首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
When males of the flour beetle, Tribolium castaneum, are crossed to females of its close relative T. freemani, the sex ratio of the hybrids is female biased, owing in part to hybrid male mortality. Morphological abnormalities are also frequent in the surviving hybrid males, but not in the hybrid females. The finding that the heterogametic sex (male) is more adversely affected in interspecific crosses than the homogametic sex is consistent with Haldane's rule, which predicts that hybrid dysfunction should emerge as an indirect byproduct of divergent adaptation to differing environments. If so, environmental effects and genotype-by-environment interactions (GEI) should characterize the expression of Haldane's rule and interspecific hybrid traits in general. We used two wild-collected populations of T. castaneum (from Infantes, Spain, and Madagascar) to investigate the effects of environmental variation on the expression of Haldane's rule. Males from each population were mated to several T. freemani females and the half-sibling hybrid progenies were reared across a series of temperature regimes. For both populations, we found that hybrids raised at higher temperatures exhibited a more extreme expression of Haldane's rule: The hybrid sex ratios were more biased toward females and hybrid males had a much higher incidence of morphological abnormalities. The average response to temperature, the norm of reaction for Haldane's rule, varied between the two populations, and we found considerable and significant GEI for both hybrid traits within both populations. The evolutionary implications of these findings are discussed in the context of speciation arising as an indirect effect of local adaptation.  相似文献   

2.
Hybrid sterility (HS) belongs to reproductive isolation barriers that safeguard the integrity of species in statu nascendi. Although hybrid sterility occurs almost universally among animal and plant species, most of our current knowledge comes from the classical genetic studies on Drosophila interspecific crosses or introgressions. With the house mouse subspecies Mus m. musculus and Mus m. domesticus as a model, new research tools have become available for studies of the molecular mechanisms and genetic networks underlying HS. Here we used QTL analysis and intersubspecific chromosome substitution strains to identify a 4.7 Mb critical region on Chromosome X (Chr X) harboring the Hstx2 HS locus, which causes asymmetrical spermatogenic arrest in reciprocal intersubspecific F1 hybrids. Subsequently, we mapped autosomal loci on Chrs 3, 9 and 13 that can abolish this asymmetry. Combination of immunofluorescent visualization of the proteins of synaptonemal complexes with whole-chromosome DNA FISH on pachytene spreads revealed that heterosubspecific, unlike consubspecific, homologous chromosomes are predisposed to asynapsis in F1 hybrid male and female meiosis. The asynapsis is under the trans- control of Hstx2 and Hst1/Prdm9 hybrid sterility genes in pachynemas of male but not female hybrids. The finding concurred with the fertility of intersubpecific F1 hybrid females homozygous for the Hstx2Mmm allele and resolved the apparent conflict with the dominance theory of Haldane''s rule. We propose that meiotic asynapsis in intersubspecific hybrids is a consequence of cis-acting mismatch between homologous chromosomes modulated by the trans-acting Hstx2 and Prdm9 hybrid male sterility genes.  相似文献   

3.
Haldane's rule predicts that particularly high fitness reduction should affect the heterogametic sex of interspecific hybrids. Despite the fact that hybridization is widespread in birds, survival of hybrid individuals is rarely addressed in studies of avian hybrid zones, possibly because of methodological constraints. Here, having applied capture–mark–recapture models to an extensive, 19‐year‐long data set on individually marked birds, we estimate annual survival rates of hybrid individuals in the hybrid zone between herring (Larus argentatus) and Caspian (Larus cachinnans) gulls. In both parental species, males have a slightly higher survival rate than females (model‐weighted mean ± SE: herring gull males 0.88 ± 0.01, females 0.87 ± 0.01, Caspian gull males 0.88 ± 0.01, females 0.87 ± 0.01). Hybrid males do not survive for a shorter time than nonhybrid ones (0.88 ± 0.01), whereas hybrid females have the lowest survival rate among all groups of individuals (0.83 ± 0.03). This translates to a shorter adult (reproductive) lifespan (on average by 1.7–1.8 years, i.e. ca 25%) compared with nonhybrid females. We conclude that, in line with Haldane's rule, the lower survival rate of female hybrids may contribute to selection against hybrids in this hybrid zone.  相似文献   

4.
5.
To investigate the time course of speciation, we gathered literature data on 119 pairs of closely related Drosophila species with known genetic distances, mating discrimination, strength of hybrid sterility and inviability, and geographic ranges. Because genetic distance is correlated with divergence time, these data provide a cross-section of taxa at different stages of speciation. Mating discrimination and the sterility or inviability of hybrids increase gradually with time. Hybrid sterility and inviability evolve at similar rates. Among allopatric species, mating discrimination and postzygotic isolation evolve at comparable rates, but among sympatric species strong mating discrimination appears well before severe sterility or inviability. This suggests that prezygotic reproductive isolation may be reinforced when allopatric taxa become sympatric. Analysis of the evolution of postzygotic isolation shows that recently diverged taxa usually produce sterile or inviable male but not female hybrids. Moreover, there is a large temporal gap between the evolution of male-limited and female hybrid sterility or inviability. This gap, which is predicted by recent theories about the genetics of speciation, explains the overwhelming preponderance of hybridizations yielding male-limited hybrid sterility or inviability (Haldane's rule).  相似文献   

6.
Examination of the genetic architecture of hybrid breakdown can provide insight into the genetic mechanisms of commonly observed isolating phenomena such as Haldane's rule. We used line‐cross analysis to dissect the genetic architecture of divergence between two plant species that exhibit Haldane's rule for male sterility and rarity, Silene latifolia and Silene diclinis. We made 15 types of crosses, including reciprocal F1, F2, backcrosses, and later‐generation crosses, grew the seeds to flowering, and measured the number of viable ovules, proportion of viable pollen, and sex ratio. Typically, Haldane's rule for male rarity in XY animal hybrids is explained by interactions involving recessive X‐linked alleles that are deleterious when hemizygous (dominance theory), whereas sterility is explained by rapid evolution of spermatogenesis genes (faster‐male evolution). In contrast, we found that the genetic mechanisms underlying Haldane's rule between the two Silene species did not follow these conventions. Dominance theory was sufficient to explain male sterility, but male rarity likely involved faster‐male evolution. We also found an effect of the neo‐sex chromosomes of S. diclinis on the extreme rarity of some hybrid males. Our findings suggest that the genetic architecture of Haldane's rule in dioecious plants may differ from those commonly found in animals.  相似文献   

7.
The collared flycatcher (Ficedula albicollis) and the pied flycatcher (F. hypoleuca) hybridize where their geographic ranges overlap. Restriction fragment comparison of 5% of the mitochondrial genome showed a sequence divergence of 10% between these flycatcher species. This degree of sequence divergence between a closely related pair of bird species is unusually high and contrasts with the low level of divergence between F. albicollis and F. hypoleuca in nuclear genes (Nei's D = 0.0006) revealed by enzyme electrophoresis. The low nuclear differentiation is explained by sex biassed gene flow and introgression in nuclear genes (via fertile male hybrids), while the high mitochondrial DNA sequence divergence is preserved by sterility of female hybrids, which prevents mitochondrial introgression. This pattern is in accordance with Haldane's rule and is supported by field data on hybrid fertility. The high mtDNA differentiation could be explained by transfer of mitochondrial DNA from a third species during a past period of hybridization.  相似文献   

8.
The process of speciation is a crucial aspect of evolutionary biology. In this study, we analysed the patterns of evolution of postzygotic reproductive isolation in Galliformes using information on hybridization and genetic distance among species. Four main patterns arose: (1) hybrid inviability and sterility in F1 hybrids increase as species diverge; (2) the presence of geographical overlap does not affect the evolution of postzygotic isolation; (3) the galliforms follow Haldane's rule; (4) hybrid inviability is higher in F2 than in F1 hybrids, but does not appear to be increased in the backcrosses. This study contributes to the growing evidence suggesting that the patterns of evolution of postzygotic isolation and the process of speciation are shared among avian groups (and animals in general). In particular, our results support the notion of F2 hybrid inviability as being key for the maintenance of species genetic integrity when prezygotic isolation barriers are overcome in closely related species, in which postzygotic isolation in the F1 hybrid might still not be fully developed. To the contrary, hybrids from backcrosses did not show serious inviability problems (at least not more than F1 hybrids), demonstrating that they could generate gene flow among bird species. © 2013 The Linnean Society of London, Biological Journal of the Linnean Society, 2013, 110 , 528–542.  相似文献   

9.
Identifying the contribution of pre‐ and postzygotic barriers to gene flow is a key goal of speciation research. The widespread dung fly species Sepsis cynipsea and Sepsis neocynipsea offer great potential for studying the speciation process over a range of opportunities for gene exchange within and across sister species (cross‐continental allopatry, continental parapatry and sympatry). We examined the role of postcopulatory isolating barriers by comparing female fecundity and egg‐to‐adult viability of F1 and F2 hybrids, as well as backcrosses of F1 hybrids with the parental species, via replicated crosses of sym‐, para‐ and allopatric populations. Egg‐to‐adult viability was strongly but not totally suppressed in hybrids, and offspring production approached nil in the F2 generation (hybrid breakdown), indicating yet unspecified intrinsic incompatibilities. Viable F1 hybrid offspring showed almost absolute male (the heterogametic sex) sterility while females remained largely fertile, in accordance with Haldane's rule. Hybridization between the two species in European areas of sympatry (Swiss Alps) indicated only minor reinforcement based on fecundity traits. Crossing geographically isolated European and North American S. neocynipsea showed similar albeit weaker isolating barriers that are most easily explained by random genetic drift. We conclude that in this system with a biogeographic continuum of reproductive barriers, speciation is mediated primarily by genetic drift following dispersal of flies over a wide (allopatric) geographic range, with some role of natural or sexual selection in incidental or direct reinforcement of incompatibility mechanisms in areas of European sympatry. S(ubs)pecies status of continental S. neocynipsea appears warranted.  相似文献   

10.
Understanding the relative importance of various reproductive barriers to the early stages of speciation is an essential question in evolutionary biology. The closely related killifishes Fundulus heteroclitus and F. grandis occasionally hybridize in a small region in coastal Northeastern Florida showing that while barriers to reproduction exist, they are incomplete. The objective of this study was to elucidate barriers to reproduction between F. heteroclitus and F. grandis in the lab, as well as to quantify their strengths and relative contributions to reproductive isolation. Pre-zygotic (mating and fertilization) and post-zygotic (hatching) barriers were investigated by performing a variety of choice and no-choice laboratory mating experiments. Under no-choice conditions, barriers to mating had the greatest influence on hybrid production in F. grandis, whereas hatching barriers contributed to the majority of reproductive isolation in F. heteroclitus. Under choice conditions, however, pre-zygotic barriers had the greatest influence on hybrid production in both species. The total reproductive isolation that was observed in females of each species was stronger in F. heteroclitus than in F. grandis, and was nearly complete in F. heteroclitus females under choice conditions and was of moderate strength in F. grandis females. These results reveal an asymmetry in the potential gene flow between these two species, with F. grandis being more likely to hybridize than F. heteroclitus in the absence of environmental influences. No-choice backcrosses were also conducted and showed that at least some F1 hybrids are fertile. The observation that pre-zygotic barriers tend to be stronger than post-zygotic barriers in the early stages of speciation is consistent with similar studies in other organisms.  相似文献   

11.
Hybridization between incipient species is more likely to produce sterile or inviable F1 offspring in the heterogametic (XY or ZW) sex than in the homogametic (XX or ZZ) sex, a phenomenon known as Haldane's rule. Population dynamics associated with Haldane's rule may play an important role in early speciation of sexually reproducing organisms. The dynamics of the hybrid zone maintained by incomplete hybrid inferiority (sterility/inviability) in the heterogametic sex (a ‘weak’ Haldane's rule) caused by a Bateson–Dobzhansky–Muller incompatibility was modelled. The influences and interplays of the strengths of incompatibility, dispersal, density‐dependent regulation (DDR) and local adaptation of incompatible alleles in a scenario of short‐range dispersal (the stepping‐stone model) were examined. It was found that a partial heterogametic hybrid incompatibility could efficiently impede gene flow and maintain characteristic clinal noncoincidence and discordance of alleles. Density‐dependent regulation appears to be an important factor affecting hybrid zone dynamics: it can effectively skew the effects of the partial incompatibility and dispersal as measured by effective dispersal, clinal structures and density depression. Unexpectedly, local adaptation of incompatible alleles in the parental populations, which would be critical for the establishment of the incompatibility, exerts little effect on hybrid zone dynamics. These results strongly support the plausibility of the adaptive origin of hybrid incompatibility and ecological speciation: an adaptive mutation, if it confers a marginal fitness advantage in the local population and happens to cause epistatic inferiority in hybrids, could efficiently drive further genetic divergence that may result in the gene becoming an evolutionary hotspot.  相似文献   

12.
Abstract In animals, if one sex of the F1 hybrid between two species is sterile or inviable, it is usually the heterogametic (XY or WZ) sex. This phenomenon, known as Haldane's rule, is currently thought to be coincidentally caused by different mechanisms in separate entities. The following questions have never been asked: Are heterogametic and homogametic inferiority (sterility or inviability) equivalent as isolating mechanisms? Could discrepancies between them, if existing, produce Haldane's rule? Here I consider sex‐biased hybrid inferiority strictly as an isolating mechanism, and quantitatively evaluate its strength in impeding gene flow. The comparison reveals that the ability of sex‐biased inferiority to impede gene flow varies according to the sex and chromosome involved. Heterogametic inferiority is a weaker barrier when unidirectional and a much stronger one when in compound reciprocal directions, compared with homogametic inferiority. Such differential strength may affect divergence in speciation and produce Haldane's rule.  相似文献   

13.
Polymorphisms can lead to genetic isolation if there is differential mating success among conspecifics divergent for a trait. Polymorphism for sex‐determining system may fall into this category, given strong selection for the production of viable males and females and the low success of heterogametic hybrids when sex chromosomes differ (Haldane''s rule). Here we investigated whether populations exhibiting polymorphism for sex determination are genetically isolated, using the viviparous snow skink Carinascincus ocellatus. While a comparatively high elevation population has genotypic sex determination, in a lower elevation population there is an additional temperature component to sex determination. Based on 11,107 SNP markers, these populations appear genetically isolated. “Isolation with Migration” analysis also suggests these populations diverged in the absence of gene flow, across a period encompassing multiple Pleistocene glaciations and likely greater geographic proximity of populations. However, further experiments are required to establish whether genetic isolation may be a cause or consequence of differences in sex determination. Given the influence of temperature on sex in one lineage, we also discuss the implications for the persistence of this polymorphism under climate change.  相似文献   

14.
Two closely related grasshopper species Chorthippus albomarginatus and Ch. oschei are known to hybridize in the narrow contact zone at the territory of Ukraine and Moldova. Different isolaton mechanisms providing reproductive isolation between the two species were studied. In choice mating experiments, females of the both species demonstrated a strong assortative mating (80–90% preference for the conspecific males). Comparison of the parental and hybrid viability revealed a reduced hatching and increased larval mortality in F1 and F2 hybrids. In choice mating experiments, the hybrid females mated less assortatively than the parental females. An assymmetry was found in mating preferences and in viability of hybrids. The results demonstrate the existence of pre-and post-mating isolation between Ch. albomarginatus and Ch. oschei. A possible fate of the hybrid zone is discussed.  相似文献   

15.
Maladaptive hybridization is hypothesized to be an important force driving the evolution of reproductive isolation between closely related species. Because the magnitude and direction of selection can vary across a life cycle, an accurate understanding of the ubiquity of reinforcement requires fitness to be estimated across the life cycle, but the literature is surprisingly depauperate of such studies. We present fitness estimates of laboratory‐raised hybrids between the chorus frogs Pseudacris feriarum and Pseudacris nigrita—two species that have undergone reproductive character displacement where they come into secondary contact. By studying viability, mating success, and fertility across the life cycle, we find strong support for reinforcement as the force driving displacement in this system. Specifically, we find hybrid fitness is reduced by 44%. This reduction results from both sexual selection against hybrid males and natural selection on male fertility, but not viability selection. Sexual selection against hybrid males is four times stronger than natural selection. Hybrid female fitness is not reduced, however, suggesting that Haldane's rule may be operating in this system if males are heterogametic. We also found higher variation in hybrid male fertilization success relative to P. feriarum males, suggesting that the hybrid incompatibility genes are polymorphic within one or both of the parent species.  相似文献   

16.
Reproductive barriers reduce gene flow between populations and maintain species identities. A diversity of barriers exist, acting before, during and after mating. To understand speciation and coexistence, these barriers need to be quantified and their potential interactions revealed. We use the hybridising field crickets Gryllus bimaculatus and G. campestris as a model to understand the full compliment and relative strength of reproductive barriers. We find that males of both species prefer conspecific females, but the effect is probably too weak to represent a barrier. In contrast, prezygotic barriers caused by females being more attracted to conspecific male song and preferentially mounting and mating with conspecifics are strong and asymmetric. Postzygotic barriers vary in direction; reductions in fecundity and egg viability create selection against hybridisation, but hybrids live longer than pure-bred individuals. Hybrid females show a strong preference for G. bimaculatus songs, which together with a complete lack of hybridisation by G. campestris females, suggests that asymmetric gene flow is likely. For comparison, we review reproductive barriers that have been identified between other Gryllids and conclude that multiple barriers are common. Different species pairs are separated by qualitatively different combinations of barriers, suggesting that reproductive isolation and even the process of speciation itself may vary widely even within closely related groups.  相似文献   

17.
We assessed prezygotic (probability of spawning) and postzygotic (hatching success) reproductive isolation among the three ecologically and morphologically similar species in the Fundulus notatus species complex. We employed a multi-generation breeding experiment to test the hypotheses that karyotypic differences, body size differences, or geographic isolation among populations will increase pre or postzygotic reproductive barriers. Overall, prezygotic barriers were strong and postzygotic barriers weak in crosses of non-hybrid heterospecifics (F1 hybrid crosses) while prezygotic barriers were weaker and postzygotic barriers stronger in crosses involving hybrid individuals (F2 hybrid crosses and backcrosses). Prezygotic barriers among the two smaller species (Fundulus notatus and F. euryzonus) broke down rapidly; first generation hybrids spawned (F2 hybrid crosses and backcrosses) as frequently as parental forms in intraspecific crosses. There was no increase in postzygotic barriers among species with cytogenetic differences. There were increased prezygotic, but not postzygotic, barriers among geographically isolated populations of one species. While pure males and females were just as likely to spawn with hybrids, some types of hybrid females suffered from increased sterility, but not inviability, over hybrid males. Female sterility was only seen in hybrids with a Fundulus euryzonus parent, while other female hybrids produced viable eggs.  相似文献   

18.
The saltmarsh sparrow Ammospiza caudacuta and Nelson''s sparrow A. nelsoni differ in ecological niche, mating behavior, and plumage, but they hybridize where their breeding distributions overlap. In this advanced hybrid zone, past interbreeding and current backcrossing result in substantial genomic introgression in both directions, although few hybrids are currently produced in most locations. However, because both species are nonterritorial and have only brief male–female interactions, it is difficult to determine to what extent assortative mating explains the low frequency of hybrid offspring. Since females often copulate with multiple males, a role of sperm as a postcopulatory prezygotic barrier appears plausible. Here, we show that sperm length differs between the two species in the hybrid zone, with low among‐male variation consistent with strong postcopulatory sexual selection on sperm cells. We hypothesize that divergence in sperm length may constitute a reproductive barrier between species, as sperm length co‐evolves with the size of specialized female sperm storage tubules. Sperm does not appear to act as a postzygotic barrier, as sperm from hybrids was unexceptional.  相似文献   

19.

Background

Interspecific hybrid crosses often produce offspring with reduced but non-zero survivorship. In this paper we ask why such partial inviability occurs. This partial inviability could arise from incomplete penetrance of lethal Dobzhansky-Muller incompatibilities (DMIs) shared by all members of a hybrid cross. Alternatively, siblings may differ with respect to the presence or number of DMIs, leading to genotype-dependent variation in viability and hence non-Mendelian segregation of parental alleles in surviving F1 hybrids.

Methodology/Principal Findings

We used amplified fragment length polymorphisms (AFLPs) to test for segregation distortion in one hybrid cross between green and longear sunfish (Lepomis cyanellus and L. megalotis). Hybrids showed partial viability, and twice as much segregation distortion (36.8%) of AFLPs as an intraspecific control cross (18.8%). Incomplete penetrance of DMIs, which should cause genotype-independent mortality, is insufficient to explain the observed segregation distortion.

Conclusions/Significance

We conclude that F1 hybrid sunfish are polymorphic for DMIs, either due to sex-linked DMI loci (causing Haldane''s Rule), or polymorphic autosomal DMI loci. Because few AFLP markers were sex-linked (2%), the most parsimonious conclusion is that parents may have been heterozygous for loci causing hybrid inviability.  相似文献   

20.
When species hybridize, one F1 hybrid cross type often predominates. Such asymmetry can arise from differences in a variety of reproductive barriers, but the relative roles and concordance of pre-mating, post-mating prezygotic, and post-zygotic barriers in producing these biases in natural animal populations have not been widely investigated. Here, we study a population of predominantly F1 hybrids between two killifish species (Fundulus heteroclitus and F. diaphanus) in which >95% of F1 hybrids have F. diaphanus mothers and F. heteroclitus fathers (D♀ × H♂). To determine why F. heteroclitus × F. diaphanus F1 hybrids (H♀ × D♂) are so rare, we tested for asymmetry in pre-mating reproductive barriers (female preference and male aggression) at a common salinity (10 ppt) and post-mating, pre-zygotic (fertilization success) and post-zygotic (embryonic development time and hatching success) reproductive barriers at a range of ecologically relevant salinities (0, 5, 10, and 15 ppt). We found that F. heteroclitus females preferred conspecific males, whereas F. diaphanus females did not, matching the observed cross bias in the wild. Naturally rare H♀ × D♂ crosses also had lower fertilization success than all other cross types, and a lower hatching success than the prevalent D♀ × H♂ crosses at the salinity found in the hybrid zone centre (10 ppt). Furthermore, the naturally predominant D♀ × H♂ crosses had a higher hatching success than F. diaphanus crosses at 10 ppt, which may further increase their relative abundance. The present study suggests that a combination of incomplete mating, post-mating pre-zygotic and post-zygotic reproductive isolating mechanisms act in concert to produce hybrid asymmetry in this system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号