves to alter the response and susceptibility to chillingstress. Severe visible damage was observed in the most activeleaves of seedlings of a japonica rice (Oryza sativa cv. Akitakomachi),e.g. the third leaf at the third-leaf stage, after the treatmentwhere only leaves but not roots were chilled (L/H). On the otherhand, no visible damage was observed after the treatment whereboth leaves and roots were chilled simultaneously (L/L). Thechilling injury induced by L/H, a novel type of chilling injury,required the light either during or after the chilling in orderto develop the visible symptoms such as leaf bleaching and tissuenecrosis. Chlorophyll fluorescence parameters measured aftervarious lengths of chilling treatments showed that significantchanges were induced before the visible injury. The effectivequantum yield and photochemical quenching of PSII dropped dramaticallywithin 24 h in both the presence and absence of a 12 h lightperiod. The maximal quantum yield and non-photochemical quenchingof PSII decreased significantly only in the presence of light.On the other hand, L/H chilling did not affect the functionof PSI, but caused a significant decrease in the electron availabilityfor PSI. These results suggest that the leaf chilling with highroot temperature destroys some component between PSII and PSIwithout the aid of light, which causes the over-reduction ofPSII in the light, and thereby the visible injury is inducedonly in the light.  相似文献   

16.
Imhoff V  Muller P  Guern J  Delbarre A 《Planta》2000,210(4):580-588
 Active auxin transport in plant cells is catalyzed by two carriers working in opposite directions at the plasma membrane, the influx and efflux carriers. A role for the efflux carrier in polar auxin transport (PAT) in plants has been shown from studies using phytotropins. Phytotropins have been invaluable in demonstrating that PAT is essential to ensure polarized and coordinated growth and to provide plants with the capacity to respond to environmental stimuli. However, the function of the influx carrier at the whole-plant level is unknown. Our work aims to identify new auxin-transport inhibitors which could be employed to investigate its function. Thirty-five aryl and aryloxyalkylcarboxylic acids were assayed for their ability to perturb the accumulation of 2,4-dichlorophenoxyacetic acid (2,4-D) and naphthalene-1-acetic acid (1-NAA) in suspension-cultured tobacco (Nicotiana tabacum L.) cells. As 2,4-D and 1-NAA are preferentially transported by the influx and efflux carriers, respectively, accumulation experiments utilizing synthetic auxins provide independant information on the activities of both carriers. The majority (60%) of compounds half-inhibited the carrier-mediated influx of [14C]2,4-D at concentrations of less than 10 μM. Most failed to interfere with [3H]NAA efflux, at least in the short term. Even though they increasingly perturbed auxin efflux when given a prolonged treatment, several compounds were much better at discriminating between influx and efflux carrier activities than naphthalene-2-acetic acid which is commonly employed to investigate influx-carrier properties. Structure-activity relationships and factors influencing ligand specificity with regard to auxin carriers are discussed. Received: 28 June 1999 / Accepted: 28 August 1999  相似文献   

17.
In land plants polar auxin transport is one of the substantial processes guiding whole plant polarity and morphogenesis. Directional auxin fluxes are mediated by PIN auxin efflux carriers, polarly localized at the plasma membrane. The polarization of exocytosis in yeast and animals is assisted by the exocyst: an octameric vesicle‐tethering complex and an effector of Rab and Rho GTPases. Here we show that rootward polar auxin transport is compromised in roots of Arabidopsis thaliana loss‐of‐function mutants in the EXO70A1 exocyst subunit. The recycling of PIN1 and PIN2 proteins from brefeldin–A compartments is delayed after the brefeldin‐A washout in exo70A1 and sec8 exocyst mutants. Relocalization of PIN1 and PIN2 proteins after prolonged brefeldin‐A treatment is largely impaired in these mutants. At the same time, however, plasma membrane localization of GFP:EXO70A1, and the other exocyst subunits studied (GFP:SEC8 and YFP:SEC10), is resistant to brefeldin‐A treatment. In root cells of the exo70A1 mutant, a portion of PIN2 is internalized and retained in specific, abnormally enlarged, endomembrane compartments that are distinct from VHA‐a1‐labelled early endosomes or the trans‐Golgi network, but are RAB‐A5d positive. We conclude that the exocyst is involved in PIN1 and PIN2 recycling, and thus in polar auxin transport regulation.  相似文献   

18.
An auxin analog, 2,4-D, stimulates the activity of endo-1,4-beta-glucanase (EGase) in rice (Oryza sativa L.). The auxin-induced activity from three protein fractions was purified to homogeneity from primary root tissues (based on SDS-PAGE and isoelectric focusing after Coomassie brilliant blue staining). Amino acid sequencing indicated that the 20 N-terminal amino acid sequence of the three proteins was identical, suggesting that these proteins may be cognates of one EGase gene. An internal amino acid sequence of the the rice EGase (LVGGYYDAGDNVK) revealed that this enzyme belongs to glycosyl hydrolase family 9 (GHF9). The major isoform of this rice GHF9 [molecular weight based on matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS): 51,216, isoelectric point (pI): 5.5] specifically hydrolyzed 1,4-beta-glycosyl linkages of carboxymethyl (CM)-cellulose, phosphoric acid-swollen cellulose, 1,3-1,4-beta-glucan, arabinoxylan, xylan, glucomannan, cellooligosaccharides [with a degree of polymerization (DP) >3] and 1,4-beta-xylohexaose, indicating a broader substrate range compared with those of other characterized GHF9 enzymes or EGases from higher plants. Hydrolytic products of two major hemicellulosic polysaccharides in type II cell walls treated with the purified enzyme were profiled using high-performance anion exchange chromatography (HPAEC). The results suggested that endolytic attack by rice EGase is not restricted to either the cellulose-like domain of 1,3-1,4-beta-glucan or the unsubstituted 1,4-beta-xylosyl backbone of arabinoxylan, but results in the release of smaller oligosaccharides (DP <6) from graminaceous hemicelluloses. The comparatively broader substrate range of this EGase with respect to beta-1,4-glycan backbones (glucose and xylose) may partly reflect different roles of gramineous and non-gramineous GHF9 enzymes.  相似文献   

19.
The transport of exogenous indol-3yl-acetic acid (IAA) from the apical tissues of intact, light-grown pea (Pisum sativum L. cv. Alderman) shoots exhibited properties identical to those associated with polar transport in isolated shoot segments. Transport in the stem of apically applied [1-14C]-or [5-3H]IAA occurred at velocities (approx. 8–15 mm·h-1) characteristic of polar transport. Following pulse-labelling, IAA drained from distal tissues after passage of a pulse and the rate characteristics of a pulse were not affected by chases of unlabelled IAA. However, transport of [1-14C]IAA was inhibited through a localised region of the stem pretreated with a high concentration of unlabelled IAA or with the synthetic auxins 1-napthaleneacetic acid and 2,4-dichlorophenoxyacetic acid, and label accumulated in more distal tissues. Transport of [1-14C]IAA was also completely prevented through regions of the intact stem treated with N-1-naphthylphthalamic acid (NPA) and 2,3,5-triiodobenzoic acid.Export of IAA from the apical bud into the stem increased with total concentration of IAA applied (labelled+unlabelled) but approached saturation at high concentrations (834 mmol·m-3). Transport velocity increased with concentration up to 83 mmol·m-3 IAA but fell again with further increase in concentration.Stem segments (2 mm) cut from intact plants transporting apically applied [1-14C]IAA effluxed 93% of their initial radioactivity into buffer (pH 7.0) in 90 min. The half-time for efflux increased from 32.5 to 103.9 min when 3 mmol·m-3 NPA was included in the efflux medium. Long (30 mm) stem sections cut from immediately below an apical bud 3.0 h after the apical application of [1-14C]IAA effluxed IAA when their basal ends, but not their apical ends, were immersed in buffer (pH 7.0). Addition of 3 mmol·m-3 NPA to the external medium completely prevented this basal efflux.These results support the view that the slow long-distance transport of IAA from the intact shoot apex occurs by polar cell-to-cell transport and that it is mediated by the components of IAA transmembrane transport predicted by the chemiosmotic polar diffusion theory.Abbreviations IAA indol-3yl-acetic acid - 2,4-D 2,4-dichlorophenoxyacetic acid - NAA 1-naphthaleneacetic acid - NPA N-1-naphthylphthalamic acid - TIBA 2,3,5-triiodobenzoic acid  相似文献   

20.
The characteristics of transmembrane transport of 14C-labelled indol-3yl-acetic acid ([1-14C]IAA) were compared in Chlorella vulgaris Beij., a simple unicellular green alga, and in Chara vulgaris L., a branched, multicellular green alga exhibiting axial polarity and a high degree of cell and organ specialization. In Chara thallus cells, three distinguishable trans-plasmamembrane fluxes contributed to the net uptake of [1-14C]-IAA from an external solution, viz.: a non-mediated, pH-sensitive influx of undissociated IAA (IAAH); a saturable influx of IAA; and a saturable efflux of IAA. Both saturable fluxes were competitively inhibited by unlabelled IAA. Association of [3H]IAA with microsomal preparations from Chara thallus tissue was competitively inhibited by unlabelled IAA. Results indicated that up-take carriers occurred in the membranes at a much higher density than efflux carriers. The efflux component of IAA net uptake by Chara was not affected by several phytotropins (N-1-naphthylphthalmic acid, NPA; 2-(1-pyrenoyl)benzoic acid; and 5-(2-carboxyphenyl)-3-phenylpyrazole), which are potent non-competitive inhibitors of specific auxin-efflux carriers in more advanced plant groups, and no evidence was found for a specific association of [3H]NPA with Chara microsomal preparations. It was concluded that Chara lacked phytotropin receptors. Net uptake of [1-14C]IAA also was unaffected by 2,3,5-triiodobenzoic acid except at concentrations ( 10–1 mol · m–3) high enough to depress cytoplasmic pH (determined by uptake of 5,5-dimethyloxazolidine-2,4-dione). Chlorella cells accumulated [1-14C]IAA from an external solution by pH-sensitive diffusion of IAA across the plasma membrane and anion (IAA) trapping, but no evidence was found in Chlorella for the occurrence of IAA carriers. These results indicate that carrier systems capable of mediating the transmembrane transport of auxins appeared at a very early stage in the evolution of green plants, possibly in association with the origin of a differentiated, multicellular plant body. Phytotropin receptors evolved independently of the carriers.Abbreviations CPP 5-(2-carboxyphenyl)-3-phenylpyrazole - DMO 5,5-dimethyloxazolidine-2,4-dione - IAA indol-3yl-acetic acid - NPA N-1-naphthylphthalamic acid - PBA 2-(1-pyrenoyl)benzoic acid - TIBA 2,3,5-triiodobenzoic acid We thank the Nuffield Foundation for the award of an Undergraduate Research Bursary to J.E.D.-F., Dr. G.F. Katekar, C.S.I.R.O., Canberra, Australia for generous gifts of phytotropins, and Mrs. R.P. Bell for technical support.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号