首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The enzyme deoxyuridine 5'-triphosphate nucleotidohydrolase (dUTPase) catalyses the hydrolysis of dUTP to dUMP and PPi thus controlling the incorporation of uracil into DNA genomes. In Campylobacter jejuni dUTPase exhibits structural properties of dimeric proteins characteristic of protozoa of the Kinetoplastidae family. In the present study we perform a kinetic analysis of Campylobacter dUTPase using the continuous spectrophotometric method and show that the enzyme is highly specific for deoxyuridine nucleotides. The Michaelis-Menten constant for dUTP was 0.66 microM while the k(cat) was 12.3 s(- 1). dUDP was also efficiently hydrolysed although the specificity constant, k(cat)/K(m), was five fold lower than for dUTP. The reaction product and the non hydrolysable analogue alpha,beta imido dUDP are potent inhibitors of the enzyme while several analogues of dUMP with substituents at the 3'- and 5'-positions active against trimeric dUTPases, show poor inhibitory activity. Apparent structural and kinetic differences with other eukaryotic dUTPases suggest that the present enzyme might be exploited as a target for new drugs against campylobacteriosis.  相似文献   

2.
Deoxyuridine 5'-triphosphate nucleotidohydrolase (dUTPase) catalyzes the hydrolysis of dUTP to dUMP and pyrophosphate and plays an important role in nucleotide metabolism and DNA replication controlling relative cellular levels of dTTP/dUTP, both of which can be incorporated into DNA. Isothermal titration calorimetry has been applied to the determination of the kinetic and thermodynamic parameters of the trimeric Plasmodium falciparum dUTPase, a potential drug target against malaria. The role of divalent ions in binding, and inhibition by different uridine derivatives has been assessed. When dUTP hydrolysis in the presence of EDTA was evaluated, a 105-fold decrease and a 12-fold increase of the k(cat) and K(m) values, respectively, were observed when compared with the dUTP.Mg(2+) complex. Calculation of the activation energy, E(a), and the thermodynamic activation parameters showed that the energetic barrier was ~4-fold higher when Mg(2+) was depleted. Other divalent ions such as Co(2+) or Mn(2+) can substitute the physiological cofactor, however the k(cat) was significantly reduced compared to dUTP.Mg(2+). Binding and inhibition by dU, dUMP, dUDP, and alpha,beta-imido-dUTP were analysed by ITC and compared with data obtained by spectrophotometric methods and binding equilibrium studies. Product inhibition (K(ip) dUMP: 99.34 muM) was insignificant yet K(i) values for dUDP and alpha,beta-imido-dUTP were in the low micromolar range. The effect of ionic strength on protein stability was also monitored. DSC analysis evidenced a slight increase in the unfolding temperature, T(m), with increasing salt concentrations. Moreover, the thermal unfolding pathway in the presence of salt fits adequately to an irreversible two-state model (N(3)-->3D).  相似文献   

3.
By the sequential action of dCTP deaminase and dUTPase, dCTP is converted to dUMP, the precursor of thymidine nucleotides. In addition, dUTPase has an essential role as a safeguard against uracil incorporation in DNA. The putative dCTP deaminase (MJ0430) and dUTPase (MJ1102) from the hyperthermophilic archaeon Methanocaldococcus jannaschii were overproduced in Escherichia coli. Unexpectedly, we found the MJ0430 protein capable of both reactions, i.e. hydrolytic deamination of the cytosine ring and hydrolytic cleavage of the phosphoanhydride bond between the alpha- and beta-phosphates. When the reaction was followed by thin layer chromatography using [3H]dCTP as substrate, dUMP and not dUTP was identified as a reaction product. In the presence of unlabeled dUTP, which acted as an inhibitor, no label was transferred from [3H]dCTP to the pool of dUTP. This finding strongly suggests that the two consecutive steps of the reaction are tightly coupled within the enzyme. The hitherto unknown bifunctionality of the MJ0430 protein appears beneficial for the cells because the toxic intermediate dUTP is never released. The MJ0430 protein also catalyzed the hydrolysis of dUTP to dUMP but with a low affinity for the substrate (Km >100 micro m). According to limited proteolysis, the C-terminal residues constitute a flexible region. The other protein investigated, MJ1102, is a specific dUTPase with a Km for dUTP (0.4 micro m) comparable in magnitude with that found for previously characterized dUTPases. Its physiological function is probably to degrade dUTP derived from other reactions in nucleotide metabolism.  相似文献   

4.
Accurate quantitation of thymidylate synthetase activity using a tritium-release assay is dependent upon measurement of only that tritium released from deoxy[5-3H]uridine monophosphate ([3H]dUMP) during the biosynthesis of thymidylate. Removal of remaining [3H]dUMP on completion of the assay by charcoal adsorption and correction for the nonenzymatic release of tritium are necessary. Although over 99% of [3H]dUMP is removed immediately following addition of charcoal, these studies demonstrate that sufficient [3H]dUMP can remain to prevent accurate measurement of low levels of thymidylate synthetase activity. By delaying measurement of radioactivity for at least 24 h following addition of charcoal, this problem is minimized. To account for nonenzymatic release of tritium, a blank containing enzyme extract with omission of ±,l-5,10-methylenetetrahydrofolate is demonstrated to be more effective than the commonly used blank in which water is substituted for enzyme extract. In samples containing 5-fluoro-2′-deoxyuridine monophosphate (FdUMP), a potent inhibitor of thymidylate synthetase activity, an alternative blank containing a high concentration of FdUMP (approximately 1mM) is useful in demonstrating a theoretical maximal or complete inhibition of thymidylate synthetase activity.  相似文献   

5.
The amount of rapidly labeled short DNA chains in adenovirus 12(Ad12)-infected cells was markedly increased in the presence of either uridine or deoxycytidine which could be converted to dUTP. When the infected cells were labeled with [3H]uridine or [3H] deoxycytidine and the labeled nucleotides in the short DNA chains from the Hirt supernatant were analysed by thin-layer chromatography, approximately 90 or 20% of the label was detected in dUTP. These results suggest that at least a portion of short DNA chains formed during Ad12 DNA replication is derived from an excision-repair mechanism of uracil containing nascent strands.  相似文献   

6.
R K Evans  B E Haley 《Biochemistry》1987,26(1):269-276
A photoactive nucleotide analogue of dUTP, 5-azido-2'-deoxyuridine 5'-triphosphate (5-N3dUTP), was synthesized from dUMP in five steps. The key reaction in the synthesis of 5-N3dUTP is the nitration of dUMP in 98% yield in 5 min at 25 degrees C using an excess of nitrosonium tetrafluoroborate in anhydrous dimethylformamide. Reduction of the resulting 5-nitro compound with zinc and 20 mM HCl gave 5-aminodeoxyuridine monophosphate (5-NH2dUMP). Diazotization of 5-NH2dUMP with HNO2 followed by the addition of NaN3 to the acidic diazonium salt solution gave a photoactive nucleotide derivative in 80-90% yield. The monophosphate product was identified as 5-N3dUMP by proton NMR, UV, IR, and chromatographic analysis as well as by the mode of synthesis and its photosensitivity. After formation of 5-N3dUTP through a chemical coupling of pyrophosphate to 5-N3dUMP, the triphosphate form of the nucleotide was found to support DNA synthesis by Escherichia coli DNA polymerase I at a rate indistinguishable from that supported by dTTP. When UMP was used as the starting compound, 5-N3UTP was formed in an analogous fashion with similar yields and produced a photoactive nucleotide which is a substrate for E. coli RNA polymerase. To prepare [gamma-32P]-5-N3dUTP for use as an active-site-directed photoaffinity labeling reagent, a simple method of preparing gamma-32P-labeled pyrimidine nucleotides was developed. [gamma-32P]-5-N3dUTP is an effective photoaffinity labeling reagent for DNA polymerase I and was found to bind to the active site with a 2-fold higher affinity than dTTP.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Ginkgolides are diterpenes arising from the terpenoid precursor: geranylgeranyl pyrophosphate (GGPP). Incorporation of [1-14C] isopentenylpyrophosphate ([1-14C]IPP) into GGPP was monitored throughout the cultivation cycle of G. biloba L. cultivated cells. Because incorporation of [1-14C]IPP into GGPP had never been monitored in G. biloba, in either the whole plant or cultivated cell system, modifications to existing protocols were necessary. Modifications consisted of extracting the cells with an extraction buffer supplemented with Triton-X-100. Farnesylpyrophosphate (FPP) was the major product formed. The amount of GGPP detected was about one tenth that of FPP.Abbreviations CHAPS 3-[(3-cholamidopropyl) dimethyl ammonio]-1-propane-sulphonate - DTT [1-4 dithiothreitol] - FPP farnesylpyrophosphate - GGPP geranylgeranylpyrophosphate - IPP [1-14C] isopentenylpyrophosphate - PVPP polyvinylpolypyrrolidone - Tris Tris(hydroxymethyl)aminomethane  相似文献   

8.
Cellular cAMP levels as well as the rate of pool labelling of cAMP and related bases, nucleosides and nucleotides were determined in synchronized cultures of HeLa cells after pulse-labelling with [14C]adenine. The cAMP levels were found to be maximal in G 1 and minimal in G 2 and mitosis, as previously reported by others. The rate of labelling of the cAMP pools, however, was found to be maximal in G 2 and decreased to a minimum in G 1. This suggests that the rate of cAMP synthesis is highest when pool level is lowest and vice versa. A comparison of cAMP levels and the rate of 5′AMP pool labelling throughout the HeLa cell cycle indicated an inverse relationship. Such a relationship emphasizes the role of the cyclic 3′,5′-phosphodiesterase activity during the cell cycle. The kinetics of pool labelling of IMP, ATP, and hypoxanthine throughout the cell cycle suggested that the adenylate energy charge fluctuated as a function of the cell cycle. The apparent activation of the adenylate cyclase during G 2 and mitosis as reflected by the increased rate of cAMP pool labelling suggests that the super phosphorylation of H 1 histone during G 2-mitotic transition may be mediated by cAMP-dependent phosphokinases.  相似文献   

9.
A new rapid, sensitive and convenient procedure is presented allowing determination of dUTPase activity. With [5-(3)H]dUTP used as the substrate, dUTPase, converts it to the corresponding monophosphate and is coupled with thymidylate synthase-catalyzed reaction, resulting in tritium release from [5-(3)H]dUMP. Following charcoal absorption of the labeled nuleotides, radioactivity of tritiated water is determined. The new assay was tested to show comparable results with a previously described assay, based on measuring dUTPase-catalyzed [5-(3)H]dUMP production.  相似文献   

10.
5-Fluorouracil (5-FU), 5-fluorodeoxyuridine (5-dUrd), and raltitrixed (RTX) are anticancer agents that target thymidylate synthase (TS), thereby blocking the conversion of dUMP into dTMP. In budding yeast, 5-FU promotes a large increase in the dUMP/dTMP ratio leading to massive polymerase-catalyzed incorporation of uracil (U) into genomic DNA, and to a lesser extent 5-FU, which are both excised by yeast uracil DNA glycosylase (UNG), leading to DNA fragmentation and cell death. In contrast, the toxicity of 5-FU and RTX in human and mouse cell lines does not involve UNG, but, instead, other DNA glycosylases that can excise uracil derivatives. To elucidate the basis for these divergent findings in yeast and human cells, we have investigated how these drugs perturb cellular dUTP and TTP pool levels and the relative abilities of three human DNA glycosylases (hUNG2, hSMUG1, and hTDG) to excise various TS drug-induced lesions in DNA. We found that 5-dUrd only modestly increases the dUTP and dTTP pool levels in asynchronous MEF, HeLa, and HT-29 human cell lines when growth occurs in standard culture media. In contrast, treatment of chicken DT40 B cells with 5-dUrd or RTX resulted in large increases in the dUTP/TTP ratio. Surprisingly, even though UNG is the only DNA glycosylase in DT40 cells that can act on U·A base pairs derived from dUTP incorporation, an isogenic ung(-/-) DT40 cell line showed little change in its sensitivity to RTX as compared to control cells. In vitro kinetic analyses of the purified human enzymes show that hUNG2 is the most powerful catalyst for excision of 5-FU and U regardless of whether it is found in base pairs with A or G or present in single-stranded DNA. Fully consistent with the in vitro activity assays, nuclear extracts isolated from human and chicken cell cultures show that hUNG2 is the overwhelming activity for removal of both U and 5-FU, despite its bystander status with respect to drug toxicity in these cell lines. The diverse outcomes of TS inhibition with respect to nucleotide pool levels, the nature of the resulting DNA lesion, and the DNA repair response are discussed.  相似文献   

11.
The uptake of [1-3H]geranylgeranyl diphosphate (GGPP) into protoplasts and intact etioplasts and the metabolic interconversion therein was studied after a 2 min pulse of white light. The chlorophyll synthetase reaction, Chlide+GGPPChlGG, was taken as a natural probe for the etioplast compartment. This reaction yields labeled ChLGG and, by hydrogenation, labeled ChlP, when [1-3H]GGPP receives access to the etioplast stroma. It was found that penetration across the plastid envelope was rapid and that penetration across the plasma membrane of protoplasts, however, was slow. A cellular pool of soluble GGPP was detected. This pool was lost, in part, during preparation of the protoplasts and almost completely during preparation of the etioplasts. The membrane-bound phytol pool of etioplasts could not be replaced by exogenous [3H]GG. The endogenous GG and phytol pools of protoplasts, which were larger than those of etioplasts, could be replaced in part by exogenous [3H]GGPP. That part of this pool exists as soluble GGPP or as a direct precursor in the cytoplasm is discussed.Abbreviations GGPP geranylgeranyldiphosphate - ChlGG geranylgeranyl chlorophyllide a - ChlP phytyl chlorophyllide a - IPP isopentenyl diphosphate - Chlide chlorophyllide a  相似文献   

12.
The effects of treatment with the osteotropic steroids 1,25-dihydroxyvitamin D3 (1,25(OH)2D3), 17β-estradiol, or dexamethasone on [1-14C]arachidonic acid (AA) uptake and distribution into glycerophospholipid classes by normal adult human osteoblast-like (hOB) cells were investigated. Total uptake of [1-14C]AA was decreased in cells treated with dexamethasone when assayed after a 24-, 48-, or 96-h exposure to the hormone. Specific radiolabel incorporation into phosphatidylcholine was reduced by a 48-h treatment with dexamethasone with a concurrent increase in the radiolabeling of phosphatidylethanolamine. However, these changes were transient, and by 96 h of dexamethasone treatment the distribution of the radiolabeled fatty acid had reequilibrated to resemble the pattern found for vehicle treated samples. Total uptake of [1-14C]AA was diminished by 96-h treatment with 1,25(OH)2D3 (79 ± 3% of control, P < 0.01); at that time point, a significant decrease in the proportional radiolabeling of the phosphatidylinositol pool was identified (92 ± 2% of control, P < 0.05). The 1,25(OH)2D3-dependent decrease in total uptake and in phosphatidylinositol incorporation of [1-14C]AA were found to be hormone dose dependent. Treatment with 24,25(OH)2D3 was without effect on either total [1-14C]AA uptake or the specific [1-14C]AA radiolabeling of the phosphatidylinositol pool. 1,25(OH)2D3 treatment decreased hOB cell uptake of [1-14C]oleic acid and decreased its proportional incorporation into the phosphatidylinositol pool. Gas chromatographic analyses revealed no 1,25(OH)2D3-dependent effects on total phosphatidylinositol lipid mass or on the mole percent of arachidonic acid within the phosphatidylinositol pool, leaving the mechanism of the effects of the secosteroid on hOB cell AA metabolism unexplained. 17β-Estradiol had no effects on the parameters of AA metabolism measured. As a consequence of their modulation of arachidonic acid uptake and its distribution into hOB cellular phospholipids, steroids might alter the biological effects of other hormones whose actions include the stimulated production of bioactive AA metabolites, such as prostaglandins or the various lipoxygenase products.  相似文献   

13.
The thermodynamic parameters, ΔH′, ΔG′, and ΔS′, and the stoichiometry for the binding of the substrate 2′-deoxyuridine-5′-phosphate (dUMP) and the inhibitor 5-fluoro-2′-deoxyuridine-5′-phosphate (FdUMP) to Lactobacillus casei thymidylate synthetase (TSase) have been investigated using both direct calorimetric methods and gel filtration methods. The data obtained show that two ligand binding sites are available but that the binding of the second mole of dUMP is extremely weak. Binding of the first mole of dUMP can best be illustrated by dUMP + TSase + H+?(dUMP-TSase-H+). [1] The enthalpy, ΔH1′, for reaction [1] was measured directly on a flow modification of a Beckman Model 190B microcalorimeter. Experiments in two different buffers (I = 0.10 m) show that ΔH1′ = ?28 kJ mol?1 and that 0.87 mol of protons enters into the reaction. Analysis of thermal titrations for reaction [1] indicates a free energy change of ΔG1′ = ?30 kJ mol?1 (K1 = 1.7 × 105 m?1). From these parameters, ΔS1′ was calculated to be +5 J mol?1 degree?1, showing that the reaction is almost totally driven by enthalpy changes. Gel filtration experiments show that at very high substrate concentrations, binding to a second site can be observed. Gel filtration experiments performed at low ionic strength (I = 0.05 m) reveal a stronger binding, with ΔG1′ = ?35 kJ mol?1 (K1 = 1.2 × 106 m?1), suggesting that the forces driving the interaction are, in part, electrostatic. Addition of 2-mercaptoethanol (0.10 m) had the effect of slightly increasing the dUMP binding constant. Binding of FdUMP to TSase is best illustrated by 2FdUMP + TSase + nHH+?FdUMP2 ? TSase ? (H+)nH. [2] The enthalpy for this reaction, ΔH2, was also measured calorimetrically and found to be ?30 kJ mol?1 with nH = 1.24 at pH 7.4 Assuming two FdUMP binding sites per dimer as established by Galivan et al. [Biochemistry15, 356–362 (1976)] our calorimetric results indicate different binding energies for each site. Based on the binding data, a thermodynamic model is presented which serves to rationalize much of the confusing physical and chemical data characterizing thymidylate synthetase.  相似文献   

14.
Corn (Zea mays L.) root tips were subjected to different conditions so that nucleotide levels varied over a wide range. Levels of nucleotides in corn root tips were measured using 31P nuclear magnetic resonance (NMR) spectroscopy and high performance liquid chromatography. Results indicate: (a) Similar amounts of NTP and sugar nucleotides were observed by in vivo NMR and in extracts. In contrast, a significant amount of NDP observed in root tip extracts was not detected by in vivo NMR. Thus, for a given sample, [NTP]/[NDP] ratios determined in vivo by 31P-NMR are always higher than ratios observed in extracts, deviating by ~4-fold at the highest ratios. The NMR-invisible pool of NDP appeared quite metabolically inert, barely changing in size as total cell NDP changed. We conclude that NDP in corn root tips is compartmented with respect to NMR visibility, and that it is the NMR-visible pool which responds dynamically to metabolic state. The NMR-invisible NDP could either be immobilized (and so have broad, undetectable NMR signals), or be complexed with species that cause the chemical shift of NDP to change (so it does not contribute to the NMR signal of free NDP), or both. (b) 31P-NMR cannot distinguish between bases (A, U, C, and G) of nucleotides. HPLC analysis of root tip extracts showed that the relative amount of each base in the NTP and NDP pools was quite constant in the different samples. (c) In extracts, for each of the nonadenylate nucleotides, [NTP]/[NDP] was linearly proportional to [ATP]/[ADP], indicating near equilibrium in the nucleoside diphosphokinase (NDPK) reaction. However, the apparent equilibrium constants for the phosphorylation of GDP and UDP by ATP were significantly lower than 1, the true equilibrium constant for the NDPK reaction. Thus, for a given sample, [ATP]/[ADP] ~ [CTP]/[CDP] > [UTP]/[UDP] > [GTP]/[GDP]. This result suggests that the different NDPs in corn root tips do not have equal access to NDPK.  相似文献   

15.
Kinetic properties of the dimeric enzyme dUTPase from Leishmania major were studied using a continuous spectrophotometric method. dUTP was the natural substrate and dUMP and PPi the products of the hydrolysis. The trypanosomatid enzyme exhibited a low K(m) value for dUTP (2.11 microM), a k(cat) of 49 s(-1), strict Michaelis-Menten kinetics and is a potent catalyst of dUDP hydrolysis, whereas in other dUTPases described, this compound acts as a competitive inhibitor. Discrimination is achieved for the base and sugar moiety showing specificity constants for different dNTPs similar to those of bacterial, viral, and human enzymes. In the alkaline range, the K(m) for dUTP increases with the dissociation of ionizable groups showing pK(a) values of 8.8, identified as the uracil moiety of dUTP and 10, whereas in the acidic range, K(m) is regulated by an enzyme residue exhibiting a pK(a) of 7.1. Activity is strongly inhibited by the nucleoside triphosphate analog alpha-beta-imido-dUTP, indicating that the enzyme can bind triphosphate analogs. The existence of specific inhibition and the apparent structural and kinetic differences (reflected in different binding strength of dNTPs) with other eukaryotic dUTPases suggest that the present enzyme might be exploited as a target for new drugs against leishmaniasis.  相似文献   

16.
Tissue cultures and regenerant plants from cell lines producing palms with normal and abnormal flowers were analyzed for cytokinin content and compared with zygotic embryos and seedlings. Immature inflorescences at the critical stage of flower development dissected from normal and abnormal palms were also analyzed. High performance liquid chromatography (HPLC)/radioimmunoassay and HPLC/enzyme-linked immunosorbent assay methods were used over a period of several years to measure the isoprenoid cytokinins. The results of analyses of endogenous aromatic cytokinins, present at comparable levels, will be reported separately. Oil palm cultures and regenerant plants contained relatively high concentrations of the 9-glucosides of isopentenyladenine ([9G]iP) and zeatin ([9G]Z). The predominant biologically active isoprenoid cytokinin present was zeatin riboside ([9R]Z), with lesser amounts of isopentenyladenine (iP) and isopentenyladenosine ([9R]iP). There was evidence of small amounts of dihydrozeatin compounds, but high concentrations (mainly as dihydrozeatin-9-glucoside ([9G]DHZ)) were confined to the haustorium of the zygotic embryo. Callus tissue contained very low concentrations of cytokinin. Frequently only [9G]iP could be detected, at about 1 pmol · g-1 fresh weight, with [9R]Z at less than 0.05 pmol · g-1. In comparison, nodular embryogenic tissues in vitro contained between 30 and 1,500 pmol · g-1 of [9G]iP, 5–50 pmol · g-1 of [9G]Z, and up to 12 pmol · g-1 of [9R]Z. Shoots of regenerant plantlets and seedlings contained lower concentrations of [9G]iP (3–30 pmol · g-1), although this was still the predominant cytokinin. [9R]Z and [9G]Z were present at between 2 and 15 pmol · g-1, with iP at 1–5 pmol · g-1 and [9R]iP at between 1 and 12 pmol · g-1. Seedlings contained similar amounts with the exception of a lower [9G]iP content (5–10 pmol · g-1) and more [9R]iP (10–20 pmol · g-1). Root tissues of ramets contained significantly higher concentrations of [9G]iP than shoots. Comparison of two isogenic lines of one clone giving rise to normal and abnormal palms showed significantly higher concentrations of [9R]Z and [9G]Z in the normal than in the abnormal line and, in embryoids only, higher [9G]iP in the normal line. In all other cases the between-done differences were greater than any normal/abnormal differences. There was a general tendency for increased concentrations of [9G]iP in abnormal lines and for this compound to be in a higher concentration in embryoids and plants derived from culture than in zygotic embryos and seedlings. Analysis of cytokinins in immature female inflorescences of normal and abnormal palms of a single clone showed the abnormal inflorescences to have higher concentrations of [9R]Z and [9R]DHZ and less [9G]Z than the normal inflorescences at comparable stages of development.Abbreviations HPLC high performance liquid chromatography - [9G]iP 9-glucoside of isopentenyladenine - [9G]Z 9-glucoside of zeatin - [9R]Z zeatin riboside - iP isopentenyladenine - [9R]iP isopentenyladenosine - [9G]DHZ dihydrozeation-9-glucoside - ELISA enzyme-linked radioimmunosorbentassay - ANOVAR analysis of variance  相似文献   

17.
18.
Acetylcholine (ACh) synthesis was examined in cultures of chick spinal cord cells to follow the development of the cholinergic neurons. The cells, prepared from 4-day-old embryonic chick spinal cords, were grown either alone in dissociated cell cultures (SC cultures) or with chick myotubes (SC-M cultures). ACh synthesis was measured by incubating the cultures in [3Hcholine and using high-voltage paper electrophoresis to quantitate the amount of [3H]ACh present in cell extracts prepared from the labeled cultures. The amount of [3H]ACh synthesized in SC-M cultures was strictly proportional to the number of spinal cord cells used to prepare the cultures, and was linear with the time of incubation in [3H]choline for periods up to 1 hr. Maximal rates of synthesis were observed with [3H]choline concentrations in excess of 100 μM. Such rates for 1-week-old SC-M cultures were approximately 10–20 pmoles of [3H]ACh/hr/105 spinal cord cells. Studies on the stability of the intracellular [3H]ACh revealed the presence of a major pool with a half-time of 20–30 min. A second, small pool decayed more rapidly. No detectable [3H]ACh was spontaneously released from the cells, suggesting that most of the decay represented intracellular degradation. Development of cholinergic neurons as monitored by [3H]ACh synthesis continued over a 2-week period in SC-M cultures and paralleled general cell growth. When examined at 1 week, SC-M cultures had about a 50% greater capacity for [3H]ACh synthesis and 60% more choline acetyltransferase activity than did SC cultures. No difference was observed in the stability of the [3H]ACh formed for the two types of cultures at 1 week, and no further difference was observed in the rates of [3H]ACh synthesis at 2 weeks. Growth of SC cultures in medium containing different amounts of chick embryo extract (2–10%) or in medium with fetal calf serum (10%) instead of extract produced only small differences in the measured rates of [3H]ACh synthesis. Thus chick spinal cord cells can undergo some of the early stages of cholinergic development in cell culture without sustained contact with skeletal myotubes, one of the normal postsynaptic target cells for the cholinergic neuron population. No absolute requirement for muscle factors was revealed under these conditions, although such factors may have been provided by other cell types in the spinal cord population or may have been present in other additions to the culture medium.  相似文献   

19.
Prenyltransferase (EC 2.5.1.1; assayed as farnesyl pyrophosphate synthetase)was purified 106-fold from an homogenate of 3-day-old seedlings of Pisum sativum. Some of the properties of the purified enzyme were determined and these differed in several significant respects from those reported for preparations from other sources, e.g. the apparent MW was 96000 ± 4000 and the preparation could be dissociated into two subunits of MW 45000 ± 3000. The total activity of the extractable enzyme went through a sharp maximum (in the range 1 to 28 days) 3 days after germination. Farnesyl pyrophosphate was formed in cell-free extracts of peas from either isopentenyl pyrophosphate alone, or this together with geranyl pyrophosphate (optimum yields 1.2 and 10% respectively). Use of [1-14C]- and [4-14C]-isopentenyl pyrophosphates as the sole substrates and degradation of the products showed that the crude extracts contained a pool of the biogenetic equivalent of 3,3-dimethylallyl pyrophosphate. No analogous pool of geranyl pyrophosphate could be detected.  相似文献   

20.
It has been proposed that the major portion of [3H]GABA released from rat cortical slices upon exposure to high K+ comes from a neuronal pool. Using carrier mediated exchange diffusion of DABA or β-alanine in the superfusion medium for GABA in the slice as a technique for manipulating neuronal and glial pools of GABA, it was found that DABA but not β-alanine substantially reduced the K+ stimulated release of [3H]GABA. The present study using synaptosomes as an in vitro model of the nerve ending was undertaken to ascertain whether this neuronal pool of releasable [3H]GABA was associated with a specific transmitter pool in nerve endings. A continuous superfusion system employing a Ca2+ pulse to produce a calcium coupled release (Levy et al, 1973) was used to study the effect of two concentrations (20 μm , 1 mm ) of DABA and β-alanine on the release of [3H]GABA from synaptosomes. In contrast to the results in slices, DABA at both concentrations had no effect on the release of [3H]GABA from synaptosomes in spite of evidence that exchange diffusion was occurring. With protoveratrine as the releasing agent there was no effect of DABA on the release of [3H]GABA from either slices or synaptosomes. The results suggest that the major portion of [3H]GABA released from cortical slices by high K+ comes from a non-transmitter pool in the neuron. Use of K+ stimulated release of amino acids from cortical slices as a criterion for neurotransmitter function must be viewed with caution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号